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Abstract
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to infection and skill composition externalities. Job creation increases infections
due to increased interactions among workers. However, lower job creation de-
creases TFP due to skill loss. A three-month lockdown causes a 0.56% decline
in TFP, i.e. nearly 50% of productivity losses in past recessions. We study the
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“Moreover, the longer the downturn lasts, the greater the potential for longer-term damage
from permanent job loss and business closures. Long periods of unemployment can erode
workers’ skills and hurt their future job prospects.” – Jerome H. Powell before the US Senate
on June 16, 2020

1 Introduction

The economic costs of the COVID-19 pandemic have been extraordinary. In the period between March-
April 2020, nearly twenty million jobs were lost in the US and the unemployment rate reached levels
not observed since the Great Depression. Further, the share of unemployed workers who have been
unemployed for six months or longer has risen to the historic levels realized after the Great Recession.1

As seen in the above statement from Federal Reserve Chairman Jerome H. Powell, policymakers were
concerned about this possibility within a few months of the onset of the pandemic, as it is well docu-
mented that workers lose human capital during long periods of unemployment. When workers lose skills
during unemployment, longer unemployment spells worsen the skill composition of the work force, which
in turn decreases TFP and allows for the pandemic to potentially scar the economy for years to come.

We integrate the canonical SIR framework (Kermack and McKendrick, 1927) with a search and
matching model in which workers lose human capital while unemployed to study the effects of the
COVID-19 pandemic on unemployment, TFP and health outcomes. Our integration of the SIR frame-
work with a search and matching model follows Kapička and Rupert (2021) by assuming that employed
workers are more likely to become infected than unemployed workers. When employed workers become
infected, they are not productive and face the possibility of dying. As a pandemic evolves, firms create
fewer jobs due to the increased risk that their employee becomes infected and the match no longer
produces output. We extend this framework by assuming workers are exposed to skill loss shocks when
they are either unemployed or are employed and not working due to being infected.

Through the addition of skill loss shocks, our model allows us to study the dynamics of the skill
composition of workers and TFP following the outbreak of a pandemic. As infections rise and fewer
jobs are created, the probability of finding a job decreases, and the unemployment rate increases. As
workers face longer unemployment durations, they are more likely to lose skills and the skill composition
of the labor force deteriorates over the course of the pandemic. Following the worsening of the skill
composition, average labor productivity, and hence TFP decrease.

The decentralized equilibrium is not efficient due to two externalities. First, as emphasized by
Kapička and Rupert (2021), there is an infection externality whereby workers and firms do not internalize
that by forming a match, they increase the spread of the virus. Second, firms do not internalize that by
creating a vacancy, they reduce unemployment durations of workers and reduce their exposure to skill
loss, thereby improving the skill composition of the unemployed (Laureys, 2021). Thus, the addition of
skill loss during unemployment introduces novel normative implications when considering optimal job
creation throughout a pandemic. A planner who reduces job creation in an effort to limit infections and

1The share of unemployed who have been unemployed 27 weeks or longer was 43% according to the April 2021 BLS
jobs report. See https://www.bls.gov/charts/employment-situation/unemployed-27-weeks-or-longer-as-a-percent-of-total-
unemployed.htm for more details and a comparison to the levels observed after the Great Recession.
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deaths also increases unemployment durations, worsens the skill composition of the unemployed, and
reduces TFP.

We calibrate the model to quantify the effect of the COVID-19 pandemic on unemployment, the skill
composition of the unemployed and TFP through skill loss during unemployment. Additionally, we use
the calibrated model to study the optimal job creation when a social planner faces a tradeoff between
reducing infections and deaths against decreases in productivity through skill loss during unemployment.
In our baseline exercise without any policy intervention, the unemployment rate increases by nearly 3.8

percentage points, the skill composition of unemployed workers worsens, and TFP decreases by 0.44%.
Given that the typical decline in TFP during recessions is 1.13%, the baseline results generate a decline
in TFP close to 39% of the typical productivity losses seen in past recessions. Moreover, the effects of
the pandemic on TFP are long lasting: TFP reaches its lowest point only 55 weeks after the onset of the
pandemic and remains far below its pre-pandemic value even 100 weeks after the pandemic started.

To study the effect of a lockdown, we increase the job separation probability for three months at the
onset of the pandemic. By increasing job separations, fewer firms create jobs, fewer workers are employed
and infections drop. We find that this policy saves nearly 65,000 lives. However, there is a substantial
cost in terms of increased unemployment. The increased separations combined with reduced job creation
increases the unemployment rate by nearly 7.6 percentage points in a period of three months. There is
also a long-term economic cost associated with the lockdown; as the increased unemployment rate causes
more workers to be exposed to human capital depreciation, further worsening the skill composition of
job seekers. We find that, sixty-two weeks after the pandemic began, TFP reaches its lowest point and
has decreased by 0.56%. Conducting the same calculation as with our baseline results, a 0.56% decline
in TFP due to loss of skill during unemployment corresponds to nearly 50% of the productivity losses in
previous recessions, indicating that the COVID-19 pandemic and the recession it has caused will leave
significant scarring effects on the economy for years to come. It is worth stressing that although job
separations were largely concentrated on the hospitality sector, this is a sector that suffers larger than
average skill losses (Ortego-Marti, 2017b). Taking into account how job separations varied by sector
during the pandemic would lead to even larger TFP losses due to the lockdown.

We then compute the constrained-efficient allocation. In the absence of a pandemic, the economy is
inefficient due to the skill composition externality even when the Hosios-Mortensen-Pissarides condition
holds, a result similar to Laureys (2021). Job creation is higher in the pre-pandemic steady-state, as
the planner creates more jobs to improve the skill composition of the unemployed. After the onset of
the pandemic, job creation in the constrained-efficient allocation declines sharply to limit the spread
of the virus. We find that the increase in unemployment relative to the pre-pandemic steady-state in
the constrained-efficient allocation is higher than the baseline economy, but lower than the three-month
lockdown, showing that the planner does limit job creation to reduce infections and deaths, but not to
the extent caused by a three-month lockdown, as the planner also wants to limit the decline in TFP
through loss of skill during unemployment.

Finally, we study the effect of both a large increase in job separations and changes to behavior which
reduce the propagation of infections. We find that this version of the model generates a much more rapid
recovery in unemployment that is in line with the data. Despite the quick recovery in unemployment,
the effects of the pandemic on TFP are still sizable, as the reduction in TFP resulting from skill loss
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alone is nearly 20% of the average productivity losses in previous recessions.
Related literature. There is a burgeoning economic literature on the COVID-19 pandemic. Here,

we briefly review the most related literature. Our paper is most closely related to Kapička and Ru-
pert (2021) who integrate the SIR framework of Kermack and McKendrick (1927) into the Diamond-
Mortensen-Pissarides (DMP) model of equilibrium unemployment (Pissarides (1985), Mortensen and
Pissarides (1994)). Relative to their framework, we add skill loss during unemployment and assume an
unsegmented labor market. Our framework allows us to study the effects of a pandemic and lockdowns
on unemployment, the skill composition and TFP, and to characterize optimal job creation during a
pandemic when the economy exhibits both infection and skill composition externalities. Allowing for
skill loss leads to a sharp contrast with their results. In their framework, the planner lowers job creation
dramatically to limit the infection externality, to the extent that the social planner shuts down job cre-
ation altogether for more than 20 weeks when infections rise and the unemployment rate reaches 21%.
When the planner is also allowed to destroy matches, the optimal policy implies an unemployment rate
of around 40%. By contrast, with skill loss the planner’s efficient allocation features significantly more
job creation and a much lower unemployment rate to counter the skill composition externality, which
highlights the quantitative importance of the skill composition externality.2

Other studies discussing the impact of COVID-19 on the labor market include Gregory et al. (2020),
who develop a framework with both permanent and temporary layoffs to forecast labor market dynamics
following a lockdown shock. Graham and Ozbilgin (2021) analyze the heterogenous impacts of lockdowns
across different industries and ages of workers. However, neither of these frameworks model the pandemic
or study loss of skill during unemployment. Petrosky-Nadeau and Valletta (2020) and Sahin et al. (2020)
forecast unemployment dynamics following the initial spike in unemployment following the onset of the
COVID-19 pandemic, while Coibion et al. (2020) document large flows into non-participation and that
initial job losses were larger than implied by initial unemployment insurance claims.

Many other papers have introduced the SIR framework of Kermack and McKendrick (1927) into eco-
nomic models and applied them to the COVID-19 pandemic. Atkeson (2020) provided an early introduc-
tion into SIR models and how they could be applied to the current pandemic while Fernández-Villaverde
and Jones (2020) developed an SIRD model to forecast the COVID-19 pandemic under lockdowns and
changes to social distancing behavior. Eichenbaum et al. (2020) extended the SIR framework to study
the relationship between economic decisions and epidemics and optimal containment policies. Garibaldi
et al. (2020) extended the SIR framework to include search frictions and explicitly model interactions
between agents. In addition, many papers have characterized optimal policy responses to the COVID-19
pandemic. Hall et al. (2020) develop a framework to study the optimal tradeoff between consumption
and deaths while Alvarez et al. (2020) study optimal lockdown policies. Berger et al. (2020) develop
a SEIR framework to study optimal quarantine and testing. Guerrieri et al. (2020) demonstrate how
the initial supply shock associated with the COVID-19 pandemic can lead to a subsequent aggregate
demand shock and optimal fiscal and monetary policy response. Both Bethune and Korinek (2020) and
Farboodi et al. (2020) study in detail the externalities present in an economic environment with a pan-
demic and characterize optimal policy responses. While the above papers study optimal policy during

2In addition, skill loss improves the performance of the DMP model in response to shocks (Ortego-Marti, 2017a).
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a pandemic, none of them consider an environment with both a SIR epidemiological model and skill
loss during unemployment. We contribute to this literature by characterizing the constrained-efficient
allocation of a planner who faces a tradeoff between reducing infections/deaths and long-lasting declines
to TFP through loss of skill during unemployment.

Finally, our paper is closely related to previous work on skill loss during unemployment. Two
seminal papers in this literature are Pissarides (1992) and Ljungqvist and Sargent (1998). Pissarides
(1992) shows that unemployment is more persistent when unemployed workers suffer skill decay during
unemployment, whereas Ljungqvist and Sargent (1998) provide a rationale for the high unemployment
in Europe relative to the US due to the generous UI benefits in Europe. Ortego-Marti (2017c, 2020)
show how loss of skill during unemployment impacts TFP while Doppelt (2019) focuses on the classical
debate over the long-run relationship between growth and unemployment. Laureys (2021) discusses the
externalities caused by loss of skill during unemployment, an externality also present in our environment,
and the implications for optimal policy. Our project is also related to Ortego-Marti (2016) who studies
wage dispersion in the presence of skill loss, to Heathcote et al. (2020) who study how loss of skill
during unemployment can increase inequality in the long-run. However, none of these papers consider
an epidemiological SIR model to study the effect of a pandemic. We contribute to this literature by
developing a framework which can be used to model the effect of a pandemic on TFP through loss of
skill during unemployment, and by providing quantitative results regarding the long-run effect of the
COVID-19 pandemic on both unemployment and TFP in the US.

