Clustering and Data Mining in R

Introduction

Thomas Girke

December 7, 2012
Introduction

Data Preprocessing
 Data Transformations
 Distance Methods
 Cluster Linkage

Hierarchical Clustering
 Approaches
 Tree Cutting

Non-Hierarchical Clustering
 K-Means
 Principal Component Analysis
 Multidimensional Scaling
 Biclustering

Clustering with R and Bioconductor
Outline

Introduction

Data Preprocessing
 Data Transformations
 Distance Methods
 Cluster Linkage

Hierarchical Clustering
 Approaches
 Tree Cutting

Non-Hierarchical Clustering
 K-Means
 Principal Component Analysis
 Multidimensional Scaling
 Biclustering

Clustering with R and Bioconductor
What is Clustering?

- Clustering is the classification of data objects into similarity groups (clusters) according to a defined distance measure.
- It is used in many fields, such as machine learning, data mining, pattern recognition, image analysis, genomics, systems biology, etc.
Why Clustering and Data Mining in R?

- Efficient data structures and functions for clustering
- Reproducible and programmable
- Comprehensive set of clustering and machine learning libraries
- Integration with many other data analysis tools

Useful Links

- Cluster Task Views
- Machine Learning Task Views
- UCR Manual
Outline

Introduction

Data Preprocessing
- Data Transformations
- Distance Methods
- Cluster Linkage

Hierarchical Clustering
- Approaches
- Tree Cutting

Non-Hierarchical Clustering
- K-Means
- Principal Component Analysis
- Multidimensional Scaling
- Biclustering

Clustering with R and Bioconductor
Data Transformations

- Center & standardize
 1. Center: subtract from each vector its mean
 2. Standardize: divide by standard deviation
 \[\Rightarrow \text{Mean} = 0 \text{ and } \text{STDEV} = 1 \]

- Center & scale with the `scale()` function
 1. Center: subtract from each vector its mean
 2. Scale: divide centered vector by their root mean square (rms)
 \[x_{\text{rms}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} x_i^2} \]
 \[\Rightarrow \text{Mean} = 0 \text{ and } \text{STDEV} = 1 \]

- Log transformation
- Rank transformation: replace measured values by ranks
- No transformation

Choice depends on data set!
Distance Methods

- Euclidean distance for two profiles X and Y

$$d(X, Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Disadvantages: not scale invariant, not for negative correlations

- Maximum, Manhattan, Canberra, binary, Minowski, ...

- Correlation-based distance: $1 - r$
 - Pearson correlation coefficient (PCC)

$$r = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{\sqrt{(\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2)(\sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} y_i)^2)}}$$

Disadvantage: outlier sensitive

- Spearman correlation coefficient (SCC)
 Same calculation as PCC but with ranked values!
Cluster Linkage

- Single Linkage
- Complete Linkage
- Average Linkage
Outline

Introduction

Data Preprocessing
 Data Transformations
 Distance Methods
 Cluster Linkage

Hierarchical Clustering
 Approaches
 Tree Cutting

Non-Hierarchical Clustering
 K-Means
 Principal Component Analysis
 Multidimensional Scaling
 Biclustering

Clustering with R and Bioconductor
Hierarchical Clustering Steps

1. Identify clusters (items) with closest distance
2. Join them to new clusters
3. Compute distance between clusters (items)
4. Return to step 1
Hierarchical Clustering

Agglomerative Approach

(a)

(b)

(c)
Hierarchical Clustering Approaches

1. **Agglomerative approach (bottom-up)**
 - `hclust()` and `agnes()`

2. **Divisive approach (top-down)**
 - `diana()`
Tree Cutting to Obtain Discrete Clusters

1. Node height in tree
2. Number of clusters
3. Search tree nodes by distance cutoff
Outline

Introduction

Data Preprocessing
 Data Transformations
 Distance Methods
 Cluster Linkage

Hierarchical Clustering
 Approaches
 Tree Cutting

Non-Hierarchical Clustering
 K-Means
 Principal Component Analysis
 Multidimensional Scaling
 Biclustering

Clustering with R and Bioconductor
Non-Hierarchical Clustering

Selected Examples
K-Means Clustering

1. Choose the number of k clusters
2. Randomly assign items to the k clusters
3. Calculate new centroid for each of the k clusters
4. Calculate the distance of all items to the k centroids
5. Assign items to closest centroid
6. Repeat until clusters assignments are stable
K-Means

(a)

(b)

(c)
Principal components analysis (PCA) is a data reduction technique that allows to simplify multidimensional data sets to 2 or 3 dimensions for plotting purposes and visual variance analysis.
Basic PCA Steps

