Analysis of RNA-Seq Data with R/Bioconductor

Thomas Girke

December 14, 2013
Overview

RNA-Seq Analysis
 Aligning Short Reads
 Counting Reads per Feature
 DEG Analysis
 GO Analysis
 View Results in IGV & ggbio
 Differential Exon Usage

References
Outline

Overview

RNA-Seq Analysis
- Aligning Short Reads
- Counting Reads per Feature
- DEG Analysis
- GO Analysis
- View Results in IGV & ggbio
- Differential Exon Usage

References
RNA-Seq Technology

1. mRNA Isolation
2. Illumina Sequencing
3. Align Sequences against Genome
4. Generate Sequence Counts for all Genes in Genome

Gene A
Gene B

Sample 1
Sample 2

Gene A: \[
\frac{30}{10} = 3 \text{ fold change}
\]
Gene B: \[
\frac{10}{5} = 2 \text{ fold change}
\]
Analysis Workflow of RNA-Seq Gene Expression Data

1. Alignment of RNA reads to reference
 - Reference can be genome or transcriptome.

2. Count reads overlapping with annotation features of interest
 - Most common: counts for exonic gene regions, but many viable alternatives exist here: counts per exons, genes, introns, etc.

3. Normalization
 - Main adjustment for sequencing depth and compositional bias.

4. Identification of Differentially Expressed Genes (DEGs)
 - Identification of genes with significant expression differences.
 - Identification of expressed genes possible for strongly expressed ones.

5. Specialty applications
 - Splice variant discovery (semi-quantitative), gene discovery, antisense expressions, etc.

6. Cluster Analysis
 - Identification of genes with similar expression profiles across many samples.

7. Enrichment Analysis of Functional Annotations
 - Gene ontology analysis of obtained gene sets from steps 5-6.
Important Aspects in RNA-Seq Analysis

- Alignment reference
 - Genome
 - Transcript models
 - Both

- How to quantify expression?
 - Read count per range
 - Coverage statistics per range

- What features?
 - Genes, transcript models, exons

- Alternative splicing
 - Often restricted to splice junction analysis
 - Objective: discovery vs. quantification
In NGS we usually want to find the origin of reads (NG sequences) in a reference genome or transcriptome. Thus, we are mostly interested in finding the best scoring or multiple best scoring locations for each read, but not lower scoring alternative solutions as in paralog/ortholog search applications.

Ambiguous mappings should be removed, because there is no evidence for their origin. However, for certain applications one needs to include them, e.g. when mapping RNA-Seq reads against transcript sequences instead of genome.
Short Read Aligner for RNA-Seq

No special requirements for alignments with low number of variants

- ChIP-Seq
- RNA-Seq (if mapping against transcriptome or intron-less genome)
- Bis-Seq (with injected reference)
- ...

Variant tolerant aligners to account for mismatches and indels

- VAR-Seq
- Bis-Seq (without injected reference)
- ...

Splice tolerant aligner to account for introns

- RNA-Seq (if mapping against genome with introns)
Sequence Alignment/Map (SAM/BAM) Format

SAM is a tab-delimited alignment format consisting of a header section (lines starting with @) and an alignment section with 12 columns. BAM is the compressed, indexed and binary version of this format.

The below sample alignment contains the following features: (1) bases in lower cases are clipped from the alignment; (2) read r001/1 and r001/2 constitute a read pair; (3) r003 is a chimeric read; (4) r004 represents a split alignment.

```
| Coor  | 12345678901234 | 5678901234567890123456789012345 |
| ref   | AGCATGTTAGATAA**GATAGCTGTGCTAGTAGGCACTGAGCCAT |
| +r001/1 | TTAGATAAAGGATA*CTG |
| +r002  | aaaaGATAA*GGATA |
| +r003  | gcctAGCTAA |
| +r004  | ATAGCT............TCAGC |
| -r003  | ttagctTAGGC |
| -r001/2 | CAGCGGCAT |
```

↓ SAM Format

```
r001  163 ref  7 30 8M2I4M1D3M = 37 39 TTAGATAAAGGATACTG *
r002  0 ref  9 30 3S6M1P1I4M * 0 0 AAAAAATAAGGATA *
r003  0 ref  9 30 5S6M * 0 0 GCCTAAGCTAA * SA:Z:ref,29,-,6H5M,17,0;
r004  0 ref 16 30 6M14N5M * 0 0 ATAGCTTCAGC * *
r003  2064 ref 29 17 6H5M * 0 0 TAGGC * SA:Z:ref,9,+5S6M,30,1;
r001  83 ref 37 30 9M = 7 -39 CAGCGGCAT * NM:i:1
```

For details see the SAM Format Specification [Link]
Normalization Required

Log ratio distributions (a and b) and MA plot (c) for two tissue samples (from Robinson and Oshlack, 2010).
Be Careful with RPKM/FPKM Values