2 Environment

Time, agents, and preferences. Time is discrete and indexed by t ∈ N0. There are two types of
agents: a large measure of firms and workers whose initial population is normalized to one. All agents
are risk-neutral and have a discount factor β ∈ (0, 1). Workers are categorized by their employment
status (employed or unemployed), skill level (high or low skill), and health status (susceptible, infected,
or recovered). In each period, a measure µ of workers enter the labor force as unemployed who are highly
skilled and susceptible.

Health statuses. Workers can be susceptible to the infection but not yet infected (S), infected but not
yet recovered or deceased (I), or recovered and immune from further infection (R). The probability that
a susceptible person becomes infected depends on their employment status. Employed workers become
infected with probability πEIt = πEIt, where It is the stock of infected workers at time t. Unemployed
workers become infected with probability πUIt = πUIt. Following Kapička and Rupert (2021), we assume
that employed workers have more interactions than the unemployed and hence have more opportunities
to become infected, i.e. πE > πU . Infected workers recover with probability πR and die from the infection
with probability πD.

Skills and technology. Workers are heterogenous in their skill due to skill loss during unemployment.
For tractability purposes, there are two levels of skill indexed by χ ∈ {L,H}: low (L) and high (H).
Employed high skill workers produce y units of output per period, while low skill workers produce δy
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with δ ∈ (0, 1). We use the terminology of low and high skill to simplify the exposition, but this skill
level should not be confused with other determinants of human capital such as educational attainment,
occupation or experience. If a susceptible employed worker becomes infected, they remain employed
and do not produce output. Skill loss occurs as follows. In each period, high skill workers who are
either unemployed or employed and infected permanently become low skilled with probability σ. As we
discuss later, the assumption that skill losses are permanent is well supported empirically. Unemployed
workers receive utility b while unemployed, representing the value of leisure, home-production, and
unemployment benefits.

The labor market. Workers search for jobs while firms search for applicants in a frictional labor
market. Unemployed infected workers can not look for a job and remain unemployed until either they
recover or die. Firms with a vacancy incur a vacancy posting cost k > 0 each period. The labor market is
unsegmented, i.e. firms posting a vacancy can meet unemployed workers of either skill level. The number
of meetings between firms and workers, Mt, is given by the aggregate meeting function Mt = m(Ut, Vt),
where Ut is the stock of unemployed workers who are not infected at the beginning of period t and Vt
is the stock of vacancies. The meeting function exhibits constant returns to scale, and is increasing and
concave in both of its arguments. Workers meet firms with probability f(θt) = m(Ut, Vt)/Ut, where
θt ≡ Vt/Ut is labor market tightness. The meeting probability f(θ) is strictly increasing in θ, with
limθ→0 f(θ) = 0 and limθ→∞ f(θ) = 1. Firms meet workers with probability q(θt) = m(Ut, Vt)/Vt, where
q(θ) is strictly decreasing in θ, limθ→0 q(θ) = 1, and limθ→∞ q(θ) = 0. An unemployed worker’s skill level
and health status are observable upon meeting the firm. Filled jobs are destroyed with an exogenous
probability s.

Timing. At the beginning of each period, firms post vacancies and hire workers. After hiring takes
place, high skill workers who remain unemployed or employed and infected then experience skill loss
shocks. Workers then experience infection, recovery, and death shocks. A fraction µ of the remaining
workers then leave the labor force. Finally, all remaining filled jobs are hit with separation shocks.

3 Accounting

In this section, we characterize the flows of workers across employment statuses, skill levels, and health
statuses. Let NχS

t , NχI
t , and NχR

t be the measure of unemployed workers at time t of skill level χ and
respective health status. Further, let EχSt , EχIt , and EχRt denote the respective measures of employed
workers. The aggregate measure of unemployed and employed workers of each respective skill type is
given by

Nχ
t = NχS

t +NχI
t +NχR

t , Eχt = EχSt + EχIt + EχRt ,
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while the aggregate stocks of unemployed and employed workers across health statuses are given by

NS
t = NLS

t +NHS
t , ESt = ELSt + EHSt ,

N I
t = NLI

t +NHI
t , ESt = ELIt + EHIt ,

NR
t = NLR

t +NHR
t , ESt = ELRt + EHRt ,

where the aggregate measure of unemployed and employed workers are given by Nt = NL
t + NH

t =

NS
t +N I

t +NR
t and Et = ELt +EHt = ESt +EIt +ERt . The measures of workers of skill level χ who are

susceptible (Sχt ), infected (Iχt ), and recovered (Rχt ) are given by

Sχt = NχS
t + EχSt ,

Iχt = NχI
t + EχIt ,

Rχt = NχR
t + EχRt .

The aggregate measures of susceptible, infected, and recovered workers are given by St = SLt + SHt ,
It = ILt + IHt , and Rt = RLt +RHt , respectively. The population at time t, Popt, is given by

Popt = Nt + Et = St + It +Rt.

With these identities in hand, we characterize the laws of motion for unemployment and employment.
Beginning with unemployment among low skill workers, we have

NLS
t+1 = (1− µ)

[
(1− f(θt))(1− πUIt )[NLS

t + σNHS
t ] + s(1− πEIt )ELSt

]
, (1)

NLI
t+1 = (1− µ)

[
(1− πR − πD)[NLI

t + sELIt + σNHI
t + σsEHIt ] + πUIt [NLS

t + σNHS
t ] + sπEIt ELSt

]
, (2)

NLR
t+1 = (1− µ)

[
(1− f(θt))[N

LR
t + σNHR

t ] + πR[NLI
t + sELIt + σNHI

t + σsEHIt ] + sELRt
]
, (3)

NL
t+1 = (1− µ)

[
(1− f(θt)(1− πUIt ))[NLS

t + σNHS
t ] + (1− f(θt))[N

LR
t + σNHR

t ]

+ (1− πD)[NLI
t + σNHI

t ] + s[ELt − πDELIt + σEHIt (1− πD)]
]
.

(4)

As seen in (1), the stock of susceptible unemployed low skill workers will contain a fraction (1−f(θt))(1−
πUIt ) of those susceptible low skill workers who did not find a job or become infected, a fraction (1 −
f(θt))(1− πUIt )σ of the susceptible high skill workers who remain unemployed, susceptible, and became
low skilled. Additionally, the stock of susceptible unemployed low skill workers contains a fraction
s(1−πEIt ) of the low skill susceptible workers who were employed, lost their job, and did not get infected.
Equation (2) shows that next period’s stock of infected low skill unemployed workers is composed of
a fraction (1 − πR − πD) of those who began the period infected and remain infected, a fraction πUIt

of susceptible unemployed workers who become infected, and a fraction sπEIt of employed susceptible
workers who lose their job and become infected. From equation (3), the stock of low skill unemployed
workers who are recovered contains a fraction 1−f(θt) of unemployed recovered workers who did not find
a job, a fraction πR of infected workers who recover and are unemployed, and a fraction s of recovered
workers who are employed that lose their job. Finally, equation (4) aggregates across health statuses to
describe the evolution of the aggregate stock of unemployed low skill workers.
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The flows of unemployed high skill workers are given by

NHS
t+1 = µ+ (1− µ)

[
(1− σ)(1− f(θt))(1− πUIt )NHS

t + s(1− πEIt )EHSt
]
, (5)

NHI
t+1 = (1− µ)

[
(1− πR − πD)(1− σ)[NHI

t + sEHIt ] + πUIt (1− σ)NHS
t + sπEIt EHSt

]
, (6)

NHR
t+1 = (1− µ)

[
(1− σ)[(1− f(θt))N

HR
t + πRN

HI
t + πRsE

HI
t ] + sEHRt

]
, (7)

NH
t+1 = µ+ (1− µ)

[
(1− σ)[(1− f(θt)(1− πUIt ))NHS

t + (1− f(θt))N
HR
t

+ (1− πD)NHI
t ] + s[EHt − (πD + σ(1− πD))EHIt ]

]
.

(8)

Equations (5)-(8) have a similar interpretation to (1)-(3) with a few notable differences. First, as seen in
(5), there is an additional flow into the stock of unemployed high skill susceptible workers, µ, from new
workers entering the labor force. Additionally, the stocks of unemployed high skill workers account for
the possibility of skill loss among high skill workers who are either unemployed or employed and infected.
From (4) and (8), aggregating across skill levels gives the aggregate flows of unemployed workers

Nt+1 = µ+ (1− µ)
[
(1− f(θt)(1− πUIt ))NS

t + (1− f(θt))N
R
t + (1− πD)N I

t + s[Et − πDEIt ]
]
. (9)

Next, we focus on the flows of employed workers. The flows of low skill employed workers are given
by

ELSt+1 = (1− µ)
[
(1− πEIt )(1− s)ELSt + f(θt)(1− πUIt )NLS

t

]
, (10)

ELIt+1 = (1− µ)(1− s)
[
(1− πR − πD)[ELIt + σEHIt ] + πEIt ELSt

]
, (11)

ELRt+1 = (1− µ)
[
(1− s)[ELRt + πRE

LI
t + σπRE

HI
t ] + f(θt)N

LR
t

]
, (12)

ELt+1 = (1− µ)
[
(1− s)[ELt − πDELIt + σEHIt (1− πD)] + f(θt)[(1− πUIt )NLS

t +NLR
t ]
]
. (13)

Equation (10) illustrates that the stock of employed susceptible workers contains a fraction (1−πEIt )(1−s)
of the employed susceptible workers who did not become infected and did not lose their job and a fraction
f(θt)(1−πUIt ) of the unemployed susceptible workers who found a job and did not become infected. From
(11), workers will remain infected and employed with probability (1− πR − πD)(1− s) and susceptible
employed workers enter next period’s stock of employed infected workers with probability πEIt . Equation
(12) shows that next period’s stock of employed recovered workers contains a fraction 1−s of the employed
workers who have recovered and did not lose their job and a fraction f(θt) of the unemployed recovered
workers who find a job. Equation (13) aggregates across health statuses to illustrate the aggregate flows
of employment among low skill workers.