- Center (and standardize) data
- First principal component axis
 - Across centroid of data cloud
 - Distance of each point to that line is minimized, so that it crosses the maximum variation of the data cloud
- Second principal component axis
 - Orthogonal to first principal component
 - Along maximum variation in the data
- 1\(^{st}\) PCA axis becomes x-axis and 2\(^{nd}\) PCA axis y-axis
- Continue process until the necessary number of principal components is obtained
PCA on Two-Dimensional Data Set
Identifies the Amount of Variability between Components

Example

<table>
<thead>
<tr>
<th>Principal Component</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of Variance</td>
<td>62%</td>
<td>34%</td>
<td>3%</td>
<td>rest</td>
</tr>
</tbody>
</table>

1st and 2nd principal components explain 96\% of variance.
Multidimensional Scaling (MDS)

- Alternative dimensionality reduction approach
- Represents distances in 2D or 3D space
- Starts from distance matrix (PCA uses data points)
Biclustering

Finds in matrix subgroups of rows and columns which are as similar as possible to each other and as different as possible to the remaining data points.

Unclustered \[\Rightarrow\] Clustered
Remember: There Are Many Additional Techniques!

Additional details can be found in the Clustering Section of the R/Bioc Manual.
Outline

Introduction

Data Preprocessing
 Data Transformations
 Distance Methods
 Cluster Linkage

Hierarchical Clustering
 Approaches
 Tree Cutting

Non-Hierarchical Clustering
 K-Means
 Principal Component Analysis
 Multidimensional Scaling
 Biclustering

Clustering with R and Bioconductor
Data Preprocessing

Scaling and Distance Matrices

```r
## Sample data set
> set.seed(1410)
> y <- matrix(rnorm(50), 10, 5, dimnames=list(paste("g", 1:10, sep=""),
+ paste("t", 1:5, sep=""))
> dim(y)
[1] 10 5

## Scaling
> yscaled <- t(scale(t(y))) # Centers and scales y row-wise
> apply(yscaled, 1, sd)
g1  g2  g3  g4  g5  g6  g7  g8  g9  g10
1 1 1 1 1 1 1 1 1 1

## Euclidean distance matrix
> dist(y[1:4,], method = "euclidean")
g1   g2   g3
4.793697

   g2   g3
4.932658 6.354978

   g4   g5   g6   g7   g8   g9   g10
4.033789 4.788508 1.671968
```

Clustering and Data Mining in R
Clustering with R and Bioconductor
Correlation-based Distances

Correlation matrix

```r
> c <- cor(t(y), method="pearson")
> as.matrix(c)[1:4,1:4]
```

<table>
<thead>
<tr>
<th></th>
<th>g1</th>
<th>g2</th>
<th>g3</th>
<th>g4</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>1.00000000</td>
<td>-0.2965885</td>
<td>-0.00206139</td>
<td>-0.4042011</td>
</tr>
<tr>
<td>g2</td>
<td>-0.29658847</td>
<td>1.00000000</td>
<td>-0.91661118</td>
<td>-0.4512912</td>
</tr>
<tr>
<td>g3</td>
<td>-0.00206139</td>
<td>-0.9166112</td>
<td>1.00000000</td>
<td>0.7435892</td>
</tr>
<tr>
<td>g4</td>
<td>-0.40420112</td>
<td>-0.4512912</td>
<td>0.74358925</td>
<td>1.00000000</td>
</tr>
</tbody>
</table>

Correlation-based distance matrix

```r
> d <- as.dist(1-c)
> as.matrix(d)[1:4,1:4]
```

<table>
<thead>
<tr>
<th></th>
<th>g1</th>
<th>g2</th>
<th>g3</th>
<th>g4</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>0.00000000</td>
<td>1.2965888</td>
<td>1.0020614</td>
<td>1.4042011</td>
</tr>
<tr>
<td>g2</td>
<td>1.29658847</td>
<td>0.00000000</td>
<td>1.9166112</td>
<td>1.4512912</td>
</tr>
<tr>
<td>g3</td>
<td>1.00206139</td>
<td>1.9166112</td>
<td>0.00000000</td>
<td>0.2564108</td>
</tr>
<tr>
<td>g4</td>
<td>1.40420112</td>
<td>1.4512912</td>
<td>0.2564108</td>
<td>0.00000000</td>
</tr>
</tbody>
</table>
Hierarchical clustering with complete linkage and basic tree plotting

```r
> hr <- hclust(d, method = "complete", members=NULL)
> names(hr)
[1] "merge" "height" "order" "labels" "method"
[6] "call" "dist.method"
> par(mfrow = c(1, 2)); plot(hr, hang = 0.1); plot(hr, hang = -1)
```
Tree Plotting I

Plot trees horizontally

```r
> plot(as.dendrogram(hr), edgePar=list(col=3, lwd=4), horiz=T)
```
The `ape` library provides more advanced features for tree plotting.

```r
> library(ape)
> plot.phylo(as.phylo(hr), type="p", edge.col=4, edge.width=2,
+ show.node.label=TRUE, no.margin=TRUE)
```
Accessing information in hclust objects