RPKM Concept (FPKM is paired-end version of it)

- RPKM (FPKM): reads (fragments) per kp per million mapped reads
- The more we sequence, the more reads we expect from each gene. This is the most relevant correction of this method.
- Longer transcript are expected to generate more reads. The latter is only relevant for comparisons among different genes which we rarely perform!
- RPKM/FPKM are not suitable for statistical testing. Why? Consider the following example: in two libraries, each with one million reads, gene X may have 10 reads for treatment A and 5 reads for treatment B, while it is 100x as many after sequencing 100 millions reads from each library. In the latter case we can be much more confident that there is a true difference between the two treatments than in the first one. However, the RPKM values would be the same for both scenarios.
- Thus, RPKM/FPKM are useful for reporting expression values, but not for statistical testing!
Trimmed Mean of M Values (TMM) by Robinson and Oshlack (2010)

- Many normalization RNA-Seq normalization methods perform poorly on samples with extreme composition bias. For instance, in one sample a large number of reads comes from rRNAs while in another they have been removed more efficiently. Most scaling based methods, including RPKM and CPM, will underestimate the expression of weaker expressed genes in the presence of extremely abundant mRNAs (less sequencing real estate available for them). The TMM methods tries to correct this bias.

- Method implemented in edgeR library (Robinson et al., 2010).
Analysis of Differentially Expressed Genes (DEGs)

- Data is discrete, positively skewed
 ⇒ no (log-)normal model
- Small numbers of replicates
 ⇒ no rank based or permutation methods
- Sequencing depth (coverage) varies among samples
 ⇒ normalization
Requirements

- One would like to perform a t-test or something similar for each gene.
- t-test assumes normal distribution and no mean-variance dependence. Both are not appropriate assumptions for RNA-Seq data.
- Variance estimation and rank-order statistics is difficult on small sample numbers.

Statistical Testing

- Poisson distribution (initially used but not very common anymore)
- Most statistical methods for RNA-Seq DEG analysis use negative binomial distribution along with modified statistical tests based on that.
- The multiple testing issue is very similar as in microarray data analysis. Thus, most tools provide False Discovery Rates (FDRs), which are derived from p-values corrected for multiple testing using the Benjamini-Hochberg method.
- For variance estimation most methods borrow information across genes
Software for RNA-Seq DEG Analysis

- edgeR (Robinson et al., 2010)
- DESeq/DESeq2 (Anders and Huber, 2010)
- DEXSeq (Anders et al., 2012)
- limmaVoom
- Cuffdiff/Cuffdiff2 (Trapnell et al., 2013)
- PoissonSeq
- baySeq
- ...

Analysis of RNA-Seq Data with R/Bioconductor
Packages for RNA-Seq Analysis in R

- **GenomicRanges**: high-level infrastructure for range data
- **Rsamtools**: BAM support
- **rtracklayer**: Import/export of range and annotation data, interface to online genome browsers, etc.
- **DESeq**: RNA-Seq DEG analysis
- **DESeq2**: RNA-Seq DEG analysis
- **edgeR**: RNA-Seq DEG analysis
- **DEXSeq**: RNA-Seq Exon analysis
- **QuasR**: RNA-Seq workflows
Outline

Overview

RNA-Seq Analysis
 Aligning Short Reads
 Counting Reads per Feature
 DEG Analysis
 GO Analysis
 View Results in IGV & ggbio
 Differential Exon Usage

References
Data Sets and Experimental Variables

To make the following sample code work, please follow these instructions:

- Download and unpack the sample data [Link] for this practical.
- Direct your R session into the resulting Rrnaseq directory. It contains four slimmed down FASTQ files (SRA023501 [Link]) from *A. thaliana*, as well as the corresponding reference genome sequence (FASTA) and annotation (GFF) file.
- Start the analysis by opening in your R session the Rrnaseq.R script [Link] which contains the code shown in this slide show in pure text format.

The FASTQ files are organized in the provided targets.txt file. This is the only file in this analysis workflow that needs to be generated manually, e.g. in a spreadsheet program. To import targets.txt, we run the following commands from R:

```r
> download.file("http://biocluster.ucr.edu/~tgirke/HTML_Presentations/Manuals/Workshop_Dec_12_16_2013/Rrnaseq.zip", "Rrnaseq.zip")
> targets <- read.delim("./data/targets.txt")
> targets
```