The flow equations for employment among high skill workers are given by

EHSt+1 = (1− µ)
[
(1− πEIt )(1− s)EHSt + f(θt)(1− πUIt )NHS

t

]
, (14)

EHIt+1 = (1− µ)(1− s)
[
(1− σ)(1− πR − πD)EHIt + πEIt EHSt

]
, (15)

EHRt+1 = (1− µ)
[
(1− s)[EHRt + (1− σ)πRE

HI
t ] + f(θt)N

HR
t

]
, (16)

EHt+1 = (1− µ)
[
(1− s)[EHt − (σ(1− πD) + πD)EHIt ] + f(θt)[(1− πUIt )NHS

t +NHR
t ]

]
, (17)
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where the main difference to equations (10)-(13) is that high skill workers can experience skill loss while
they are employed and infected. From (13) and (17), the aggregate flows of employment are given by

Et+1 = (1− µ)
[
(1− s)[Et − πDEIt ] + f(θt)[(1− πUIt )N I

t +NR
t ]
]
. (18)

Using Sχt+1 = NχS
t+1 + EχSt+1, the flows of susceptible workers by skill level and in aggregate are given

by

SLt+1 = (1− µ)
[
(1− πUIt )NLS

t + (1− πEIt )ELSt + σ(1− f(θt))(1− πUIt )NHS
t

]
, (19)

SHt+1 = µ+ (1− µ)
[
(1− πUIt )NHS

t + (1− πEIt )EHSt − σ(1− f(θt))(1− πHSt )NHS
t

]
, (20)

St+1 = µ+ (1− µ)
[
(1− πUIt )St − (πEIt − πUIt )ESt

]
, (21)

while the dynamics for infections are given by

ILt+1 = (1− µ)
[
(1− πR − πD)[ILt + σIHt ] + πUIt [NLS

t + σNHS
t ] + πEIt ELSt

]
, (22)

IHt+1 = (1− µ)
[
(1− σ)[(1− πR − πD)IHt + πUIt NHS

t ] + πEIt EHSt
]
, (23)

It+1 = (1− µ)
[
(1− πR − πD)It + πUIt St + (πEIt − πUIt )ESt

]
, (24)

and the dynamics for recoveries are given by

RLt+1 = (1− µ)
[
RLt + πRI

L
t + σ[(1− f(θt))N

HR
t + πRN

HI
t + πRsE

HI
t ]
]
, (25)

RHt+1 = (1− µ)
[
RHt + πRI

H
t − σ[(1− f(θt))N

HR
t + πRN

HI
t + πRsE

HI
t ]
]
, (26)

Rt+1 = (1− µ)
[
Rt + πRIt

]
. (27)

Letting Dt denote the total number of deaths from the pandemic at time t, it follows that

Dt+1 = Dt + πDIt. (28)

Finally, the population evolves according to

Popt+1 = Popt − (Dt+1 −Dt). (29)

4 Equilibrium

We begin this section by describing the Bellman equations for workers and firms. We then derive the pre-
pandemic equilibrium and discuss how job creation depends on the skill distribution. Intuitively, when
unemployment is high and many workers lose skills, aggregate productivity drops and firms’ profits
shrink, so firms respond by creating fewer jobs. We then derive the equilibrium during a pandemic.
During a pandemic, firms take into account not only the distribution of workers across skills, but also
across health statuses. As infections rise, it becomes more difficult to hire a susceptible worker, and
susceptible employed workers are more likely to become infected and unproductive. As a result, firms
create fewer jobs as infections ramp up.
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Let UχSt , UχIt , and UχRt denote the lifetime discounted utility of an unemployed worker with skill
level χ who is susceptible, infected, and recovered. Further, letWχS

t , WχI
t , andWχR

t denote the lifetime
discounted utility of an employed worker with skill level χ and respective health status. We normalize
the value of death to 0. The value functions for low skill unemployed workers satisfy the following
Bellman Equations

ULSt = b+ β̄
{
f(θt)(1− πUIt )WLS

t+1 + πUIt ULIt+1 + (1− f(θt))(1− πUIt )ULSt+1

}
, (30)

ULIt = b+ β̄
{

(1− πR − πD)ULIt+1 + πRU
LR
t+1

}
, (31)

ULRt = b+ β̄
{
f(θt)W

LR
t+1 + (1− f(θt))U

LR
t+1

}
, (32)

where β̄ ≡ β(1 − µ) is the effective discount factor. From (30), unemployed low skill workers who are
susceptible enjoy utility b. With probability f(θt)(1− πUIt ) they find a job and do not become infected.
They become infected and remain unemployed with probability πUIt . With probability (1−f(θt))(1−πUIt )

they remain unemployed and susceptible. Equation (31) shows that a low skill unemployed worker who
is infected has utility b. With probability (1−πR−πD) they remain infected and recover with probability
πR. Recall that infected workers can not search for jobs, so they remain unemployed even if they recover.
As for recovered workers, (32) shows that they face a standard labor search problem where they either
find a job with probability f(θt) or do not with probability 1− f(θt). Recovered workers do not face the
probability of infection as they have gained immunity.

The value functions of high skill unemployed workers are given by

UHSt = b+ β̄
{
f(θt)(1− πUIt )WHS

t+1 + σ[πUIt ULIt+1 + (1− f(θt))(1− πUIt )ULSt+1]+

(1− σ)[πUIt UHIt+1 + (1− f(θt))(1− πUIt )UHSt+1 ]
}
,

(33)

UHIt = b+ β̄
{
σ[(1− πR − πD)ULIt+1 + πRU

LR
t+1] + (1− σ)[(1− πR − πD)UHIt+1 + πRU

HR
t+1 ]

}
, (34)

UHRt = b+ β̄
{
f(θt)W

HR
t+1 + (1− f(θt))[σU

LR
t+1 + (1− σ)UHRt+1 ]

}
. (35)

Equations (33)-(35) have a very similar interpretation as (30)-(32) in terms of the transitions between
health statuses and employment statuses. However, an important difference is the possibility of skill
loss. Equation (33) shows that if the high skill worker does not find a job, then with probability σ they
become low skilled and face the possibility of becoming infected. Equations (34) and (35) illustrate that
unemployed high skill workers who are infected or recovered continue to face the possibility of skill loss.

Turning to the value functions for employed low skill workers, they are given by

WLS
t = wLSt + β̄

{
πEIt [(1− s)WLI

t+1 + sULIt+1] + (1− πEIt )[(1− s)WLS
t+1 + sULSt+1]

}
, (36)

WLI
t = wLIt + β̄

{
(1− πR − πD)[(1− s)WLI

t+1 + sULIt+1] + πR[(1− s)WLR
t+1 + sULRt+1]

}
, (37)

WLR
t = wLRt + β̄

{
sULRt+1 + (1− s)WLR

t+1

}
. (38)

Equation (36) details that employed low skill workers who are susceptible earn a wage wLSt and with
probability πEIt become infected while working. Conditional on becoming infected, they remain employed
with probability 1 − s. If the worker does not become infected, they still face the possibility of losing
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their job and transitioning to unemployment. From (37), employed low skill workers earn their wage,
wLIt . The worker remains infected with probability (1 − πR − πD) and recovers with probability πR.
Conditional on surviving, they remain employed with probability 1 − s. Equation (38) shows that
recovered workers face a standard problem, as they only face the possibility of losing their job.

The value functions for high skill employed workers are given by

WHS
t = wHSt + β̄

{
πEIt [(1− s)WHI

t+1 + sUHIt+1] + (1− πEIt )[(1− s)WHS
t+1 + sUHSt+1 ]

}
, (39)

WHI
t = wHIt + β̄

{
σ
[
(1− πR − πD)[(1− s)WLI

t+1 + sULIt+1] + πR[(1− s)WLR
t+1 + sULRt+1]

]
+ (1− σ)

[
(1− πR − πD)[(1− s)WHI

t+1 + sUHIt+1] + πR[(1− s)WHR
t+1 + sUHRt+1 ]

]}
,

(40)

WHR
t = wHRt + β̄

{
(1− s)WHR

t+1 + sUHRt+1

}
. (41)

Equations (39)-(41) have the same interpretation as (36)-(38) except that high skill workers face the risk
of skill loss while they are employed and infected.

We now shift our attention to the firms’ value functions. Let Vt denote the value of a vacancy and
JχSt , JχIt , and JχRt the value a filled job with a worker of skill level χ and respective health status.
Additionally, we introduce some notation to describe the composition of job seekers. Let ϕt denote the
share of job seekers with low skills and φχt the share of job seekers with skill level χ who are susceptible.
The value of a vacancy satisfies

Vt = −k + β̄
{
q(θt)

[
ϕt[φ

L
t (1− πUIt )JLSt+1 + (1− φLt )JLRt+1] + (1− ϕt)[φHt (1− πUIt )JHSt+1 + (1− φHt )JHRt+1 ]

]
+
(
1− q(θt)[ϕt(1− φLt πUIt ) + (1− ϕt)(1− φHt πUIt )]

)
Vt+1

}
+ βµVt+1. (42)

Equation (42) shows that vacant firms incur the vacancy posting cost k and meet a worker with proba-
bility q(θt). Conditional on meeting a worker, the firm meets a low skill worker with probability ϕt and
high skill worker with probability 1 − ϕt. Among meetings with a worker of skill type χ, firms match
with a susceptible worker with probability φχt (1 − πUIt ), which accounts for the risk that a susceptible
worker they meet becomes infected, and a recovered worker with probability 1−φχt . The firm continues
to have a vacancy either if it does not meet a worker or met a worker who became infected in the same
time period.

The value functions for filled jobs with low skill workers are given by

JLSt = δy − wLSt + β̄
{
πEIt (1− s)JLIt+1 + (1− πEIt )(1− s)JLSt+1 + sVt+1

}
+ βµVt+1, (43)

JLIt = −wLIt + β̄
{

(1− πR − πD)(1− s)JLIt+1 + πR(1− s)JLRt+1 + (πD + s(1− πD))Vt+1

}
+ βµVt+1,

(44)

JLRt = δy − wLRt + β̄
{

(1− s)JLRt+1 + sVt+1

}
+ βµVt+1. (45)

From (43), a filled job with a low skill susceptible worker generates a profit of output net of the worker’s
wage, δy−wLSt . The worker becomes infected and the job is not destroyed with probability πEIt (1− s).
The probability that the worker remains susceptible and the job is not destroyed is given by (1−πEIt )(1−
s). Equation (44) illustrates that employed workers who are infected do not generate output and earn a
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wage wLIt . If the job is not destroyed, the worker remains infected with probability 1−πR−πD or recovers
with probability πR and the match continues with probability 1− s. With probability πD + s(1− πD),
either the infected worker dies or the worker survives and the job is destroyed. In either case, the firm
returns to having a vacancy. Finally, (45) represents that a filled job with a recovered worker is standard,
as the worker’s health status no longer changes.

The value functions for filled jobs with high skill workers are given by

JHSt = y − wHSt + β̄
{
πEIt (1− s)JHIt+1 + (1− πEIt )(1− s)JHSt+1 + sVt+1

}
+ βµVt+1, (46)

JHIt = − wHIt + β̄
{
σ[(1− πR − πD)(1− s)JLIt+1 + πR(1− s)JLRt+1]+

(1− σ)[(1− πR − πD)(1− s)JHIt+1 + πR(1− s)JHRt+1 ] + (πD + s(1− πD))Vt+1

}
+ βµVt+1,

(47)

JHRt = y − wHRt + β̄
{

(1− s)JHRt+1 + sVt+1

}
+ βµVt+1. (48)

Equations (46)-(48) are the same as (43)-(45) with the exception of the possibility of high skill workers
suffering a loss of skill while they are employed and infected.

4.1 Pre-pandemic Steady-State

In this section we study the steady-state equilibrium in the labor market before the onset of the pandemic.
We start by introducing the free-entry condition for vacancy creation, wage determination, and the
steady-state distribution of workers. The equilibrium is then defined and characterized.

