Programming in R
A Short Introduction

Thomas Girke

December 5, 2014

Slide 1/65

Programming in R
Control Structures
Loops

Functions

Useful Utilities

Calling External Software
Running R Scripts
Building R Packages
Exercises

Git and GitHub

IATEX
Documents and References

Sweave: R/Latex Hybrid Code for Reproducible Research
Examples

Programming in R Slide 2/65

Programming in R
Control Structures
Loops

Functions

Useful Utilities

Calling External Software
Running R Scripts
Building R Packages
Exercises

Git and GitHub

IATEX
Documents and References

Sweave: R/Latex Hybrid Code for Reproducible Research
Examples

Programming in R Programming in R Slide 3/65

Why Programming in R?

Complete statistical environment and programming language
Reproducible research

Efficient data structures make programming very easy

Ease of implementing custom functions

Powerful graphics

Access to fast growing number of analysis packages

Most widely used language in bioinformatics

Is standard for data mining and biostatistical analysis

Technical advantages: free, open-source, available for all OSs

Slide 4/65

Programming in R
Control Structures

Loops

Functions

Useful Utilities

Calling External Software
Running R Scripts
Building R Packages
Exercises

Git and GitHub

IATEX
Documents and References

Sweave: R/Latex Hybrid Code for Reproducible Research
Examples

Programming in R Control Structures Slide 5/65

Overview of Important Operators

@ Comparison operators

== (equal)

I= (not equal)

> (greater than)

>= (greater than or equal)
< (less than)

<= (less than or equal)

@ Logical operators
e & (and)
o | (or)
o ! (not)

Programming in R Control Structures

Slide 6/65

Conditional Executions: if statements

An if statement operates on length-one logical vectors.

Syntax

> if(TRUE) {

+ statements_1
+ } else {

+ statements_2
+ }

Example

> if(1==0) {

+ print (1)

+ } else {

+ print(2)

+ }

[1] 2

Programming in R Control Structures Slide 7/65

Conditional Executions: ifelse Statements

The ifelse statement operates on vectors.
Syntax

> ifelse(test, true_value, false_value)

Example

> x <- 1:10
> ifelse(x<5, x, 0)

[111234000000

Programming in R Control Structures Slide 8/65

Programming in R
Control Structures
Loops

Functions

Useful Utilities

Calling External Software
Running R Scripts
Building R Packages
Exercises

Git and GitHub

IATEX
Documents and References

Sweave: R/Latex Hybrid Code for Reproducible Research
Examples

Programming in R Loops Slide 9/65

for Loops

Iterates over elements of a looping vector.

Syntax

> for(variable in sequence) {
+ statements

+}

Example

> mydf <- iris
> myve <- NULL
> for(i in seq(along=mydf[,1])) {

+ myve <- c(myve, mean(as.numeric(mydf[i,1:3])))
+}
> myve[1:8]

[1] 3.333333 3.100000 3.066667 3.066667 3.333333 3.666667 3.133333 3.300000

Inject into objecs is much faster than append approach with c, cbind, etc.
> myve <- numeric(length(mydf[,1]))
> for(i in seq(along=myve)) {

+ myve[i] <- mean(as.numeric(mydf[i,1:3]))
+}
> myve[1:8]

[1] 3.333333 3.100000 3.066667 3.066667 3.333333 3.666667 3.133333 3.300000

Programming in R Loops Slide 10/65

Conditional Stop of Loops

The stop function can be used to break out of a loop (or a function) when a condition
becomes TRUE and print an error message.

Example
> x <= 1:10
> z <- NULL

> for(i in seq(along=x)) {
if(x[i] < 5) {
z <= c(z, x[i]l-1)
} else {
stop("values need to be <5")

}

+ o+ + + + 4+

Programming in R Loops Slide 11/65

while Loops

Iterates as long as a condition is true.

