# Search and Credit Frictions in the Housing Market

Miroslav Gabrovski Victor Ortego-Marti U Hawaii Manoa UC Riverside

September 6, 2019

## MOTIVATION

- Housing market subject to search frictions
  - $\blacksquare$  Takes time to find/sell house:  $\approx 6$  months to sell, US
  - Large fluctuations in time to buy/sell over the business cycle

- Housing market affected by credit frictions
  - Liquidity constraints: during 2016 88% of buyers use mortgage
  - Finding mortgage is costly and time consuming

#### This paper

- $\blacksquare$  Model with search frictions on both housing and credit market
- $\blacksquare$  Credit frictions  $\Rightarrow$  multiple equilibria
  - Housing Entry: price and tightness negatively related
  - Price curve: downward sloping due to credit frictions
    - Buyer agreement point decreasing in time-to-buy
    - Tightness ↑ ⇒ time-to-buy ↑ ⇒ liquidity costs for financier ↑
      ⇒ financing fee ↑ ⇒ gains from trade b/w buyer and seller ↓
      ⇒ price ↓
- Quantitative importance of credit frictions channel
  - Low impact on prices
  - Matter more for housing liquidity and mortgage debt

#### LITERATURE

- Search and housing market
  - Wheaton (1990 JPE), Arnott (1989 JREFE), Burnside et al (2016 JPE), Diaz Jerez (2013 IER), Head et al (2014/2016 AER), Ngai Tenreyro (2014 AER), Ngai Sheedy (2017), Novymarx (2009 REE), Piazzesi Schneider (2009 AERpp), Smith (2015), Gabrovski Ortego-Marti (2019, JET)
- Housing search + credit constraints
  - Guren McQuade (2018, WP), Hedlund (2016, JME), Head et al. (2016, WP)
- Credit market search
  - Wasmer Weil (2004, AER), Petrosky-Nadeau Wasmer (2018)
- Housing market, no search
  - Davis Heathcote (2005 IER), Piazzesi Schneider (2016 Handbook Macro)

- $\blacksquare$  Continuous time, discount rate r
- Agents, risk neutral
  - Households: own house, search for credit/house, or idle
  - Realtor
  - Sellers: households, construction/new housing
  - Financiers: search for applicants, wait for buyers
- Houses identical
- Buyers need
  - Realtor to purchase home
  - Mortgage to finance purchase
- Sellers post vacancy, search for buyers

- $\blacksquare$  Depreciation rate  $\delta$
- Exogenous separations s
- $\blacksquare$  Search for houses/buyers  $\rightarrow$  matching function, Pissarides
- $\blacksquare b$  buyers, v vacancies,  $\theta = b/v$  tightness
  - Matches:  $M(b, v) = \mu b^{1-\alpha} v^{\alpha}$
  - House finding rate:  $m(\theta) = \frac{M(b,v)}{b}$
  - House selling rate:  $\theta m(\theta) = \frac{M(b,v)}{v}$

Credit market frictions a la Wasmer Weil (2004, AER)

**a** applicants,  $\mathfrak{f}$  financiers,  $\phi = \mathfrak{a}/\mathfrak{f}$  tightness

- Matches:  $\mathcal{F}(\mathfrak{a},\mathfrak{f}) = \mu_f \mathfrak{a}^{1-\alpha_f} \mathfrak{f}^{\alpha_f}$
- Mortgage finding rate:  $f(\phi) = \frac{\mathcal{F}(\mathfrak{a},\mathfrak{f})}{\mathfrak{a}}$
- Applicant finding rate:  $\phi f(\phi) = \frac{\mathcal{F}(\mathfrak{a},\mathfrak{f})}{\mathfrak{f}}$

Endogenous Entry

- $\blacksquare$  Free entry of sellers: can build new houses at cost k
- $\blacksquare$  Free entry of applicants at 0 cost
  - Realtor, cost of service:  $\bar{c}b^{\gamma+1}/(\gamma+1)$  (Gabrovski Ortego-Marti 2019 JET; Sirmans Turnbull 1997 JUE)
  - Competitive market, charges buyers fee  $c^B$
- Free entry of financiers at 0 cost
- Steady state:  $\mathfrak{a}f(\phi) = bm(\theta)$

## Bellman Equations

• Financiers liquidity cost:  $c^F$ 

- $\blacksquare$  Provide mortgage  $\Rightarrow$  miss out on investing in illiquid assets
- Cost of marketing, servicing applicants