There is free entry of firms, which drives the value of a vacancy to zero in equilibrium. As is
standard in the literature, wages are determined by Nash bargaining. Denoting η ∈ [0, 1] as the worker’s
bargaining power, wages solve:

wχ = arg max
[
Wχ − Uχ

]η[
Jχ
]1−η

. (49)

Letting Fχ = Jχ + Wχ − Uχ denote the total surplus of a match between a firm and a worker of skill
level χ, the solution to (49) gives the following surplus sharing rules

Wχ − Uχ = ηFχ; Jχ = (1− η)Fχ. (50)

Using the Bellman equations, surplus sharing rules, and letting ∆H,L ≡ UH − UL denote the cost of
skill loss, we have

FL =
δy − b

1− β̄(1− s− ηf(θ))
, (51)

FH =
y − b+ β̄(1− f(θ))σ∆H,L

1− β̄(1− s− ηf(θ))
. (52)

From (52), the surplus in a match with a high skill worker is increasing in the probability of skill loss
σ, as the cost of skill loss ∆H,L reduces the worker’s reservation wage. Substituting (51)-(52) into (50)
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and solving for wages gives

wL =
ηδy[1− β̄(1− s− f(θ))] + (1− η)b[1− β̄(1− s)]

1− β̄(1− s− ηf(θ))
, (53)

wH =
ηy[1− β̄(1− s− f(θ))] + (1− η)[b− β̄σ(1− f(θ))∆H,L][1− β̄(1− s)]

1− β̄(1− s− ηf(θ))
. (54)

Using the free entry condition, V = 0, and substituting (50)-(52) into the Bellman for vacancies, (42),
we have the job creation condition

k

q(θ)
=
β̄(1− η)

[
ϕ(δy − b) + (1− ϕ)

(
y − b+ β̄σ(1− f)∆H,L

)]
1− β̄(1− s− ηf(θ))

, (55)

which illustrates that firms create jobs until the expected cost from posting a vacancy, the left hand side
of (55), equals the expected value of filling a vacancy, the right hand side of (55). In the pre-pandemic
steady-state, the expected value of a filled job captures the heterogenous skills among unemployed
workers.

From the flow equations in Section 3, the fraction of unemployed workers who are less-skilled, ϕ, is
given by

ϕ =
σ(1− µ)(1− f(θ))[1− (1− µ)(1− s)]

µ(1− µ)f(θ) + [µ+ (1− µ)(1− f(θ))σ][1− (1− µ)(1− s)]
. (56)

From (56), ϕ is increasing in the probability of skill loss σ, as an increase in the risk of skill loss
increases the flow of high skill unemployed workers to low skill unemployed workers. The composition ϕ
is also increasing in the separation probability s, as having more workers entering unemployment from
employment exposes more high skill workers to the risk of skill loss. Also, ϕ is decreasing in market
tightness, θ. If firms create more jobs, then high skill workers are more likely to exit unemployment and
avoid skill loss. The opposite is also true: if there is a downturn and less jobs are created, then high skill
workers face more opportunities for skill loss, leading to a higher fraction among the pool of unemployed
who are less-skilled.

We close the model with the steady-state unemployment rate:

u =
µ+ (1− µ)s

µ+ (1− µ)(s+ f(θ))
. (57)

Definition 1. A steady-state equilibrium is a tuple {θ, ϕ, u} such that market tightness, θ, satisfies
(55), the fraction of unemployed workers who are less-skilled, ϕ, is given by (56), and the unemployment
rate, u, is given by (57).

Proposition 1. Assume that δy > b and

k <
β̄(1− η)

[
σ(1− µ)(δy − b) + µ(y − b)

]
[1− β̄(1− s)][µ+ (1− µ)σ]

. (58)

There exists an active steady-state equilibrium with θ > 0.

As in Pissarides (1992), the equilibrium with loss of skill during unemployment may not be unique.
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This is due to the fact that as firms create more jobs, the skill composition of the unemployed improves,
which means the right hand side of the job creation condition can be upward sloping. This occurs,
quantitatively, only under extreme and unrealistic parameter values. With a characterization of the
pre-pandemic economy in hand, we turn to the equilibrium during a pandemic.

4.2 Equilibrium during a Pandemic

In this section, we describe the equilibrium in the labor market after the onset of a pandemic. As
before, wages are determined through Nash bargaining and renegotiated each period. Letting Ω ∈
{LS,LI, LR,HS,HI,HR} denote the worker’s skill and health status, wages solve

wΩ
t = arg max

[
WΩ
t − UΩ

t ]η
[
JΩ
t

]1−η
. (59)

The solution to (59) gives the surplus sharing rules

WΩ
t − UΩ

t = ηFΩ
t ; JΩ

t = (1− η)FΩ
t , (60)

where FΩ
t = JΩ

t + WΩ
t − UΩ

t is the total surplus of a match. To characterize the entry of firms, it will
be useful to describe the evolution of match surpluses over time. Combining the surplus sharing rules
with the Bellman equations, we can write the law of motions for the total surpluses of each match:

FLSt = δy − b+ β̄
{
πEIt (1− s)FLIt+1 + [(1− s)(1− πEIt )− ηf(θt)(1− πUIt )]FLSt+1

+ (πEIt − πUIt )∆LI,LS
t+1

}
,

(61)

FHSt = y − b+ β̄
{
πEIt (1− s)FHIt+1 + [(1− s)(1− πEIt )− ηf(θt)(1− πUIt )]FHSt+1

+ (πEIt − πUIt )∆HI,HS
t+1 + σ

[
πUIt ∆HI,LI

t+1 + (1− πUIt )(1− f(θt))∆
HS,LS
t+1

]}
,

(62)

FLIt = −b+ β̄(1− s)
{

(1− πR − πD)FLIt+1 + πRF
LR
t+1

}
, (63)

FHIt = −b+ β̄(1− s)
{
σ
[
(1− πR − πD)FLIt+1 + πRF

LR
t+1

]
+ (1− σ)

[
(1− πR − πD)FHIt+1 + πRF

HR
t+1

]}
,

(64)

FLRt = δy − b+ β̄
[
1− s− ηf(θt)

]
FLRt+1, (65)

FHRt = y − b+ β̄
{

(1− s− ηf(θt))F
HR
t+1 + σ(1− f(θt))∆

HR,LR
t+1

}
, (66)

where ∆Ω′,Ω
t ≡ UΩ′

t − UΩ
t represents the difference in lifetime utility between state Ω′ and state Ω. The

appendix includes the expression for ∆Ω′,Ω
t , which are easily derived from the Bellman equations.

The last step before arriving at the job creation condition is to describe the composition of job seekers
by skill level and health status. The skill composition of job seekers is given by

ϕt =
NLS
t +NLR

t

NS
t +NR

t

; 1− ϕt =
NHS
t +NHR

t

NS
t +NR

t

, (67)

where NS
t + NR

t is the total measure of job seekers as infected workers do not search. The fraction of
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job seekers of skill level χ who are susceptible is given by

φχt =
NχS
t

NχS
t +NχR

t

. (68)

Under the free-entry condition, the value of a vacancy is zero at all time periods, i.e. Vt = 0, ∀t ∈ N0.
This gives the following job creation condition to relate the expected cost of a vacancy to the expected
surplus of a filled job:

k

q(θt)
= β̄(1−η)

{
ϕt[φ

L
t (1−πUIt )FLSt+1 +(1−φLt )FLRt+1]+(1−ϕt)[φHt (1−πUIt )FHSt+1 +(1−φHt )FHRt+1 ]

}
. (69)

From (69), firms do not only consider the skill composition of unemployed workers, but also the compo-
sition of health statuses and the probability a susceptible worker they meet becomes infected.

Definition 2. An equilibrium is a sequence of worker allocations across labor market and health statuses
{NΩ

t , E
Ω
t , N

χ
t , E

χ
t , Nt, Et, S

χ
t , I

χ
t , R

χ
t , St, It, Rt, Dt}∞t=0, composition of job seekers {ϕt, φχt }∞t=0, match sur-

pluses {FΩ
t }∞t=0, and market tightness {θt}∞t=0 for χ ∈ {L,H} and Ω ∈ {LS,LI, LR,HS,HI,HR} such

that the allocation of workers across labor market statuses evolve according to (1)-(18), the allocation
of workers across health statuses evolves according to (19)-(28), the composition of job seekers is given
by (67)-(68), match surpluses satisfy (61)-(66), and market tightness satisfies (69).

We assume the labor market is initially in the pre-pandemic steady-state, where market tightness
solves (55), the composition of skills is given by (56), and the unemployment rate is given by (57). To
introduce a pandemic, the initial allocation across health statuses is given by {NχS

0 , EχS0 , NχI
0 , EχI0 } and

{NχR, EχR} = {0, 0} for χ ∈ {L,H} where the initial number of infected,
∑

χ

[
NχI

0 + EχI0

]
, is a small

fraction of the population.

5 Planner’s problem

In addition to the typical search externalities (Hosios, 1990), there are two inefficiencies in the economy.
The first, emphasized by Kapička and Rupert (2021), is an infection externality. Workers and firms
do not internalize that forming matches propagates the spread of the virus because employed workers
have a higher probability of becoming infected, and therefore infecting others. Second, firms do not
internalize the effect of job creation on the skill composition of the unemployed. By creating more
jobs, firms reduce unemployment and unemployment duration, which raise aggregate productivity and
TFP by improving the skill composition, a result similar to Laureys (2021). We call this the skill
composition externality. Because of these two additional externalities, the equilibrium is inefficient even
when the Hosios-Mortensen-Pissarides condition holds. In addition, the social planner faces a trade-off.
On one hand, reducing job creation curtails infections and deaths. On the other, fewer jobs increases
unemployment durations and skill loss, worsening the skill composition of the unemployed and decreasing
productivity.