Syntax

> while(condition) {
+ statements
+ }

Example

>z <=0

> while(z<5) {

+ z <-z + 2
+ print(z)

+ }

[11 2

[1] 4

[1] 6

Programming in R Loops Slide 12/65

The apply Function Family: apply

Syntax

> apply (X, MARGIN, FUN, ARGs)

Arguments
@ X: array, matrix or data.frame
@ MARGIN: 1 for rows, 2 for columns
@ FUN: one or more functions

@ ARGs: possible arguments for functions

Example

> apply(iris[1:8,1:3], 1, mean)

1 2 3 4 5 6 7 8
3.333333 3.100000 3.066667 3.066667 3.333333 3.666667 3.133333 3.300000

Programming in R Loops Slide 13/65

The apply Function Family: tapply

Applies a function to vector components that are defined by a factor.
Syntax

> tapply(vector, factor, FUN)

Example

> iris[1:2,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa

> tapply(iris$Sepal.Length, iris$Species, mean)

setosa versicolor virginica
5.006 5.936 6.588

Programming in R Loops Slide 14/65

The apply Function Family: sapply and lapply

Both apply a function to vector or list objects. The function lapply always returns a
list object, while sapply tries to return vector or matrix objects when this is possible.
Examples

> x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE, TRUE))
> lapply(x, mean)

$a
[1] 5.5

$beta
[1] 4.535125

$logic
[1] 0.5
> sapply(x, mean)

a beta logic
5.500000 4.535125 0.500000

Often used in combination with a function definition

> lapply(names(x), function(x) mean(x))
> sapply(names(x), function(x) mean(x))

Programming in R Loops Slide 15/65

Programming in R
Control Structures
Loops

Functions

Useful Utilities

Calling External Software
Running R Scripts
Building R Packages
Exercises

Git and GitHub

IATEX
Documents and References

Sweave: R/Latex Hybrid Code for Reproducible Research
Examples

Programming in R Functions Slide 16/65

Function Overview

A very useful feature of the R environment is the possibility to expand existing
functions and to easily write custom functions. In fact, most of the R software can be
viewed as a series of R functions.

Syntax to define functions

> myfct <- function(argl, arg2, ...) {
+ function_body
+}

Syntax to call functions

> myfct(argl=..., arg2=...)

Programming in R Functions Slide 17/65

Function Syntax Rules

General Functions are defined by (1) assignment with the keyword function, (2) the
declaration of arguments/variables (argl, arg2, ...) and (3) the definition of
operations (function_body) that perform computations on the provided
arguments. A function name needs to be assigned to call the function.

Naming Function names can be almost anything. However, the usage of names of
existing functions should be avoided.

Arguments It is often useful to provide default values for arguments (e.g.: argl=1:10).
This way they don’t need to be provided in a function call. The argument list
can also be left empty (myfct <- function() fct_body) when a function is
expected to return always the same value(s). The argument *...’ can be used
to allow one function to pass on argument settings to another.

Body The actual expressions (commands/operations) are defined in the function body
which should be enclosed by braces. The individual commands are separated by
semicolons or new lines (preferred).

Usage Functions are called by their name followed by parentheses containing possible
argument names. Empty parenthesis after the function name will result in an
error message when a function requires certain arguments to be provided by the
user. The function name alone will print the definition of a function.

Scope Variables created inside a function exist only for the life time of a function.
Thus, they are not accessible outside of the function. To force variables in
functions to exist globally, one can use the double assignment operator:
L=

Programming in R Functions Slide 18/65

Function: Examples

Define sample function
> myfct <- function(x1, x2=5) {

+ zl <- x1 / x1

+ z2 <- x2 * x2

+ myvec <- c(zl1, z2)
+ return (myvec)

+ }

Function usage

> ## Apply function to values 2 and 5
> myfct(x1=2, x2=5)

[11 1 25

> ## Run without argument names
> myfct (2, 5)

[11 1 25

> ## Makes use of default value '5'
> myfct (x1=2)

[11 1 25

> ## Print function definition
> # myfct

Programming in R Functions Slide 19/65

Programming in R
Control Structures
Loops

Functions

Useful Utilities

Calling External Software
Running R Scripts
Building R Packages
Exercises

Git and GitHub

IATEX
Documents and References

Sweave: R/Latex Hybrid Code for Reproducible Research
Examples

Programming in R Useful Utilities Slide 20/65

Debugging Utilities

Several debugging utilities are available for R. They include:
@ traceback
@ browser
@ options(error=recover)
@ options(error=NULL)
@ debug

The Debugging in R page provides an overview of the available
resources

Programming in R Useful Utilities Slide 21/65

http://www.stats.uwo.ca/faculty/murdoch/software/debuggingR/

Regular Expressions

R’s regular expression utilities work similar as in other languages. To learn how to use
them in R, one can consult the main help page on this topic with ?regexp.