Financiers

$$rF_0 = -c^F + \phi f(\phi)(F_1 - F_0)$$

Applicants

$$rB_0 = -c_0 + f(\phi)(B_1 - B_0)$$

### Bellman Equations

• Realtor profit max  $\Rightarrow c^B(b) = \bar{c}b^{\gamma}$ 

- Includes realtor fee, related search costs (congestion externalities, etc.)
- ▶ If constant or decreasing

 $\Rightarrow$  baseline model with no buyers entry (every one buyer/applicant)

Buyers

$$rB_1 = -c^B(b) + m(\theta) \left(H - B_1 - dp - \frac{\rho}{r+\delta}\right)$$

■ Financiers (with matched buyer)

$$rF_1 = -c^F + m(\theta) \left(\frac{\rho}{r+\delta} - F_1 - p(1-d)\right)$$

## Bellman Equations

 $\blacksquare$  Utility flow of home ownership:  $\varepsilon$ 

Homeowners

$$rH = \varepsilon - s(H - V) - \delta H$$



$$rV = -c^{S} + \theta m(\theta)(p - V) - \delta V$$

## BARGAINING

- Search frictions  $\rightarrow$  surplus
- Credit Market
  - Applicant surplus  $S^A = B_1 B_0$
  - ▶ Financier surplus  $S^F = F_1 F_0$
- Housing Market
  - ► Buyer surplus  $S^B = H dp \frac{\rho}{r+\delta} B_1$
  - ▶ Seller surplus  $S^V = p V$

## BARGAINING

Sequential Nash Bargaining

• Applicant and financier bargain over repayment schedule  $\rho(p)$ 

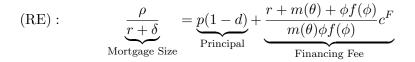
- Buyer and seller take mortgage contract as given
- Credit market

$$\rho = \underset{\rho}{\arg\max} (S^F)^{\beta} (S^A)^{1-\beta}$$

 $\Rightarrow \beta = {\rm bargaining \ strength \ of \ financier}$ 

Housing market

$$p = \operatorname*{arg\,max}_{p} (S^{S})^{\eta} (S^{B})^{1-\eta}$$


 $\Rightarrow \eta =$ bargaining strength of seller

## Equilibrium

• Credit Entry condition

(CE): 
$$\phi = \frac{1-\beta}{\beta} \frac{c^F}{c_0}$$

Repayment Equation



 $\blacksquare \ \theta \uparrow \Rightarrow$  Financing Fee  $\uparrow$ 

• Low 
$$m(\theta) \Rightarrow \text{incur } c^F$$
 for longer

• Low 
$$m(\theta) \Rightarrow$$
 receive  $\rho$  later

## Equilibrium

Buyer Entry condition

(BE): 
$$\frac{c^B(b)}{m(\theta)} + \frac{rc_0}{m(\theta)f(\phi)} = \frac{1-\eta}{\eta}(p-k)$$

Housing Entry condition

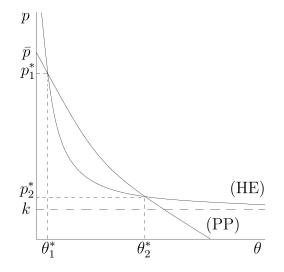
(HE): 
$$p = k + \frac{(r+\delta)k + c^S}{\theta m(\theta)}$$

• (HE) downward sloping:  $\theta \uparrow \Rightarrow$  search costs  $\downarrow \Rightarrow p \downarrow$ 

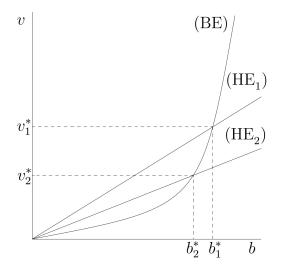
#### Equilibrium

• Use (RE)  $\Rightarrow$ 

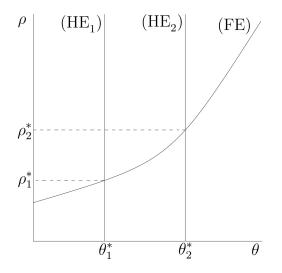
$$S^{B} = \overbrace{\begin{bmatrix} H - p - \frac{r + m(\theta) + \phi f(\phi)}{m(\theta)\phi f(\phi)} c^{F} \\ Financing Fee} \end{bmatrix}}^{\text{Agreement Point}} - B_{1}$$