To study the efficient allocation in light of these inefficiencies, we consider the problem of a so-
cial planner who chooses the amount of vacancies to create and matches to form in order to maximize
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the present-discounted value of net output subject to the matching frictions present in the decentral-
ized economy. Additionally, we consider a planner who can not destroy matches, takes the separation
probability as given, and knows the workers’ skill level. The planner’s problem is given by

max
{θt}∞t=0

∞∑
t=0

βt
[
δy
(
ELSt + ELRt

)
+ y
(
EHSt + EHRt

)
+ b
(
NLS
t +NLI

t +NLR
t +NHS

t +NHI
t +NHR

t

)
− kθt

(
NLS
t +NLR

t +NHS
t +NHR

t

)]
, (70)

subject to the laws of motion for employment and health states (1)-(3), (5)-(7), (10)-(12), (15)-(16), and
the the probabilities of infection πUIt = πU (NLI

t + ELIt + NHI
t + EHIt ) and πEIt = πE(NLI

t + ELIt +

NHI
t +EHIt ). Denoting λΩ

t as the Lagrange multipliers on the NΩ
t constraints and ΛΩ

t as the multipliers
on the EΩ

t constraints, the planner’s optimal choice for market tightness satisfies

k

q(θt)
= β̄(1− ζ)

{
ϕt
[
φLt (1− πUIt )ΓLSt+1 + (1− φLt )ΓLRt+1

]
+

(1− ϕt)
[
φHt (1− πUIt )[ΓHSt+1 + σ(λHSt+1 − λLSt+1)] + (1− φHt )[ΓHRt+1 + σ(λHRt+1 − λLRt+1)]

]}
, (71)

where ζ ≡ −θq
′(θ)

q(θ) is the elasticity of the meeting function with respect to job seekers. The multipliers,
λΩ
t and ΛΩ

t , represent the social value of an unemployed and employed worker of type Ω, respectively,
and ΓΩ

t ≡ ΛΩ
t − λΩ

t .
We derive the social values of unemployment and employment for each type of worker by taking the

first order conditions of (70) with respective to the relevant stocks. Beginning with unemployed, low
skill workers, the first order conditions with respect to NLS

t , NLI
t , and NLR

t are given by

λLSt = b− kθt + β̄
{
f(θt)(1− πUIt )ΛLSt+1 + πUIt λLIt+1 + (1− f(θt))(1− πUIt )λLSt+1

}
, (72)

λLIt = b+ β̄
{

(1− πR − πD)λLIt+1 + πRλ
LR
t+1

}
− β̄Ψt, (73)

λLRt = b− kθt + β̄
{
f(θt)Λ

LR
t+1 + (1− f(θt))λ

LR
t+1

}
. (74)

Equations (72)-(74) are similar to the Bellmans for unemployed, low skill workers (equations (30)-(32)).
A key difference can be seen by comparing equations (73) and (31), where Ψt in (73) captures the
infection externality and is given by

Ψt = πUNLS
t

[
λLSt+1 − λLIt+1 + f(θt)(Λ

LS
t+1 − λLSt+1)

]
+ πEsELSt (λLSt+1 − λLIt+1)

+ πE(1− s)ELSt (ΛLSt+1 − ΛLIt+1) + πUNHS
t

[
λHSt+1 − λHIt+1 + f(θt)(Λ

HS
t+1 − λHSt+1)

]
+ πEsEHSt (λHSt+1 − λHIt+1) + πE(1− s)EHSt (ΛHSt+1 − ΛHIt+1)

+ πUσNHS
t

[
λHIt+1 − λLIt+1 − (1− f(θt))(λ

HS
t+1 − λLSt+1)

]
.

(75)

The first term in (75) captures the effect of an infected worker on low skill susceptible unemployed
workers, who lose the value of unemployment, λLSt+1 − λLIt+1, and a fraction, f(θt), who found a job and
lose the value of employment, ΛLSt+1 − λLSt+1. The second term captures the effect on employed workers
whose job was destroyed and lose the value of unemployment, λLSt+1−λLIt+1, while the third term captures
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the impact on employed workers who did not lose their job, but lose the value of being employed and
susceptible, ΛLSt+1 − ΛLIt+1. The next three terms are the same as the first three, except they capture
the respective impacts on high skill workers. The last term captures an additional impact on high skill,
unemployed workers. As some high skill workers who become infected are also exposed to skill loss,
a fraction σ of them have the additional loss of the value of unemployment while being high skilled
and infected, λHIt+1 − λLIt+1. This is net of the typical effect of skill loss, which occurs for a fraction
1− f(θt) of workers who do not find a job and lose the value of unemployment while being high skilled
and susceptible, λHSt+1 − λLSt+1. Thus, one difference in the infection externality in our model relative to
Kapička and Rupert (2021) is that an additional infection reduces the job-finding probability of high
skill susceptible workers, which further exposes them to skill loss.

Next, we proceed to derive the social value of employed, low skill workers by taking the first order
conditions with respect to ELSt , ELIt , and ELRt :

ΛLSt = δy + β̄
{
πEIt [(1− s)ΛLIt+1 + sλLIt+1] + (1− πEIt )[(1− s)ΛLSt+1 + sλLSt+1]

}
, (76)

ΛLIt = β̄
{

(1− πR − πD)[(1− s)ΛLIt+1 + sλLIt+1] + πR[(1− s)ΛLRt+1 + sλLRt+1]
}
− β̄Ψt, (77)

ΛLRt = δy + β̄
{
sλLRt+1 + (1− s)ΛLRt+1

}
, (78)

which are analogous to the Bellmans for low skill, employed workers shown in equations (36)-(38). Again,
the key difference is that equation (77) accounts for the infection externalities, whereas (37) does not.

Continuing now with high skill workers, the first order conditions with respect to NHS
t , NHI

t , and
NHR
t are given by

λHSt = b− kθt + β̄
{
f(θt)(1− πUIt )ΛHSt+1 + σ[πUIt λLIt+1 + (1− f(θt))(1− πUIt )λLSt+1]+

(1− σ)[πUIt λHIt+1 + (1− f(θt))(1− πUIt )λHSt+1]
}
,

(79)

λHIt = b+ β̄
{
σ[(1− πR − πD)λLIt+1 + πRλ

LR
t+1] + (1− σ)[(1− πR − πD)λHIt+1 + πRλ

HR
t+1]

}
− β̄Ψt, (80)

λHRt = b− kθt + β̄
{
f(θt)Λ

HR
t+1 + (1− f(θt))[σλ

LR
t+1 + (1− σ)λHRt+1]

}
, (81)

which are comparable to the Bellmans given by equations (33)-(35). Lastly, the first order conditions
with respect to EHSt , EHIt , and EHRt are given by

ΛHSt = y + β̄
{
πEIt [(1− s)ΛHIt+1 + sλHIt+1] + (1− πEIt )[(1− s)ΛHSt+1 + sλHSt+1]

}
, (82)

ΛHIt = β̄
{
σ
[
(1− πR − πD)[(1− s)ΛLIt+1 + sλLIt+1] + πR[(1− s)ΛLRt+1 + sλLRt+1]

]
+ (1− σ)

[
(1− πR − πD)[(1− s)ΛHIt+1 + sλHIt+1] + πR[(1− s)ΛHRt+1 + sλHRt+1]

]}
− β̄Ψt,

(83)

ΛHRt = y + β̄
{
sλHRt+1 + (1− s)ΛHRt+1

}
, (84)

which are comparable to (39)-(41), the Bellman equations for high skill employed workers.

Definition 3. A constrained-efficient allocation is a sequence of worker allocations across labor market
and health statuses {NΩ

t , E
Ω
t , N

χ
t , E

χ
t , Nt, Et, S

χ
t , I

χ
t , R

χ
t , St, It, Rt, Dt}∞t=0, composition of job seekers

{ϕt, φχt }∞t=0, match surpluses {ΓΩ
t }∞t=0, formation of matches with type Ω workers, and market tightness

{θt}∞t=0 for χ ∈ {L,H} and Ω ∈ {LS,LI, LR,HS,HI,HR} such that the allocation of workers across
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labor market statuses evolve according to (1)-(18), the allocation of workers across health statuses evolves
according to (19)-(28), the composition of job seekers is given by (67)-(68), match surpluses are given by
ΓΩ
t = ΛΩ

t −λΩ
t where ΛΩ

t and λΩ
t satisfy (72)-(84), matches with low skill workers are formed if ΓLωt ≥ 0,

matches with high skill workers are formed if ΓHωt + σ(λHωt − λLωt ) ≥ 0 for ω ∈ {S,R}, and market
tightness satisfies (71).

Before turning to the quantitative analysis, we briefly discuss the skill composition externality. To
do so, we first note that the social value of forming a match with a high skill worker, as seen in equation
(71), can be written as ΛHωt − [σλLωt + (1−σ)λHωt ]. So the planner uses the high skill worker’s expected
value of unemployment, σλLωt + (1−σ)λHωt , as the worker’s social value of remaining unemployed. This
is because the planner internalizes that forming a match with a high skill worker prevents them from
losing their skills. To further illustrate the skill composition externality, we compute the social value of
forming a match with a high skill worker in the pre-pandemic steady-state:

ΛH − [σλL + (1− σ)λH ] =
y − b+ kθ + σ(1 + β̄s)(λH − λL)

1− β̄(1− s− f(θ))
. (85)

Equation (85) is directly comparable to the decentralized surplus of forming a match with a high skill
worker, given by equation (52). There are several differences between equations (52) and (85). We
emphasize the terms multiplied by λH−λL in (85) and ∆H,L in (52). What we see in (85) is the planner
takes into account that if there is a separation next period, which occurs with probability s, there will be
a high skill worker entering the pool of unemployed workers, rather than a low skill worker, as evidenced
by λH −λL being multiplied by β̄s. Section 6 will show that, among other results, typically the planner
creates more jobs as the social value of forming a match with high skill workers is higher than in the
decentralized economy for the reasons outlined above.

6 Quantitative Analysis

We begin this section with a description of the findings from the literature on skill loss during unem-
ployment. A salient feature is that skill losses are both large and persistent. We then quantify the
effect of a pandemic on the economy. Next, we study the impact of a pandemic when the economy
also faces a lockdown to try to control the pandemic. We then discuss the social planner’s problem to
quantitatively assess the relative importance of the infection and skill composition externalities. We find
that, although the social planner reduces job creation more aggressively than in the baseline economy
to prevent the spread of infections, the desire to counter the skill composition externality dominates.
The planner’s optimal allocation features more job creation than both the baseline and the lockdown
economies. Finally, we study the effects of an increase in job separations in combination with changes
to behavior (e.g., social distancing) which reduce infection rates.

6.1 Evidence of skill loss during unemployment

Our calibration of skill loss during unemployment draws from Ortego-Marti (2016, 2017b,c), which esti-
mate skill loss during unemployment using the 1968-1997 waves of the Panel Study of Income Dynamics
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(PSID), a large panel of US workers. The panel structure is important to control for workers’s unob-
served characteristics that may affect their productivity, as less productive workers earn lower wages
and tend to be unemployed more often. In addition, the panel structure provides estimates of how wage
losses depend on unemployment duration.

Ortego-Marti (2016, 2017c) find that an additional month of unemployment is associated with a
1.22% wage loss. These findings are in line with findings in the job displacement literature, which
exploit the exogeneity of plant closings to estimate the causal effect of job loss on wages.3 Except
for a few studies, most estimates from the literature are not directly comparable because they lack
information on unemployment duration. The most closely related findings include Schmieder et al.
(2016), who estimate the causal effect of unemployment duration on wages using German administrative
data. When the authors impose no restrictions on workers’ prior experience in their estimation (see
their Table 4, column 4), their causal estimate is 1.3%, remarkably close to the estimate of 1.22% in
Ortego-Marti (2016, 2017c). Other comparable findings on the effect of unemployment duration on
reemployment wages include Neal (1995), who reports a monthly depreciation of 1.59%, and Addison
and Portugal (1989) who find a monthly rate of 1.44%. Both papers use the DWS supplement of the
CPS, which lacks a panel structure. To the extent that displaced workers earn lower wages than their
non-displaced peers, the larger estimates in Neal (1995) and Addison and Portugal (1989) may be due
to the fact that they are unable to control for workers’ unobserved characteristics.