> ## The grep function can be used for finding patterns in strings, here letter
> ## 'A' in vector 'month.name'.
> month.name [grep("A", month.name)]

[1] "April" "August"

> ## Example for using regular expressions to substitute a pattern by another
> ## one using a back reference. Remember: single escapes '\' need to be double
> ## escaped '\\' in R.

> gsub('(i.*a)', 'xxx_\\1', "virginica", perl = TRUE)

[1] "vxxx_irginica"

Programming in R Useful Utilities Slide 22/65

Interpreting a Character String as Expression

Some useful examples

> ## Generates vector of object names in session
> mylist <- 1s()

> ## Prints name of 1st entry

> mylist[1]

[1] nyn

> ## Executes 1st entry as expression
> get(mylist[1])

[1] 150

> # Alternative approach
> eval (parse (text=mylist[1]))

[1] 150

Programming in R Useful Utilities Slide 23/65

Replacement, Split and Paste Functions for Strings

Selected examples

> ## Substitution with back reference which inserts in this example

> ## an '_' character
> x <= gsub("(a)","\\1_", month.name[1], perl=T)
> x

[1] "Ja_nua_ry"

> ## Split string on inserted character from above
> strsplit(x,"_")

[[111

[1] "ja" "nua" nryn

> ## Reverse a character string by splitting first all characters
> ## into vector fields
> paste(rev(unlist(strsplit(x, NULL))), collapse="")

[1] "yr_aun_aJ"

Programming in R Useful Utilities Slide 24/65

Time, Date and Sleep

Selected examples

> ## Returns CPU (and other) times that an expression used (here 1s)
> system.time(1s())

user system elapsed
0 0 0

> ## Return the current system date and time
> date()

[1] "Fri Dec b5 18:04:17 2014"

> ## Pause execution of R expressions for a given number of
> ## seconds (e.g. in loop)
> Sys.sleep(1)

Programming in R Useful Utilities Slide 25/65

Import of Specific File Lines with Regular Expression

The following example demonstrates the retrieval of specific lines from an external file
with a regular expression. First, an external file is created with the cat function, all
lines of this file are imported into a vector with readLines, the specific elements
(lines) are then retieved with the grep function, and the resulting lines are split into
vector fields with strsplit.

> cat(month.name, file="zzz.txt", sep="\n")
> x <- readLines("zzz.txt")
> x[1:6]

[1] "January" "February" "March" "April" "May" "June"

> x <- x[c(grep(""~J", as.character(x), perl = TRUE))]
> t(as.data.frame(strsplit(x, "u")))

[,11 [,2]
c..Jan....ary.. "Jan" "ary"
c..J....ne.. " "ne"
c..J....1ly.. " "ly"

Programming in R Useful Utilities Slide 26/65

Programming in R
Control Structures
Loops

Functions

Useful Utilities

Calling External Software
Running R Scripts
Building R Packages
Exercises

Git and GitHub

IATEX
Documents and References

Sweave: R/Latex Hybrid Code for Reproducible Research
Examples

Programming in R Calling External Software Slide 27/65

Run External Command-line Software

Example for running blastall from R

> system("blastall -p blastp -i seq.fasta -d uniprot -o seq.blastp")

Programming in R Calling External Software Slide 28/65

Programming in R
Control Structures
Loops

Functions

Useful Utilities

Calling External Software
Running R Scripts
Building R Packages
Exercises

Git and GitHub

IATEX
Documents and References

Sweave: R/Latex Hybrid Code for Reproducible Research
Examples

Programming in R Running R Scripts Slide 29/65

Options to Execute R Scripts

Executing R scripts from the R console

> source("my_script.R")

Execute an R script from command-line

Rscript my_script.R # or just ./myscript.R after making it executable

R CMD BATCH my_script.R # Alternative way 1

R --slave < my_script.R # Alternative way 2

Passing command-line arguments to R programs. In the given example the number 10
is passed on from the command-line as an argument to the R script which is used to
return to STDOUT the first 10 rows of the iris sample data. If several arguments are
provided, they will be interpreted as one string and need to be split in R with the

strsplit function. A more detailed example can be found here:

Create R script named 'test.R'

myarg <- commandArgs()
print(iris[1:myarg,])

Then run it from the command-line
Rscript test.R 10

Programming in R Running R Scripts Slide 30/65

http://manuals.bioinformatics.ucr.edu/home/ht-seq#TOC-Quality-Reports-of-FASTQ-Files-