> hr

Call:
hclust(d = d, method = "complete", members = NULL)

Cluster method : complete
Number of objects: 10

> ## Print row labels in the order they appear in the tree
> hr$labels[hr$order]

[1] "g10" "g3" "g4" "g2" "g9" "g6" "g7" "g1" "g5" "g8"

Tree cutting with cutree

> mycl <- cutree(hr, h=max(hr$height)/2)
> mycl[hr$labels[hr$order]]

g10 g3 g4 g2 g9 g6 g7 g1 g5 g8
 3 3 3 2 2 5 5 1 4 4
Heatmaps

All in one step: clustering and heatmap plotting

```r
> library(gplots)
> heatmap.2(y, col=redgreen(75))
```
Customizing Heatmaps

Customizes row and column clustering and shows tree cutting result in row color bar. Additional color schemes can be found here.

```r
hc <- hclust(as.dist(1-cor(y, method="spearman")), method="complete")
mycol <- colorpanel(40, "darkblue", "yellow", "white")
heatmap.2(y, Rowv=as.dendrogram(hr), Colv=as.dendrogram(hc), col=mycol,
          scale="row", density.info="none", trace="none",
          RowSideColors=as.character(mycl))
```

![Heatmap](image.png)
K-Means Clustering with PAM

Runs K-means clustering with PAM (partitioning around medoids) algorithm and shows result in color bar of hierarchical clustering result from before.

```r
> library(cluster)
> pamy <- pam(d, 4)
> (kmcol <- pamy$clustering)

g1  g2  g3  g4  g5  g6  g7  g8  g9  g10
1  2  3  3  4  4  4  4  2  3

> heatmap.2(y, Rowv=as.dendrogram(hr), Colv=as.dendrogram(hc), col=mycol,
+  scale="row", density.info="none", trace="none",
+  RowSideColors=as.character(kmcol))
```
K-Means Fuzzy Clustering

Runs k-means fuzzy clustering

> library(cluster)
> fannyy <- fanny(d, k=4, memb.exp = 1.5)
> round(fannyy$membership, 2)[1:4,]

g1 1.00 0.00 0.00 0.00
g2 0.00 0.99 0.00 0.00
g3 0.02 0.01 0.95 0.03
g4 0.00 0.00 0.99 0.01

> fannyy$clustering

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10
1 2 3 3 4 4 4 4 2 3

> ## Returns multiple cluster memberships for coefficient above a certain
> ## value (here >0.1)
> fannyyMA <- round(fannyy$membership, 2) > 0.10
> apply(fannyyMA, 1, function(x) paste(which(x), collapse="_"))

"1" "2" "3" "3" "4" "4" "4" "2_4" "2" "3"
Performs MDS analysis on the geographic distances between European cities

```r
loc <- cmdscale(eurodist)

## Plots the MDS results in 2D plot. The minus is required in this example to
## flip the plotting orientation.
plot(loc[,1], -loc[,2], type="n", xlab="", ylab="", main="cmdscale(eurodist)"

text(loc[,1], -loc[,2], rownames(loc), cex=0.8)
```
Principal Component Analysis (PCA)

Performs PCA analysis after scaling the data. It returns a list with class `prcomp` that contains five components: (1) the standard deviations (sdev) of the principal components, (2) the matrix of eigenvectors (rotation), (3) the principal component data (x), (4) the centering (center) and (5) scaling (scale) used.

```r
> library(scatterplot3d)
> pca <- prcomp(y, scale=TRUE)
> names(pca)
[1] "sdev"  "rotation" "center"  "scale"  "x"
```

```r
> summary(pca) # Prints variance summary for all principal components.
Importance of components:

<table>
<thead>
<tr>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC4</th>
<th>PC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3611</td>
<td>1.1777</td>
<td>1.0420</td>
<td>0.6926</td>
<td>0.4416</td>
</tr>
<tr>
<td>0.3705</td>
<td>0.2774</td>
<td>0.2172</td>
<td>0.0959</td>
<td>0.0390</td>
</tr>
<tr>
<td>0.3705</td>
<td>0.6479</td>
<td>0.8650</td>
<td>0.9610</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
```

```r
> scatterplot3d(pca$x[,1:3], pch=20, color="blue")
```
Additional Exercises

See here Link
> sessionInfo()

R version 2.15.2 (2012-10-26)
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

locale:

attached base packages:
[1] grid stats graphics grDevices utils datasets methods
[8] base

other attached packages:
[1] scatterplot3d_0.3-33 cluster_1.14.3 gplots_2.11.0
[7] bitops_1.0-4.2 gdata_2.12.0 gtools_2.7.0
[10] ape_3.0-6

loaded via a namespace (and not attached):
[1] gee_4.13-18 lattice_0.20-10 nlme_3.1-105 tools_2.15.2