The findings in the job displacement literature tend to be even larger. Jacobson et al. (1993) use
administrative data from the state of Pennsylvania and find losses of around 50% at the time of sep-
aration. Earnings of displaced workers still remain 30% below the earnings of non-separated workers
5 years after separation. Davis and von Wachter (2011) use longitudinal Social Security records of US
workers from 1974 to 2008 to study the effect of mass-layoffs and find average losses of around 30%
upon separation. Workers see some earnings recovery, but after 20 years earnings still remain 15-20%
below the control group. Using German administrative data, Jarosch (2015) finds that earnings drop by
35% upon separation and are still around 10% lower 20 years after separation. The pattern is similar
for wages. Workers’ wages drop by about 20% after separation, and remain around 10% lower 20 years
later. Both Davis and von Wachter (2011) and Jarosch (2015) find that losses flatten after 10 years.
In addition, Jarosch (2015) finds a very small difference in earnings losses between all separators and
workers separated at mass-layoffs 20 years after separation, and similarly for wages, which suggests a
limited effect of signaling on wage losses. These losses are all much larger than the ones implied by a
1.22% loss, which implies a 13.7% wage loss if a worker remains unemployed for a full year.4 Overall,
we view our choice of a 1.22% monthly skill depreciation rate as a lower bound. In addition, Kospentaris
(2021) confirms, using data from Ortego-Marti (2017c), that losses occur linearly and even for very short
unemployment durations.

3Fallick (1996) and Kletzer (1998) provide a review of the early findings from this literature, see Schmieder et al. (2016)
and the references therein for more recent findings. Some notable papers in this literature include Couch and Placzek
(2010), Davis and von Wachter (2011), Jacobson et al. (1993), Jarosch (2015), Schmieder et al. (2016) and von Wachter
et al. (2009), which use administrative data; Ortego-Marti (2016), Ruhm (1991) and Stevens (1997), which use the PSID;
Addison and Portugal (1989), Carrington (1993), Farber (1997), Neal (1995) and Topel (1990) which use the Displaced
Worker Survey (DWS) supplement of the Current Population Survey (CPS).

4The average duration for workers experiencing an unemployment spell is around 2 months in the PSID.
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More direct evidence of skill loss during unemployment are reported in Edin and Gustavsson (2008),
who find that one full year of non-employment is associated with a loss of the equivalent of 0.7 years
of schooling using Swedish data on test scores assessing respondents’ quantitative and analytical skills.
Respondents in this study are mostly low skill workers, which highlights the prevalence of skill atrophy
among all workers. Further evidence of skill decay during employment breaks is found in experimental
data. Skill loss due to breaks in production are found in the provision of health services—David and
Brachet (2011), Hockenberry et al. (2008) and Hockenberry and Helmchen (2014)—, and in jobs involving
routine tasks such as data entry—Globerson et al. (1989)—, mechanical assembly—Bailey (1989)—and
car radio production—Shafer et al. (2001). This literature also finds that productivity depreciation
increases with the duration of the interruption between tasks. Evidence of skill loss is also found in
papers studying the effects of motherhood on women’s earnings, based on early papers by Mincer and
Polachek (1974) and Mincer and Ofek (1982) (see (Beblo et al., 2008) and (Gangl and Ziefle, 2009)
and the references therein); and in the educational literature on summer learning loss or summer glide
among students, which also studies the large learning loss due to COVID-19 related school closures and
distance learning, see Hanushek and Woessmann (2020) and the references therein.

Skill losses due to unemployment are also extremely persistent. Ortego-Marti (2016) decomposes
the effect of unemployment between recent spells and spells that occurred more than 5 years prior to
the survey year. Recent unemployment spells have a strong effect on wages. A month of unemployment
accumulated in the previous 5 years lowers wages by 1.61%. However, a month of unemployment
experienced more than 5 years prior still lowers workers’ wages by 1.04%. The results are similar when
one uses a cut-off of 7 years instead of 5 years. Along with the findings in Davis and von Wachter
(2011) and Jarosch (2015) described above, who find that wage losses follow workers for more than 20
years, this supports our assumption of long-lasting effects of unemployment on human capital. The
results on skill loss are also not driven by the life-cycle. Ortego-Marti (2017c) shows that human capital
depreciation is similar across age groups, consistent with findings on the effect of job displacement for
young workers (Kletzer and Fairlie, 2003). Finally, the evidence in both Ortego-Marti (2017c) and
Schmieder et al. (2016) supports that wage losses depend on unemployment duration and are not simply
sunk at separation.

6.2 Calibration Strategy

The unit of time is one week. The discount factor is β = 0.991/52. The weekly separation probability is set
to s = 0.035/(52/12), following Shimer (2005). The probability of leaving the labor force is µ = 1/2080,
which means workers are in the labor force on average for 40 years. The output produced by high skill
workers is normalized to y = 1. Following Hall and Milgrom (2008), the value of unemployment, b, is
set so that the ratio of b to average wages is equal to 0.71. With this strategy, we find b = 0.5203. The
meeting function is Cobb-Douglas

Mt = AUαt V
1−α
t , (86)

where the matching efficiency, A, is set to target a weekly job-finding probability of 0.45/(52/12), again
following Shimer (2005). Combined with normalizing steady-state market tightness to one as in Shimer
(2005), we have A = 0.1038 and k = 0.3047. Based on Petrongolo and Pissarides (2001) and Pissarides
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(2009), the elasticity of the meeting function, α, is set to 0.5 and we subsequently assume η = 0.5 to
implement the Hosios-Mortensen-Pissarides condition (Hosios, 1990).

The remaining labor market parameters are the probability of skill loss, σ, and the output produced
by low skill workers, δ. We calibrate these parameters to match the empirical evidence on the effect of
unemployment duration on wages. However, as discussed in Laureys (2021), this empirical evidence can
not be used to choose a unique value of both σ and δ. Thus, we set σ = 1/13, which corresponds to skill
loss taking 3 months on average and is well supported by the empirical evidence on how quickly skill loss
occurs.5 We then choose δ to match the estimated effects of unemployment duration on wages. That is,
we choose a value of δ, and given the pre-pandemic steady-state wages across skill levels and transition
probabilities between employment and unemployment, we simulate 10,000 employment histories and
estimate the following regression:

ln(wage) = β0 + β1 × Unhis+ ε, (87)

where Unhis is the length of the unemployment spell in months and ln(wage) are log wages. For each
simulated employment histories, we compute β1 and repeat this process 100 times where we then have
an average estimate of β1. We vary δ and repeat this exercise until our average estimate of β1 is −0.012,
based on empirical estimates of the effect of unemployment history on wages discussed in the previous
section (Ortego-Marti, 2016; Schmieder et al., 2016). Through this procedure, we find δ = 0.725.

The fact that skill loss may be different across occupations, and that job losses affected some sectors or
occupations more than others during the pandemic, is not a source of concern. Our target of β1 = −0.012

is in fact conservative and may be viewed as a lower bound on skill loss. To show this, we weight each
sector skill loss parameter from Ortego-Marti (2017b) by the corresponding sector employment losses.
Given how job losses between March and April 2020 were distributed across different industries, and how
skill loss differs across industries (Ortego-Marti, 2017b), the average β1 from this calculation is closer to
−0.013. To further illustrate that heterogeneity across sectors would in fact imply larger TFP losses,
consider the hospitality sector. Employment losses between March and May 2020 were concentrated in
the hospitality sector. From Ortego-Marti (2017b), the skill loss parameter in this sector is −0.0138,
larger than the value of −0.012 used in our quantitative exercise.6

There are four health parameters to calibrate. We follow Eichenbaum et al. (2020) and set the
recovery probability as πR = 0.3850 and the death probability to be πD = 0.0039. Finally, we follow
Kapička and Rupert (2021) and set πU = 0.1953 and πE = 0.6783 who calibrate the ratio πU/πE to
match data on the relative amount of social interactions unemployed and employed workers have and
to target a steady-state value of infected and recovered to be two-thirds.7 Table 1 summarizes the
parameter values.

5See Ortego-Marti (2016, 2017b,c) for evidence from the PSID regarding how quickly human capital depreciates during
unemployment and how losses vary across occupations and sectors. In the Appendix, we recalibrate the model for the case
where it takes an average of 6 months for loss of skill to occur. We perform the same quantitative exercises under this
alternative calibrations and show the quantitative results are robust to the choice of σ.

6Health services was the second most affected sector by the pandemic, which also has a larger skill loss parameter.
7The data on number of social interactions across unemployed and employed workers is based on a Gallup survey after

the onset of the COVID-19 pandemic to take into account social distancing. See Kapička and Rupert (2021) for more
details.
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Parameter Definition Value
β Discount factor 0.9998
y Productivity of high skill workers 1.0000
s Separation probability 0.0081
µ Probability of exiting the labor force 4.8× 10−4

A Matching efficiency 0.1038
α Elasticity of the matching function 0.5000
η Worker’s bargaining power 0.5000
σ Probability of skill loss 0.0769
δ Productivity of low skill workers 0.7250
k Vacancy posting cost 0.3047
b Value of unemployment 0.5203
πD Probability of death from infection 0.0039
πR Probability of recovery 0.3850
πU Infection exposure of unemployed workers 0.1953
πE Infection exposure of employed workers 0.6783

Table 1: Parameter values

6.3 Baseline Results

We assume the economy is in the pre-pandemic steady-state and the population is normalized to one.
We then introduce the onset of a pandemic by assuming 0.001% of the population becomes infected.8

Figure 1(a) demonstrates the spread of the infection by showing the fraction of the population that
is infected in each week. Infections peak in weeks 27-28 where 8.72% of the population is infected. After
one year, the fraction of the population infected is well below 1% and approaches 0% thereafter. Figure
1(b) illustrates the cumulative amount of deaths throughout the pandemic. The amount of deaths levels
off after one year, at 0.65% of the population.

(a) Fraction infected (b) Total deaths

Figure 1: Total infections and deaths

Next, Figure 2 shows the connection between the pandemic and the labor market by presenting
8See the Appendix for details on the computation procedure.
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the infection probabilities across employment statuses. It is not surprising, given that πE > πU , the
probability of becoming infected is larger for employed workers than those who are unemployed. At the
peak of the pandemic, the probability of becoming infected for employed workers is 5.92%, whereas it is
1.70% for unemployed workers.

Figure 2: Infection probabilities

Figure 3(a) demonstrates the dynamics of market tightness. As employed workers have a higher
chance of becoming infected, and not producing output while infected, market tightness immediately
declines at the onset of the pandemic from 1 to 0.7416. As the pandemic worsens and infections increase,
market tightness further decreases until it reaches its lowest value of 0.3161 after 22 weeks. As the
pandemic starts to recede and the number of infections decreases, job creation slowly recovers. Figure
3(b) presents the corresponding dynamics of unemployment. Given the effect of the pandemic on market
tightness, the job-finding probability decreases and unemployment increases. The unemployment rate
peaks at 11.4% after 30 weeks and slowly declines thereafter.

From Figure 3 there are long-lasting effects of the pandemic on market tightness and unemployment
for many months even after the number of infections is essentially zero. Figure 4 examines this in further
detail by studying the effect of the pandemic on the fraction of the unemployed who are low skill (ϕ).
As seen in Figure 4(a), the composition deteriorates over the course of the pandemic until the fraction
of unemployed workers who are low skilled peaks after 39 weeks. Moreover, the composition is very slow
to recover and remains at an elevated level 100 weeks after the onset of the pandemic.