Programming in R
Control Structures
Loops

Functions

Useful Utilities

Calling External Software
Running R Scripts
Building R Packages
Exercises

Git and GitHub

IATEX
Documents and References

Sweave: R/Latex Hybrid Code for Reproducible Research
Examples

Programming in R Building R Packages Slide 31/65

Short Overview of Package Building Process

Automatic package building with the package.skeleton function. The given example
will create a directory named mypackage containing the skeleton of the package for all
functions, methods and classes defined in the R script(s) passed on to the code_files

argument. The basic structure of the package directory is described here: . The
package directory will also contain a file named Read-and-delete-me with
instructions for completing the package:

> package.skeleton(name="mypackage", code_files=c("scriptl.R", "script2.R"))

Once a package skeleton is available one can build the package from the
command-line (Linux/OS X). This will create a tarball of the package with its version
number encoded in the file name. Subequently, the package tarball needs to be
checked for errors with:

R CMD build mypackage
R CMD check mypackage_1.0.tar.gz

Install package from source

> install.packages("mypackage_1.0.tar.gz", repos=NULL)

For more details see here:

Programming in R Building R Packages Slide 32/65

http://manuals.bioinformatics.ucr.edu/home/programming-in-r#Progr_pack
http://manuals.bioinformatics.ucr.edu/home/programming-in-r#TOC-Building-R-Packages

Programming in R
Control Structures
Loops

Functions

Useful Utilities

Calling External Software
Running R Scripts
Building R Packages
Exercises

Git and GitHub

IATEX
Documents and References

Sweave: R/Latex Hybrid Code for Reproducible Research
Examples

Programming in R Exercises Slide 33/65

Exercise 1: for loop

Task 1.1: Compute the mean of each row in myMA by applying the mean function in a for

loop
> myMA <- matrix(rnorm(500), 100, 5, dimnames=1ist(1:100, paste("C", 1:5, sep=""
> myve_for <- NULL
> for(i in seq(along=myMA[,1])) {
+ myve_for <- c(myve_for, mean(as.numeric(myMA[i, 1)))
+ }
> myResult <- cbind(myMA, mean_for=myve_for)
> myResult[1:4,]

C1 Cc2 C3 c4 C5 mean_for
-0.6592941 2.352441345 -0.1456537 2.4572565 1.0862656 1.01820312
0.5287459 1.340274328 0.3276844 0.3755140 -2.1750698 0.07942976
0.2635144 0.261592693 0.3927853 0.9317759 0.1823045 0.40639458
0.6070491 -0.008121598 0.4753948 -1.3174256 0.6644683 0.08427300

S w N e

Programming in R Exercises Slide 34/65

Exercise 1: while loop

Task 1.2: Compute the mean of each row in myMA by applying the mean function in a

while loop
>z <=1
> myve_while <- NULL
> while(z <= length(myMA[,1]1)) {
+ myve_while <- c(myve_while, mean(as.numeric(myMA[z,])))
+ z<-z+1
+F
> myResult <- cbind(myMA, mean_for=myve_for, mean_while=myve_while)
> myResult[1:4, -c(1,2)]
C3 c4 C5 mean_for mean_while
-0.1456537 4572565 1.0862656 1.01820312 1.01820312

0.3927853 9317759 0.1823045 0.40639458 0.40639458

2.
0.3276844 0.3755140 -2.1750698 0.07942976 0.07942976
0.
0.4753948 -1.3174256 0.6644683 0.08427300 0.08427300

S W N -

Task 1.3: Confirm that the results from both mean calculations are identical
> all(myResult[,6] == myResult[,7])

[1] TRUE

Programming in R Exercises Slide 35/65

Exercise 1: apply loop and avoiding loops in R

Task 1.4: Compute the mean of each row in myMA by applying the mean function in an
apply loop

> myve_apply <- apply(myMA, 1, mean)
myResult <- cbind(myMA, mean_for=myve_for, mean_while=myve_while, mean_apply=m
> myResult[1:4, -c(1,2)]

v

C3 Cc4 C5 mean_for mean_while mean_apply
1 -0.1456537 2.4572565 1.0862656 1.01820312 1.01820312 1.01820312
2 0.3276844 0.3755140 -2.1750698 0.07942976 0.07942976 0.07942976
3 0.3927853 0.9317759 0.1823045 0.40639458 0.40639458 0.40639458
4 0.4753948 -1.3174256 0.6644683 0.08427300 0.08427300 0.08427300