 $\blacksquare$  Agreement Point of buyer decreasing in  $\theta$ 

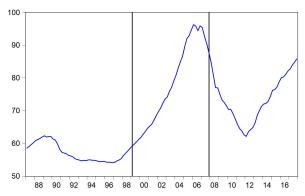
Price Equation


$$(PP): \quad p = k + \eta \left[ \frac{\varepsilon + sk}{r + s + \delta} - \frac{c_0}{f(\phi)} - \frac{r + m(\theta) + \phi f(\phi)}{m(\theta)\phi f(\phi)} c^F - k \right]$$

• (PP) downward sloping:  $\theta \uparrow \Rightarrow$  Fin Fee  $\uparrow \Rightarrow S^B \downarrow \Rightarrow p \downarrow$ 

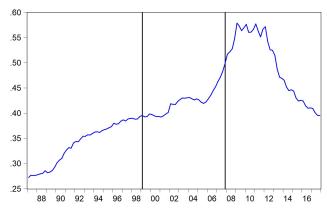

## Equilibrium price $p^*$ , tightness $\theta^*$




## Equilibrium buyers $b^*$ , vacancies $v^*$

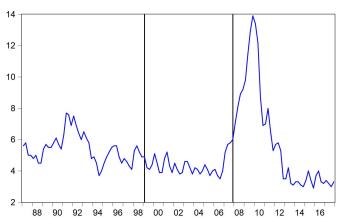


## Equilibrium tightness $\theta^*$ , repayment $\rho^*$




- Prior to 2007 housing market crash:
  - Increase in prices




Deflated Case-Shiller Price Index

- Prior to 2007 housing market crash:
  - Increase in Mortgage Debt-to-Price



Mortgage Debt-to-Price Ratio

- Prior to 2007 housing market crash:
  - No trend in Time-to-Sell





Decompose observed changes in data into 5 shocks

- Housing market shocks
  - **Demand:**  $\varepsilon$
  - $\blacksquare$  Supply: k
- Credit market shocks
  - $\blacksquare$  Liquidity costs:  $c^F$
  - Matching efficiency:  $\mu_f$
  - **Bargaining strength:**  $\beta$
- Study contribution of credit channel in counter-factual exercises

## NUMERICAL EXERCISE: SHOCK DECOMPOSITION

TABLE: SHOCKS

| Shock    |          | Data Target                                           |          |
|----------|----------|-------------------------------------------------------|----------|
| Variable | % Change | Variable                                              | % Change |
| ε        | 82.22%   | Price                                                 | 51.71%   |
| k        | 53.71%   | Time-to-Sell                                          | 8.74%    |
| $c^F$    | -12.66%  | Aaa bond yield relative to<br>10-y c.m. Treasury bond | -42.58%  |
| $\mu_f$  | -67.40%  | Mortgage Originations<br>to Applications Ratio        | -3.97%   |
| β        | 60.14%   | Mortgage Debt<br>to Price Ratio                       | 16.46%   |

| No Change in Credit Market Shoks $c^F$ , $\mu_f$ , $\beta$ |         |              |               |
|------------------------------------------------------------|---------|--------------|---------------|
| Variable                                                   | Price   | Time-to-Sell | Debt-to-Price |
| Counter-factual                                            | 64.91%  | 165.31%      | -1.99%        |
| Change                                                     | 04.9170 | 105.5170     | -1.9970       |

| No Change in Liquidity Costs, $c^F$ |        |              |               |
|-------------------------------------|--------|--------------|---------------|
| Variable                            | Price  | Time-to-Sell | Debt-to-Price |
| Counter-factual<br>Change           | 50.45% | -6.11%       | 18.24%        |

| No Change in Matching Efficiency, $\mu_f$ |        |              |               |
|-------------------------------------------|--------|--------------|---------------|
| Variable                                  | Price  | Time-to-Sell | Debt-to-Price |
| Counter-factual<br>Change                 | 62.91% | 141.51%      | 1.84%         |

| No Change in Bargaining Strength, $\beta$ |        |              |               |
|-------------------------------------------|--------|--------------|---------------|
| Variable                                  | Price  | Time-to-Sell | Debt-to-Price |
| Counter-factual<br>Change                 | 58.74% | 92.10%       | 2.78%         |

## CONCLUSION

- Model with search frictions in *both* housing and credit market
- $\blacksquare$  Credit friction channel  $\rightarrow$  multiple equilibria
  - Tightness ↑⇒ Fin. Fee ↑⇒ Buyer's agreement point ↓
    ⇒ Price Curve downward sloping
- Numerical example: Credit shocks have sizable effect on housing market
  - Low impact on prices
  - Matter more for time-to-sell and mortgage debt