We conclude our baseline results by showing the effect of the pandemic on TFP, which we define as
average labor productivity among workers who are productive.9 That is,

TFP =
y[δ(ELS + ELR) + (EHS + EHR)]

ELS + ELR + EHS + EHR
. (88)

9Our measure of TFP does not include employed workers who are infected. In the Appendix, we present results for the
response of TFP when including infected workers in the calculation of average labor productivity.
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(a) Market tightness (b) Unemployment rate

Figure 3: Market tightness and unemployment

(a) Composition of unemployed workers (b) Total Factor Productivity

Figure 4: Composition of the unemployed and TFP

As the skill level of the unemployed worsens over the pandemic, as seen in Figure 4(a), the composition
of employed workers shifts to more low skill workers whose productivity is δy, causing TFP to decrease.
Figure 4(b) illustrates the economic scarring effects of a pandemic. We see that TFP slowly declines
through the pandemic and closely follows the dynamics of the composition of unemployed. TFP reaches
its lowest value after 55 weeks, where it is 0.44% below the pre-pandemic steady-state value. We also
see that TFP is slow to recover, as it is still 0.4% below the pre-pandemic steady-state value after 100
weeks.

How does a 0.44% decline in TFP compare with previous recessions? To investigate, we calculate
the average decline in TFP in US recessions between 1954-2017 and find that TFP typically decreases
by 1.13%.10 Thus, our baseline results generate a decline in TFP that is nearly 39% of the typical
productivity losses seen in past recessions.

10We use the series “Total Factor Productivity at Constant National Prices for United States” developed by Feenstra
et al. (2015) and downloadable at https://fred.stlouisfed.org/series/RTFPNAUSA632NRUG. We de-trend the series with
a linear time trend and then calculate the average percentage deviations from the trend in NBER recession years.
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One should note that empirical TFP measurements are constructed taking into account the compo-
sition of the various categories of inputs (O’Mahony and Timmer, 2009). The reason is that different
inputs have different marginal products, so it is essential to account for the composition of inputs in a
growth accounting exercise. For example, the marginal product of a high skill worker is different than
the marginal product of a low skill worker, so TFP depends on the composition of labor. However,
TFP calculations only control of workers’ age, education and gender (O’Mahony and Timmer, 2009).
They assume that after controlling for age and education, workers are equally productive regardless
of their unemployment history. Our results quantify the effect of skill losses due to unemployment on
TFP, something TFP methodologies fail to account.11 Therefore, observations that note an increase
in productivity during the pandemic are consistent with our findings. Bloom et al. (2022) perform a
comparable exercise with capital utilization during the pandemic, motivated by the fact that changes in
capital utilization affect TFP calculations. They find that TFP decreased by around 1 to 2% following
the onset of the pandemic once one accounts for the observed drop in capacity utilization, even though
at face value TFP seems to have increased during that period.

6.4 Separation shock

To simulate a lockdown, we increase the separation probability from s = 0.0081 to s = 0.0173 (a monthly
separation probability of 0.075) at the onset of the pandemic.12 We study a three month lockdown by
assuming the separation probability remains at the elevated level for three months before returning to
s = 0.0081.

Figures 5-6 illustrate the effect of imposing a three month lockdown on the evolution of the pan-
demic. Beginning with Figure 5(a), increasing job separations “flattens the curve” as the fraction of the
population that is infected peaks at 7.82% in week 29, as opposed to a peak of 8.72% a few weeks earlier
in the baseline results. Figure 5(b) shows that lower infections reduces deaths, as the cumulative death
rate decreases from 0.65% to 0.63%, saving 65,640 lives. From Figure 6, the lockdown reduces the peak
infection probability among employed workers from 5.92% to 5.30%, while the peak infection probability
among unemployed workers decreases from 1.7% to 1.53%.

Figure 7 demonstrates the impact of the separation shock on market tightness and the unemployment
rate. Starting with Figure 7(a), the initial decline in market tightness is slightly larger with the lockdown.
As the pandemic evolves, however, the rate of decline in market tightness is slower than the baseline
results. This is due to the fact that the lockdown slows down the onset of the pandemic and employed
workers have a lower probability of becoming infected. After the lockdown ends, market tightness
declines further as infections increase more rapidly. It is in week 23 that market tightness reaches its
lowest value of 0.2930 and begins to slowly recover.

Figure 7(b) shows the corresponding dynamics of the unemployment rate. As expected, the imposi-
11In other words, our results tells us by how much TFP would improve if workers had not experienced such frequent and

long unemployment spells during the pandemic. Alternatively, one can interpret our results as quantifying the amount of
mismeasurement due to the fact that TFP calculations treat workers with long histories of unemployment as workers with
no unemployment history.

12According to the Job Openings and Labor Turnover Survey, the average monthly separation probability between March
and May 2020 was 6.8%. As discussed by Coibion et al. (2020), initial job losses were likely undercounted, hence we impose
a slightly larger monthly separation probability of 7.5%.
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(a) Fraction infected (b) Total deaths

Figure 5: Total infections and deaths

Figure 6: Infection probabilities

tion of a lockdown through increased separations causes the unemployment rate to rapidly increase. The
unemployment rate peaks at 15.23% in week 13, directly after the lockdown ends. As the separation
rate returns to its pre-pandemic level, the unemployment rate initially declines at a fast pace. How-
ever, as the pandemic and number of infections worsens and market tightness continues to decrease, the
recovery in unemployment slows down. Between weeks 13-20, the unemployment rate decreases from
15.23% to 13.8%, or 1.43 percentage points. However, in the next twelve weeks, the unemployment rate
declines by 0.80 percentage points. It is only after the number of infections substantially declines that
we observe a recovery in market tightness, and thus the unemployment rate speeds up and approaches
the pre-pandemic unemployment rate.

Finally, Figure 8 illustrates the long-term consequences of the separation shock on the composition of
unemployed workers and TFP. Figure 8(b) shows that the average skill level among unemployed workers
deteriorates at a faster pace under the lockdown. Moreover, as the amount of job creation decreases
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(a) Market tightness (b) Unemployment rate

Figure 7: Market tightness and unemployment

further after the lockdown ends, the composition of unemployed further worsens after the lockdown ends.
Under the separation shock, the fraction of unemployed who are low skill peaks at 94.04%, whereas the
composition peaks at 93.31% in the baseline results. Additionally, the fraction of unemployed who are
low skill remains higher relative to the baseline results even after 100 weeks.

(a) Composition of unemployed workers (b) Total Factor Productivity

Figure 8: Composition of the unemployed and TFP

Figure 8(b) demonstrates the effect of the lockdown on TFP. Given that the skill composition of
the unemployed is worse with the lockdown, it is not surprising that TFP declines even further. TFP
reaches its lowest value of 0.9944 after 62 weeks, which is 0.12% lower than the lowest point in the
baseline results. Given that TFP typically declines by 1.13% in recessions, the decline under the three
month lockdown accounts for nearly 50% of the usual productivity losses in recessions. Further, the
decline in TFP relative to the baseline scenario does not close between weeks 60-100, illustrating the
additional decline in productivity due to the lockdown persists for many months after the pandemic has
ended.
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6.5 Efficient allocations

In this section we present the solution to the planner’s problem introduced in Section 5. Beginning with
Figure 9, we have the evolution of infections and deaths. As seen in Figure 9(a), infections are higher
than in the baseline simulation and separation shock. Figure 9(b) shows that the amount of deaths in
the planner’s solution are higher than the baseline simulation: there are nearly 164,000 more deaths in
the efficient allocation than the baseline allocation.

(a) Fraction infected (b) Total deaths

Figure 9: Total infections and deaths

Figure 10 presents the planner’s choice of market tightness. Job creation is consistently higher in
the efficient allocation than the baseline allocation and separation shock. This illustrates the planner
internalizing the effect creating a job has on the skill composition of the unemployed, as they create more
jobs to slow down the process of skill loss among the unemployed. The results show that quantitatively
the skill composition externality is significant. The optimal response with skill loss is in sharp contrast
with Kapička and Rupert (2021). In their environment, job creation collapses and in some cases fully
shuts down when the economy is only subjected to the infection externality. However, the infection
externality in our environment is also sizable. The decline in market tightness is very sharp relative to
both the baseline and lockdown economies.

Figure 11 shows the corresponding unemployment dynamics. Beginning with Figure 11(a), the
unemployment rate in the efficient allocation begins at a lower steady-state value of 3.79% as the planner
creates more jobs pre-pandemic. As the planner reduces job creation, the aggregate unemployment rate
increases and peaks at 6.25%. While this increase in unemployment may seem modest, it is important
to consider where the unemployment rate begins pre-pandemic. Figure 11(b) shows the unemployment
rate across the three allocations, each normalized to 1 at the beginning of the pandemic. We see that
the relative increase in unemployment in the efficient allocation is larger than the baseline allocation,
reflecting that the planner internalizes the infection externalities. However, the increase in unemployment
in the efficient allocation is not as extreme as the separation shock, which caused the unemployment
rate to nearly double.

Our results highlight the importance of skill loss when quantifying the effects of a pandemic on the
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Figure 10: Market tightness

labor market. In Kapička and Rupert (2021), the social planners shuts down job creation altogether when
infections rise for more than 20 weeks, which raises the unemployment to 24%. When the social planner
is also allowed to destroy matches, the efficient allocation implies a 40% unemployment rate. Without
skill loss, the social planner responds dramatically to the rise in infections, inflicting a severe cost in
the economy in terms of jobs. By contrast, when one takes into account the effect of unemployment
on workers’ skills and productivity, the prediction is dramatically reversed. The pandemic has a severe
effect on the labor market in terms of unemployment and, therefore, workers’ skills and TFP. Although
the social planner responds to the infection externality and drops job creation to limit infections, she
maintains a high level of job creation relative to an economy without skill loss.

(a) Unemployment (b) Unemployment (normalized)

Figure 11: Optimal unemployment

Lastly, Figure 12 presents the composition of the unemployed and TFP under the efficient allocation.
Beginning with Figure 12(a), the skill composition under the efficient allocation begins with a lower
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proportion of low skill workers. This is because the planner creates more jobs in the pre-pandemic
steady-state, thereby reducing high skill workers’ exposure to skill loss. As the pandemic begins and
worsens, the skill composition deteriorates. As infections decrease and more vacancies are created, the
skill composition in the efficient allocation recovers as job creation in the efficient allocation is higher.
Figure 12(b) shows that TFP declines considerably in the efficient allocation, reaching its lowest value
63 weeks after the pandemic began with a decline of 0.88%. It is important to note that while TFP
exhibits its largest percentage decrease under the efficient allocation, the level of TFP is consistently
higher in the efficient allocation than in the baseline and separation shock, as seen in Figure 13.

