Homework \# 1

P1.4* The reference direction for $i_{a b}$ points from a to b. Because $i_{a b}$ has a negative value, the current is equivalent to positive charge moving opposite to the reference direction. Finally since electrons have negative charge, they are moving in the reference direction (i.e., from a to b).

For a constant (dc) current, charge equals current times the time interval. Thus, $Q=(5 A) \times(3 s)=15 C$.

P1.5* $\quad i(t)=\frac{d q(t)}{d t}=\frac{d}{d t}(2+3 t)=3 \mathrm{~A}$
P1.7* $\quad Q=\int_{0}^{\infty} i(t) d t=\int_{0}^{\infty} 2 e^{-t} d t=-\left.2 e^{-t}\right|_{0} ^{\infty}=2$ coulombs
P1.10* $Q=$ current \times time $=(5$ amperes $) \times(36,000$ seconds $)=1.8 \times 10^{5}$ coulombs Energy $=Q V=\left(1.8 \times 10^{5}\right) \times(12)=2.16 \times 10^{6}$ joules

P1.11* (a) $P=-v_{a} i_{a}=-20 \mathrm{~W}$ Energy is being supplied by the element.
(b) $P=v_{b} i_{b}=50 \mathrm{~W}$ Energy is being absorbed by the element.
(c) $P=-v_{c} i_{c}=40 \mathrm{~W}$ Energy is being absorbed by the element.

P1.16* Energy $=\frac{\text { Cost }}{\text { Rate }}=\frac{\$ 40}{0.1 \$ / \mathrm{kWh}}=400 \mathrm{kWh}$
$P=\frac{\text { Energy }}{\text { Time }}=\frac{400 \mathrm{kWh}}{30 \times 24 \mathrm{~h}}=555.5 \mathrm{~W} \quad I=\frac{P}{V}=\frac{555.5}{120}=4.630 \mathrm{~A}$
Reduction $=\frac{40}{555.5} \times 100 \%=7.20 \%$
P1.18* (a) $P=60 \mathrm{~W}$ taken from element A.
(b) $P=60 \mathrm{~W}$ delivered to element A.
(c) $P=60 W$ taken from element A.

P1.20* Elements A and B are in series. Also elements E and F are in series.
P1.22* At the node joining elements A and B , we have $i_{a}+i_{b}=0$. Thus, $i_{a}=-2 \mathrm{~A}$. For the node at the top end of element C, we have $i_{b}+i_{c}=3$. Thus, $i_{c}=1 \mathrm{~A}$. Finally, at the top right-hand corner node, we have $3+i_{e}=i_{d}$. Thus, $i_{d}=4 \mathrm{~A}$. Elements A and B are in series.

P1.23* We are given $i_{a}=2 \mathrm{~A}, i_{b}=3 \mathrm{~A}, i_{d}=-5 \mathrm{~A}$, and $i_{h}=4 \mathrm{~A}$. Applying KCL, we find

$$
\begin{array}{ll}
i_{c}=i_{b}-i_{a}=1 \mathrm{~A} & i_{e}=i_{c}+i_{h}=5 \mathrm{~A} \\
i_{f}=i_{a}+i_{d}=-3 \mathrm{~A} & i_{g}=i_{f}-i_{h}=-7 \mathrm{~A}
\end{array}
$$

P1.26* Summing voltages for the lower left-hand loop, we have $-5+v_{a}+10=0$, which yields $v_{a}=-5 \mathrm{~V}$. Then for the top-most loop, we have $v_{c}-15-v_{a}=0$, which yields $v_{c}=10 \mathrm{~V}$. Finally, writing KVL around the outside loop, we have $-5+v_{c}+v_{b}=0$, which yields $v_{b}=-5 \mathrm{~V}$.

P1.28* Applying KCL and KVL, we have

$$
\begin{array}{ll}
i_{c}=i_{a}-i_{d}=1 \mathrm{~A} & i_{b}=-i_{a}=-2 \mathrm{~A} \\
v_{b}=v_{d}-v_{a}=-6 \mathrm{~V} & v_{c}=v_{d}=4 \mathrm{~V}
\end{array}
$$

The power for each element is

$$
\begin{array}{ll}
P_{A}=-v_{a} i_{a}=-20 \mathrm{~W} & P_{B}=v_{b} i_{b}=12 \mathrm{~W} \\
P_{C}=v_{c} i_{c}=4 \mathrm{~W} & P_{D}=v_{d} i_{d}=4 \mathrm{~W}
\end{array}
$$

Thus, $P_{A}+P_{B}+P_{C}+P_{D}=0$

P1.30*

P1.36* $R=\frac{\left(V_{1}\right)^{2}}{\rho_{1}}=\frac{100^{2}}{100}=100 \Omega$
$P_{2}=\frac{\left(V_{2}\right)^{2}}{R}=\frac{90^{2}}{100}=81 \mathrm{~W}$ for a 19% reduction in power

P1.39*

As shown above, the 2 A current circulates clockwise through all three elements in the circuit. Applying KVL, we have

$$
v_{c}=v_{R}+10=5 i_{R}+10=20 \mathrm{~V}
$$

$P_{\text {current }- \text { source }}=-v_{c} i_{R}=-40 \mathrm{~W}$. Thus, the current source delivers power.
$P_{R}=\left(i_{R}\right)^{2} R=2^{2} \times 5=20 \mathrm{~W}$. The resistor absorbs power.
$P_{\text {voltage-source }}=10 \times i_{R}=20 \mathrm{~W}$. The voltage source absorbs power.
P1.41*

Applying Ohm's law, we have $v_{2}=(5 \Omega) \times(1 \mathrm{~A})=5 \mathrm{~V}$. However, v_{2} is the voltage across all three resistors that are in parallel. Thus, $i_{3}=\frac{v_{2}}{5}=1 \mathrm{~A}$, and $i_{2}=\frac{v_{2}}{10}=0.5 \mathrm{~A}$. Applying KCL , we have $i_{1}=i_{2}+i_{3}+1=2.5 \mathrm{~A}$. By Ohm's law: $v_{1}=5 i_{1}=12.5 \mathrm{~V}$. Finally using KVL, we have $v_{x}=v_{1}+v_{2}=17.5 \mathrm{~V}$.

P1.42* (a) Applying KVL, we have $10=v_{x}+5 v_{x}$, which yields $v_{x}=10 / 6=1.667 \mathrm{~V}$
(b) $i_{x}=v_{x} / 3=0.5556 \mathrm{~A}$
(c) $P_{\text {voltage-source }}=-10 i_{x}=-5.556 \mathrm{~W}$. (This represents power delivered by the voltage source.)

$$
\begin{gathered}
P_{R}=3\left(i_{x}\right)^{2}=0.926 \mathrm{~W} \text { (absorbed) } \\
P_{\text {controlled-source }}=5 v_{x} i_{x}=4.63 \mathrm{~W} \text { (absorbed) }
\end{gathered}
$$

P1.44*

Applying KVL around the outside of the circuit:

$$
v_{s}=3 i_{s}+4+2=15 \mathrm{~V}
$$