Task 1.5: When operating on large data sets it is much faster to use the rowMeans
function

> mymean <- rowMeans (myMA)
myResult <- cbind(myMA, mean_for=myve_for, mean_while=myve_while, mean_apply=
myResult[1:4, -c(1,2,3)]

Vv v

Cc4 C5 mean_for mean_while mean_apply mean_int
2.4572565 1.0862656 1.01820312 1.01820312 1.01820312 1.01820312
0.3755140 -2.1750698 0.07942976 0.07942976 0.07942976 0.07942976
0.9317759 0.1823045 0.40639458 0.40639458 0.40639458 0.40639458

-1.3174256 0.6644683 0.08427300 0.08427300 0.08427300 0.08427300

S w N e

Programming in R Exercises Slide 36/65

Exercise 2: functions

Task 2.1: Use the following code as basis to implement a function that allows the user to
compute the mean for any combination of columns in a matrix or data frame.
The first argument of this function should specify the input data set, the second
the mathematical function to be passed on (e.g. mean, sd, max) and the third
one should allow the selection of the columns by providing a grouping vector.

> myMA <- matrix(rnorm(100000), 10000, 10, dimnames=1ist(1:10000, paste("C", 1:1
> myMA[1:2,]

C1 Cc2 C3 c4 C5 [¢9) c7
1 -1.0031265 -0.5716986 -0.5018299 -1.1932212 0.02666608 0.4149434 -0.5134161
2 0.5016274 0.5126865 2.4037213 -0.9751479 -2.94053440 -0.2629856 -0.5291323
> myList <- tapply(colnames(myMA), ¢(1,1,1,2,2,2,3,3,4,4), list)
> names(myList) <- sapply(myList, paste, collapse="_")
> myMAmean <- sapply(myList, function(x) apply(myMA[, x, drop=FALSE], 1, mean))
> myMAmean([1:4,]

C1_C2_C3 C4_C5_C6 C7_C8 C9_C10
-0.6922183 -0.25053727 0.04269614 -0.1394368
1.1393451 -1.39288929 -0.49985455 -0.8217462
-0.5003290 -0.71385017 -1.73730820 -0.3918644
-0.2499292 -0.08088524 0.31853612 0.5770666

S w N e

Programming in R Exercises Slide 37/65

Exercise 3: nested loops to generate similarity matrices

Task 3.1: Create a sample list populated with character vectors of different lengths

> setlist <- lapply(11:30, function(x) sample(letters, x, replace=TRUE))
> names (setlist) <- paste("S", seq(along=setlist), sep="")
> setlist[1:6]

$s1
[1] llsll llqll "W" llzll llgll lldll lloll llnll Ilell llwll Ilbll

$s2
[1] nqu nqn ngu non nyu QM Nl o g mEN g

$s3
[1] "o" Mp" MeM Wgh MWLM MpW WpW wpH o Hyw g ugpw o wpw o wpw

$s4
[1] npn lljn npn ongn ujll nyt ujll QM Mgl tgn wpn wpn ngn nju

$s5
[1] nptoNgt Ml N mpn R g] g e uju ngu uqu ngn ngn

$s6
[1] "b" "m" "g" "i" My" 1M Nyu upw ugu o w]u uguowpuoupuouguougu upo

Programming in R Exercises Slide 38/65

Exercise 3: nested loops to generate similarity matrices

Task 3.2: Compute the length for all pairwise intersects of the vectors stored in setlist.

The intersects can be determined with the %in% function like this:
sum(setlist[[1]] %in’% setlist[[2]])

> setlist <- sapply(setlist, unique)
> 0lMA <- sapply(names(setlist), function(x) sapply(names(setlist),
function(y) sum(setlist[[x]] Jinj setlist[[y]]1)))

+
> 0lMA[1:12,]

S1 82 S3 S4 S5 S6

S1 10
S2
S3
sS4
S5
S6
s7
S8
59
S10
S11
S12

7 6 2
11

w
e
w

N0 NOOOONNNNON
OO NN NWOON

NN NW-
WO N D =0T WO wWN

Programming in R

7
6
7
3
13
3
7
8
7
10
8
10

W N WN

1

o

[N ¢ B e N e) RN¢)