(a) Composition of unemployed workers (b) Total Factor Productivity

Figure 12: Composition of the unemployed and TFP

Figure 13: Non-normalized levels of TFP

6.6 Reduced Infections

As a final exercise, we modify the simulation to account for changes in behavior such as masking and
social distancing that followed the initial period of the pandemic. Our objective is study the effects of
these behavioral changes in tandem with a large increase in separations on the dynamics of unemployment
and TFP.
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(a) Fraction infected (b) Total deaths

Figure 14: Total infections and deaths

To study the effects of both (i) an increase in separations at the onset of the pandemic and (ii)
changes to behavior which reduce infection propagation, we simulate our model with two modifications.
First, we feed through the separation rate series between March 2020 and January 2022.13 Second,
to capture changes in infection propagation following initial lockdowns, we permanently reduce both
infection parameters πU and πE by one-half relative to their calibrated values starting at 3 months after
the beginning of the pandemic. This reduction in πU and πE is in line with what Kapička and Rupert
(2021) find after estimating the infection parameters to match the fraction of susceptible workers in the
US over the course of the pandemic.

As seen in Figure 14(a), the reduction in infection parameters generates a substantial decline in in-
fections. Under this simulation, infections peak at nearly 1% of the population being infected. Moreover,
infections reach their peak much earlier than in the baseline and separation shock simulations. Figure
14(b) shows that the reduction in infections translates into a dramatic decline in deaths.

(a) Market tightness (b) Unemployment rate

Figure 15: Market tightness and unemployment

13We use the seasonally adjusted Total Nonfarm Separation Rate obtained from the FRED database (series ID: JTSTSR).
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Figure 15(a) shows the corresponding dynamics in market tightness. While the onset of the pandemic
still brings a sizable initial decline in tightness, tightness does not subsequently experience a large decline
as seen in the baseline and separation shock series. This is closely tied with the reduced infections shown
in Figure 14(a). With reduced infection rates, the expected benefit of posting a vacancy is higher and
hence, firms post more vacancies than in the case with higher infection rates. Figure 15(b) illustrates
the dynamics for unemployment. We see that, following the sharp increase in the separation probability,
there is still a large spike in the unemployment rate. However, the unemployment rate recovers at a
fast pace. This is because the job-finding probability does not experience a subsequent decline after the
initial spike in separations. We find that the unemployment rate peaks at 15.1%, which is very close
to the April 2020 US unemployment rate of 14.7%. Additionally, the unemployment rate in the model
reaches 10% in just under four months after peaking. This recovery pace is much more in line with the
data, as the US unemployment rate reached 10.2% in July 2020.14

Turning now to Figure 16(a), we examine the effect of reduced infections on the composition of
unemployed workers. The composition under reduced infections follows closely the separation shock while
the economy is experiencing a surge in separations. The skill composition begins to recover following
the reduction in separations. Again, this is tied to the fact that there is not a large reduction in the
job-finding probability after the separation rate begins to recover. Figure 16(b) shows the corresponding
dynamics in TFP. The reduction in TFP is not as large as in the baseline and separation shock series.
However, the model still generates a 0.22% decline in TFP, which is nearly 20% of the typical decline in
TFP observed during recessions.

(a) Composition of unemployed workers (b) Total Factor Productivity

Figure 16: Composition of the unemployed and TFP

14Note that in our steady state we are not targeting the exact unemployment rate in the US right before the pandemic.
Instead we use Shimer (2005) as the target for the job finding rate, which can be viewed as matching unemployment’s
long-run steady state value prior to the pandemic. In our view this is a more appropriate exercise.
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7 Conclusion

The health and economic costs caused by the COVID-19 pandemic have been substantial. Given that
workers lose skills during unemployment, the economic costs of the pandemic are likely to be long-lasting,
potentially scarring the economy for years to come. To study this, we have integrated a frictional labor
market with skill loss during unemployment with the Kermack and McKendrick (1927) SIR framework.
The model shows that the onset of a pandemic reduces job creation, which in turn exposes unemployed
workers to skill loss. As the skill composition of unemployed workers worsens over the pandemic, average
labor productivity and TFP decrease. Our model suggests that the scarring effects of the COVID-19
pandemic on the economy through skill loss during unemployment will be substantial, as the decline
in TFP following a three month lockdown accounts for nearly 50% of the productivity losses typically
observed in recessions. The decentralized equilibrium is not efficient due to the infection and skill
composition externalities. These externalities also present a tradeoff to a social planner: reducing job
creation lessens infections and deaths while also worsening the skill composition of the unemployed and
productivity. Our quantitative results show that the planner creates more jobs throughout the pandemic
to limit skill loss among the unemployed. The planner, however, does reduce job creation more relative
to the pre-pandemic steady-state than the baseline allocation to account for the infection externalities.
Finally, we find that the effects of the pandemic on TFP are still sizable after accounting for changes to
behavior which reduce the propagation of infections.
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Appendix

Proof of Proposition 1

We begin by deriving the closed-form job creation condition. From the Bellman equations for unemployed
workers, it is simple to show

UH − UL =
β̄ηf(θ)[FH − FL]

1− β̄(1− (1− f(θ))σ)
. (89)

Substituting (89) into (52), we have that FH satisfies

FH = y − b+ β̄

{
(1− s− ηf(θ))FH + β̄(1− f(θ))σηf(θ)

FH − FL

1− β̄(1− (1− f(θ))σ)

}
. (90)

Substituting for FL using (51) and solving for FH yields

FH =
(y − b)[1− β̄(1− (1− f(θ))σ)][1− β̄(1− s− ηf(θ))]− β̄2(1− f(θ))σηf(θ)(δy − b)

[1− β̄(1− (1− f(θ))σ)][1− β̄(1− s− ηf(θ))]2 − β̄2(1− f(θ))σηf(θ)[1− β̄(1− s− ηf(θ))]
.

(91)
With equations (51) and (91), we can write the job creation condition as

k[1− β̄(1− s− ηf(θ))]

β̄(1− η)q(θ)
= ϕ(δy − b)+

(1− ϕ)
(y − b)[1− β̄(1− (1− f(θ))σ)][1− β̄(1− s− ηf(θ))]− β̄2(1− f(θ))σηf(θ)(δy − b)

[1− β̄(1− (1− f(θ))σ)][1− β̄(1− s− ηf(θ))]− β̄2(1− f(θ))σηf(θ)
, (92)

where ϕ is given by (56). A sufficient condition for an equilibrium to exist will ensure that the left hand
side and right hand side of (92) cross at least once. It is easy to verify that as θ → ∞, the left hand
side approaches ∞ while the right hand side converges to y − b. Thus, a sufficient condition for at least
one crossing is that the value of the left hand side is below that of the right hand side at θ = 0. It is
straitforward to verify that this is true when (58) holds.
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Difference in lifetime utility ∆Ω′,Ω
t

Using the Bellman equations, the difference in lifetime utility ∆Ω′,Ω
t , which are used to derive the

equilibrium surpluses in (61)-(66), satisfy

∆HS,LS
t = β̄

{
ηf(θt)(1− πUIt )

[
FHSt+1 − FLSt+1

]
+ (1− σ)πUIt ∆HI,LI

t+1 +

(1− πUIt )
[
1− (1− f(θt))σ

]
∆HS,LS
t+1

}
,

(93)

∆LI,LS
t = β̄

{
(1− πUIt )

(
∆LI,LS
t+1 − ηf(θt)F

LS
t+1

)
+ πR∆LR,LI

t+1 − πDULIt+1

}
, (94)

∆HI,HS
t = β̄

{
(1− πUIt )

(
∆HI,HS
t+1 − ηf(θt)F

HS
t+1

)
+ πR∆HR,HI

t+1 − πDUHIt+1

+ σ
[
πR∆LR,HR

t+1 + (1− f(θt))(1− πUIt )∆HS,LS
t+1 + (1− πUIt − πR − πD)∆LI,HI

t+1

]}
,

(95)

∆HI,LI
t = β̄(1− σ)

{
(1− πR − πD)∆HI,LI

t+1 + πR∆HR,LR
t+1

}
, (96)

∆LR,LI
t = β̄

{
ηf(θt)F

LR
t+1 + (1− πR)∆LR,LI

t+1 + πDU
LI
t+1

}
, (97)

∆HR,HI
t = β̄

{
ηf(θt)F

HR
t+1 + (1− πR)∆HR,HI

t+1 + πDU
HI
t+1+

+ σ
[
(1− f(θt)− πR)∆LR,HR

t+1 − (1− πR − πD)∆LI,HI
t+1

]}
,

(98)

∆HR,LR
t = β̄

{
ηf(θt)

[
FHRt+1 − FLRt+1

]
+ (1− σ(1− f(θt)))∆

HR,LR
t+1

}
. (99)

Computation Procedure

We assume that the economy has reached its post-pandemic steady-steady at a date, T , that is sufficiently
far into the future and compute the equilibrium as follows.

1. Guess a sequence {θt}T−1
t=0 .

2. Given the sequence of market tightness and initial values, I0 and Pop0, compute {It, ϕt, φχt }
T−1
t=0 .

3. Using output from step 2, iterate backwards from T to compute the sequence {FLSt , FLRt , FHSt , FHRt }T−1
t=0 .

4. Using output from both steps 2 and 3, compute a new sequence {θ∗t }T−1
t=0 using the job creation

condition.

5. Adjust the initial guess in step 1 using a gradient-based method until the sum of squared differences
between {θt}T−1

t=0 and {θ∗t }T−1
t=0 is arbitrarily small.

Alternative Calibrations

In the baseline calibration, we take the assumption that it takes workers on average 3 months to expe-
rience loss of skill during unemployment. We then chose δ to match the empirical evidence on the effect
of length of unemployment duration on wages. Here, we present on the alternative calibration that it
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takes on average six months for workers’ human capital to depreciate. Table 2 shows how the alternative
strategies change the calibrated parameters.15

Parameter Definition Baseline 6 month skill loss
σ Probability of skill loss 0.0769 0.0385
δ Productivity of low skill workers 0.7250 0.7475
k Vacancy posting cost 0.3047 0.3796
b Value of unemployment 0.5203 0.5474

Table 2: Parameter values under alternative values of σ

Quantitative Results: Skill Loss in 6 Months

We also simulate the effect of a pandemic under the calibration where skill loss occurs on average in 6
months. Figures 17-19 present the results.

(a) Fraction infected (b) Total deaths

Figure 17: Total infections and deaths - Skill loss in 6 months

15Parameters not listed in Table 2 take the same values as in Table 1.
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(a) Market tightness (b) Unemployment rate

Figure 18: Market tightness and unemployment - Skill loss in 6 months

(a) Composition of unemployed workers (b) Total Factor Productivity

Figure 19: Composition of the unemployed and TFP - Skill loss in 6 months
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TFP including infected workers

In the main text, our calculation of TFP, as seen in equation (88), does not include infected workers.
In this section, we present an alternative measure of TFP that does include these workers and present
quantitative results under this definition. This alternative measure of TFP is given by:

TFP =
y[δ(ELS + ELR) + (EHS + EHR)]

ELS + ELI + ELR + EHS + EHI + EHR
, (100)

where the only difference relative to (88) is we include infected workers, EχI for χ ∈ {L,H}. Note in
equation (100) that infected workers do not show up in the numerator as they do not produce any output
while infected. Figure 20 presents the corresponding dynamics of our alternative measure of TFP for the
three analyses presented in Sections 6.3-6.5. Clearly, the productivity losses are much larger under this
measure, approximately 9%, as a large fraction of the workforce produces zero output when infection
rates are high.

Figure 20: TFP when including infected, employed workers
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