<table>
<thead>
<tr>
<th>FileName</th>
<th>SampleName</th>
<th>Factor</th>
<th>Factor_long</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRR064154.fastq</td>
<td>AP3_f14a</td>
<td>AP3</td>
<td>AP3_f14</td>
</tr>
<tr>
<td>SRR064155.fastq</td>
<td>AP3_f14b</td>
<td>AP3</td>
<td>AP3_f14</td>
</tr>
<tr>
<td>SRR064166.fastq</td>
<td>Tl_f14a</td>
<td>TRL</td>
<td>Tl_f14</td>
</tr>
<tr>
<td>SRR064167.fastq</td>
<td>Tl_f14b</td>
<td>TRL</td>
<td>Tl_f14</td>
</tr>
</tbody>
</table>
Outline

Overview

RNA-Seq Analysis

Aligning Short Reads
Counting Reads per Feature
DEG Analysis
GO Analysis
View Results in IGV & ggbio
Differential Exon Usage

References
Align Reads Option 1: QuasR

QuasR is an extremely versatile NGS mapping and postprocessing pipeline for RNA-Seq and many other application areas, such as BS-Seq, allele-specific RNA-Seq, etc. It uses Rbowtie for ungapped alignments and SpliceMap for spliced alignments.

(1) Environment settings

```r
> library(QuasR)
> targets <- read.delim("data/targets.txt")
> write.table(targets[,1:2], "data/QuasR_samples.txt", row.names=FALSE, quote=FALSE, sep="\t")
> sampleFile <- ".data/QuasR_samples.txt"
> genomeFile <- ".data/tair10chr.fasta"
> results <- ".results" # defines location where to write results
> cl <- makeCluster(1) # defines number of CPU cores to use
```

(2) Single command to index reference, align all samples and generate BAM files.

```r
> proj <- qAlign(sampleFile, genome=genomeFile, maxHits=1, splicedAlignment=FALSE, alignmentsDir=results,
+                 c1Obj=cl, cacheDir=results)
> # Note: splicedAlignment should be set to TRUE when the reads are >=50nt long
> (alignstats <- alignmentStats(proj)) # Alignment summary report
```

```
seqlength    mapped  unmapped
AP3_fl4a:genome  7e+05 1607234  26022
AP3_fl4b:genome  7e+05 1647774  21272
Tl_fl4a:genome  7e+05 206041   4366
Tl_fl4b:genome  7e+05 283742   5279
```
Rsubread is an R/Bioc package that implements an extremely fast aligner for RNA-Seq data. It is currently only available for OS X and Linux, but not for Windows.

(1) Index reference genome

```
> library(Rsubread); library(Rsamtools)
> dir.create("results") # Note: all output data will be written to directory 'results'
> buildindex(basename="./results/tair10chr.fasta", reference="./data/tair10chr.fasta") # Build indexed reference genome
```

(2) Align all FASTQ files with Rsubread in loop. Includes generation of indexed BAM files.

```
> targets <- read.delim("./data/targets.txt") # Import experiment design information
> input <- paste("./data/", targets$FileName, sep="")
> output <- paste("./results/", targets$FileName, ".sam", sep="")
> reference <- "./results/tair10chr.fasta"
> for(i in seq(along=targets$FileName)) {
+     align(index=reference, readfile1=input[i], output_file=output[i], nthreads=8, indels=1, TH1=2)
+     asBam(file=output[i], destination=gsub(".sam", "", output[i]), overwrite=TRUE, indexDestination=TRUE)
+     unlink(output[i])
+ }
```
Align Reads Option 3: Bowtie2/Tophat2

Note: this step requires the command-line tools tophat2/bowtie2.

(1) Index reference genome

```r
> library(modules) # Skip this and next line if you are not using IIGB's biocluster
declare("bowtie2/2.1.0"); declare("tophat/2.0.8b") # loads bowtie2/tophat2 from module system
declare("bowtie2-build ./data/tair10chr.fasta ./data/tair10chr.fasta")
```

(2) Align all FASTQ files with Bowtie2/Tophat2 in loop. Includes generation of indexed BAM files.

```r
> library(Rsamtools)
dir.create("results") # Note: all output data will be written to directory 'results'
> input <- paste("./data/", targets$FileName, sep="")
> output <- paste("./results/", targets$FileName, sep="")
> reference <- "./data/tair10chr.fasta"
> for(i in seq_along(input)) {
+   tophat_command <- paste("tophat -p 4 -g 1 --segment-length 15 -i 30 -I 3000 -o ", output[i], ".tophat ", reference, " ", input[i], sep="")
+   # -G: supply GFF with transcript model info (preferred!)
+   # -g: ignore all alignements with >g matches
+   # -p: number of threads to use for alignment step
+   # -i/-I: min/max intron lengths
+   # --segment-length: length of split reads (25 is default)
+   system(tophat_command)
+   sortBam(file=paste(output[i], ".tophat/accepted_hits.bam", sep=""), destination=paste(output[i], ".tophat/accepted_hits", sep="")
+   indexBam(paste(output[i], ".tophat/accepted_hits.bam", sep=""))
+ }
```
Alignment Summary