S7 S8 S

7
7
7
8
5
7
5

N W0 OO O

15
71

12

10

O 00 o U
o
0 O -

9
6

Exercises

1
8
6
7
5
8
4
9
8
9
9

16
8

S12 S13 S14 S15 S16 S17 S18
7T 5 5 8 7 4 7
6 7 6 9 7 6 7T
5 7 6 7 9 5 9
3 6 6 3 5 5 5
10 8 8 9 7 T 10
6 5 8 6 6 5 8
6 11 9 9 11 8 11
9 7 8 8 7 11 11
8 9 10 10 11 6 9
10 10 11 10 11 8 10
8 8 10 11 11 8 11
14 8 10 9 8 8 10

S19 820

8
7
6
5
10
7
8
9
10
12
11
14

8
8
7
6
10
7
10
11
7
11
11
10

Slide 39/65

Exercise 3: nested loops to generate similarity matrices

Task 3.3: Plot the resulting intersect matrix as heat map. The heatmap.2 function from
the gplots library can be used for this.

> library("gplots")
> heatmap.2(olMA, trace="none", Colv="none", Rowv="none", dendrogram="none",
+ col=colorpanel (40, "darkred", "orange", "yellow"))

Color Key
a
§ i

5 15

Value

Count

ANB3885R83033955338
B nnunununnnnnnom

Programming in R Slide 40/65

Exercise 4: build your own R package

Task 4.1: Save one or more of your functions to a file called script.R and build the
package with the package.skeleton function.

> package.skeleton(name="mypackage", code_files=c("script1.R"))

Task 4.2: Build tarball, install and use package

system("R CMD build mypackage") # or from command-line: R CMD build mypackage
install.packages ("mypackage_1.0.tar.gz", repos=NULL, type="source")

library (mypackage)

?myMAcomp # Opens help for function defined by mypackage

vV VvV Vv Vv

Programming in R Exercises Slide 41/65

See here:

Programming in R Exercises Slide 42/65

http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/R_programming_exercises.R

Programming in R
Control Structures
Loops

Functions

Useful Utilities

Calling External Software
Running R Scripts
Building R Packages
Exercises

Git and GitHub

IATEX
Documents and References

Sweave: R/Latex Hybrid Code for Reproducible Research
Examples

Programming in R Git and GitHub Slide 43/65

What are Git and GitHub?

o Git is a distributed version control system similar to SVN.

@ GitHub is an online social coding service based on Git.

Programming in R Git and GitHub Slide 44/65

Installing Git

@ Install on Windows, OS X and Linux
@ When using it from RStudio, it needs to find the Git
executable

Programming in R Git and GitHub Slide 45/65

http://git-scm.com/book/en/Getting-Started-Installing-Git

Git Basics from Command-Line

@ Finding help from command-line
git <command> -help

@ |Initialize a directory as a Git repository
git init

@ Add files to Git repository (staging area)
git add myfile

@ After editing file(s) in your repos, record a snapshot of the staging area
git commit -am "some edits"

Programming in R Git and GitHub Slide 46/65

Using GitHub from RStudio

@ After installing Git, set path to Git executable in Rstudio:
Tools > Global Options > Git/SVN

@ |If needed, login to GitHub account and create repository. Use option ’Initialize
this repository with a README'.
@ Clone repository by copying & pasting URL from repository into RStudio’s
'Clone Git Repository’ window:
Project (triangle on top right) > New Project >
Version Control > Git > Provide URL
@ Now do some work (e.g. add an R script), commit and push changes as follows:
Tools > Version Control > Commit

@ Check files in staging area and press Commit Button

To commit changes to GitHub, press Push Button

@ Shortcuts to automate above routines

Programming in R Git and GitHub Slide 47/65

https://support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts

GitHub Education

@ GitHub Education just became available. It provides now free private
repositories for students and faculty

Programming in R Git and GitHub Slide 48/65

https://education.github.com/

Programming in R
Control Structures
Loops

Functions

Useful Utilities

Calling External Software
Running R Scripts
Building R Packages
Exercises

Git and GitHub
IATEX

Documents and References

Sweave: R/Latex Hybrid Code for Reproducible Research
Examples

Programming in R BTEX Slide 49/65

What Is IATEX?

@ Originally developed in the early 1980s by Leslie Lamport.

o IATEX is a document markup language and document
preparation system for the TeX typesetting program.

@ Developed for mathematicians, statisticians, engineers and
computer scientists.

@ High quality of typesetting for scientific articles.
@ Programmable environment.

o Many efficient cross-referencing facilities for equations, tables,
figures, bibliographies, etc.

Programming in R BTEX Slide 50/65

How Does It Work?

@ Write in your favourite text editor, e.g.: Vim or Emacs.
o Install IATEX distribution for your OS

o Windows: MiKTeX
e Linux: Latex Project Site
e Mac OS X: TexShop

e IATEX manuals (very incomplete selection)

e List of Manuals on Latex Project Site
e The Not So Short Introduction to LaTeX
o Getting to grips with LaTeX

o Packages
e An almost complete list: Online TeX Catalogue

Programming in R BTEX Slide 51/65

http://miktex.org/
http://www.latex-project.org/ftp.html
http://www.uoregon.edu/~koch/texshop/
http://www.latex-project.org/
http://ctan.tug.org/tex-archive/info/lshort/english/lshort.pdf
http://www.andy-roberts.net/misc/latex/
http://www.ctan.org/tex-archive/help/Catalogue/bytopic.html

Outline

ATEX
Documents and References

Programming in R BTEX Documents and References Slide 52/65

Bibtex: The Ultimate Reference Management Tool

@ Sample Latex file: example.tex

@ Convert to PDF with command: pdflatex example.tex

@ To include references from MyBibTex.bib database, the
following command sequence needs to be executed:
pdflatex example.tex; bibtex example; pdflatex
example.tex

Slide 53/65

Examples of BibTex Citations

Citation in parentheses (Grant et al., 2006; Schwacke et al.,
2003; Miteva et al., 2006)

Citation of Grant et al. (2006); Schwacke et al. (2003);
Miteva et al. (2006)

Extended citation (Grant et al., 2006, J Chem Inf Model, 46,
1912-1918)

Footnote citation with more detail (Grant et al., 2006)1

The reference list for these citations appears automatically at a
defined position, here the end of the document.

!(Grant et al., 2006, J Chem Inf Model)

Programming in R BTEX Documents and References Slide 54/65

Programming in R
Control Structures

Loops

Functions

Useful Utilities

Calling External Software
Running R Scripts
Building R Packages
Exercises

Git and GitHub

IATEX
Documents and References

Sweave: R/Latex Hybrid Code for Reproducible Research
Examples

Programming in R Sweave: R/Latex Hybrid Code for Reproducible Research Slide 55/65

R's Sweave Function Integrates R with Latex

@ 'Sweave' provides a flexible framework for mixing Latex and R code for
automatic generation of scientific documents.

@ It does this by identifying R code chunks - starting with <<>>= and
ending with @ - and replaces them with the corresponding R output in
IATEX format, e.g. commands, data objects, plots.

@ The user organizes the hybrid code in a *.Rnw file, while the Sweave ()
function converts this file into a typical Latex *.tex file.

@ A quick learning exercise:

e Download sample hybrid file Sweave-test-1.Rnw

e Run in R command Sweave ("Sweave-test-1.Rnw")

o Convert generated Sweave-test-1.tex to PDF with
pdflatex Sweave-test-1.tex

@ Sweave User Manual

Programming in R Sweave: R/Latex Hybrid Code for Reproducible Research Slide 56/65

http://www.stat.auckland.ac.nz/~dscott/782/Sweave-manual-20060104.pdf

Outline

Sweave: R/Latex Hybrid Code for Reproducible Research
Examples

Programming in R Sweave: R/Latex Hybrid Code for Reproducible Research Examples Slide 57/65

Structure of *.Rnw Hybrid File

Programming in R

Latex \Sexpr{pi} Latex Latex Latex Latex Latex Latex
Latex Latex Latex Latex Latex Latex Latex Latex Latex
Latex Latex Latex Latex Latex Latex Latex Latex Latex
<<>>=
RRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRR
@

Latex Latex Latex Latex Latex Latex Latex Latex Latex
Latex Latex Latex Latex Latex Latex Latex Latex Latex
Latex Latex Latex Latex Latex Latex Latex Latex Latex
<<>>=
RRRRRRRRRRRRRRRRRRRRRRRR
RRRRRRRRRRRRRRRRRRRRRRRR
©

Sweave: R/Latex Hybrid Code for Reproducible Research Examples

Slide 58/65

Convert *.Rnw to *.tex to *. pdf

@ Create *.tex file
> Sweave ("mydoc.Rnw")

@ Create R source file with code chunks (optional)
> Stangle("mydoc.Raw")

© Gernerate PDF with bibliography

> system("pdflatex mydoc.tex; bibtex mydoc; pdflatex mydoc.tex")

Programming in R Sweave: R/Latex Hybrid Code for Reproducible Research

Examples

Slide 59/65

Code Chunk Options

Important options that can be included in code chunk start tag:

<>=

label: optional name for code chunk.
echo: shows command if set to TRUE. Default is TRUE.

fig: shows plots automatically if set to TRUE. Alternatively, one can use standard R
code to save graphics to files and point to them in Latex source code.

eval: if FALSE, the variables and functions in code chunk are not evaluated.

prefix: if TRUE, generated file names have a common prefix.

Programming in R Sweave: R/Latex Hybrid Code for Reproducible Research Examples Slide 60/65

Printing R Commands and Output

Beamer Slide Setting
\begin{frame }[containsverbatim]
R Code Chunks

> <<echo=TRUE>>=
> 1:10
> @

Result in PDF
> 1:10

[1] 1 2 3 4 5 6 7 8 910

Programming in R Sweave: R/Latex Hybrid Code for Reproducible Research Examples

Slide 61/65

Including Tables with xtable ()

Code Chunk

<<echo=FALSE>>=
library (xtable)
xtable(iris [1:4,])

©
Result in PDF
Sepal.Length ~ Sepal.Width Petal.Length Petal.Width Species
1 5.10 3.50 1.40 0.20 setosa
2 4.90 3.00 1.40 0.20 setosa
3 4.70 3.20 1.30 0.20 setosa
4 4.60 3.10 1.50 0.20 setosa

Programming in R Sweave: R/Latex Hybrid Code for Reproducible Research

Examples

Slide 62/65

Including Graphics

Code Chunk

<<fig=true, width=4.5, height=3.5, eval=TRUE, echo=TRUE>>=
barplot (1:10, beside=TRUE, col="green")
@

Result in PDF
> barplot(1:10, beside=TRUE, col="green")

-

<t

1 _anlll
_ =l

Programming in R Sweave: R/Latex Hybrid Code for Reproducible Research Examples Slide 63/65

10

Session Information

> sessionInfo()

R version 3.1.2 (2014-10-31)
Platform: x86_64-unknown-linux-gnu (64-bit)

locale:
[1] ¢

attached base packages:
[1] stats graphics utils datasets grDevices
[6] methods base

other attached packages:
[1] xtable_1.7-4 gplots_2.14.2

loaded via a namespace (and not attached):

[1] KernSmooth_2.23-13 bitops_1.0-6 caTools_1.17.1
[4] gdata_2.13.3 gtools_3.4.1 tools_3.1.2

Programming in R Sweave: R/Latex Hybrid Code for Reproducible Research Examples Slide 64/65

Bibliography: to Demo BibTeX |

Grant, J. A., Haigh, J. A., Pickup, B. T., Nicholls, A., Sayle, R. A., Sep-Oct 2006.
Lingos, finite state machines, and fast similarity searching. J Chem Inf Model
46 (5), 1912-1918.

URL http://www.hubmed.org/display.cgi?uids=16995721

Miteva, M. A., Violas, S., Montes, M., Gomez, D., Tuffery, P., Villoutreix, B. O., Jul
2006. FAF-Drugs: free ADME /tox filtering of compound collections. Nucleic Acids
Res 34 (Web Server issue), 738-744.

URL http://www.hubmed.org/display.cgi?uids=16845110

Schwacke, R., Schneider, A., van der Graaff, E., Fischer, K., Catoni, E., Desimone,
M., Frommer, W. B., Fliigge, U. I., Kunze, R., Jan 2003. ARAMEMNON, a novel
database for Arabidopsis integral membrane proteins. Plant Physiol 131 (1), 16-26.
URL http://www.hubmed.org/display.cgi?uids=12529511

Programming in R Sweave: R/Latex Hybrid Code for Reproducible Research Examples Slide 65/65

http://www.hubmed.org/display.cgi?uids=16995721
http://www.hubmed.org/display.cgi?uids=16845110
http://www.hubmed.org/display.cgi?uids=12529511

	Programming in R
	Control Structures
	Loops
	Functions
	Useful Utilities
	Calling External Software
	Running R Scripts
	Building R Packages
	Exercises
	Git and GitHub
	LaTeX
	Documents and References

	Sweave: R/Latex Hybrid Code for Reproducible Research
	Examples

	Bibliography