The following enumerates the number of reads in each FASTQ file and how many of them aligned to the reference. Note: the percentage of aligned reads is 100% in this particular example because only alignable reads were selected when generating the sample FASTQ files for this exercise. For QuasR this step can be omitted because the qAlign function generates this information automatically.

```r
> library(ShortRead); library(Rsamtools)
> Nreads <- countLines(dirPath="./data", pattern=".fastq$")/4
> bfl <- BamFileList(paste0("./results/", targets$FileName, ".bam"), yieldSize=50000, index=character())
> Nalign <- countBam(bfl)
> (read_statsDF <- data.frame(FileName=names(Nreads), Nreads=Nreads, Nalign$records, Perc_Aligned=Nalign$records/Nreads*100))

<table>
<thead>
<tr>
<th>FileName</th>
<th>Nreads</th>
<th>Nalign</th>
<th>Perc_Aligned</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRR064154.fastq</td>
<td>1633256</td>
<td>1633256</td>
<td>100</td>
</tr>
<tr>
<td>SRR064155.fastq</td>
<td>1669046</td>
<td>1669046</td>
<td>100</td>
</tr>
<tr>
<td>SRR064166.fastq</td>
<td>210407</td>
<td>210407</td>
<td>100</td>
</tr>
<tr>
<td>SRR064167.fastq</td>
<td>289021</td>
<td>289021</td>
<td>100</td>
</tr>
</tbody>
</table>

> write.table(read_statsDF, "results/read_statsDF.xls", row.names=FALSE, quote=FALSE)
```
The following shows how to create read quality reports with QuasR’s qQCReport function or with the custom seeFastq function.

```r
> qQCReport(proj, pdfFilename="results/qc_report.pdf")
> source("http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/fastqQuality.R")
> myfiles <- paste0("data/", targets$FileName); names(myfiles) <- targets$SampleName
> fqlist <- seeFastq(fastq=myfiles, batchsize=50000, klength=8)
> pdf("results/fastqReport.pdf", height=18, width=4*length(myfiles)); seeFastqPlot(fqlist)
```
Outline

Overview

RNA-Seq Analysis
 Aligning Short Reads
 Counting Reads per Feature
 DEG Analysis
 GO Analysis
 View Results in IGV & ggbio
 Differential Exon Usage

References
Annotation data from GFF

```r
> library(rtracklayer); library(GenomicRanges); library(Rsamtools)
> gff <- import.gff("./data/TAIR10_GFF3_trunc.gff", asRangedData=FALSE)
> seqlengths(gff) <- end(ranges(gff[which(elementMetadata(gff)[,"type"]=='chromosome')]))
> subgene_index <- which(elementMetadata(gff)[,"type"] == "exon")
> gffsub <- gff[subgene_index,] # Returns only gene ranges
> gffsub[1:4, c(2,5)]
```

```
GRanges with 4 ranges and 2 metadata columns:

<table>
<thead>
<tr>
<th>seqnames</th>
<th>ranges</th>
<th>strand</th>
<th>type</th>
<th>group</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;Rle&gt;</td>
<td>&lt;IRanges&gt;</td>
<td>&lt;Rle&gt;</td>
<td>&lt;factor&gt;</td>
<td>&lt;factor&gt;</td>
</tr>
<tr>
<td>[1]</td>
<td>Chr1 [3631, 3913]</td>
<td>+</td>
<td>exon</td>
<td>Parent=AT1G01010.1</td>
</tr>
<tr>
<td>[2]</td>
<td>Chr1 [3996, 4276]</td>
<td>+</td>
<td>exon</td>
<td>Parent=AT1G01010.1</td>
</tr>
<tr>
<td>[3]</td>
<td>Chr1 [4486, 4605]</td>
<td>+</td>
<td>exon</td>
<td>Parent=AT1G01010.1</td>
</tr>
<tr>
<td>[4]</td>
<td>Chr1 [4706, 5095]</td>
<td>+</td>
<td>exon</td>
<td>Parent=AT1G01010.1</td>
</tr>
</tbody>
</table>
```

```
> ids <- gsub("Parent=|\|.|.*", ",", elementMetadata(gffsub)$group)
> gffsub <- split(gffsub, ids) # Coerce to GRangesList
```
Storing annotation ranges in *TranscriptDb* databases makes many operations more robust and convenient.

```r
> library(GenomicFeatures)
> txdb <- makeTranscriptDbFromGFF(file="data/TAIR10_GFF3_trunc.gff",
+   format="gff3",
+   dataSource="TAIR",
+   species="Arabidopsis thaliana")
> saveDb(txdb, file="./data/TAIR10.sqlite")
> txdb <- loadDb("./data/TAIR10.sqlite")
> eByg <- exonsBy(txdb, by="gene")
```
Number of reads overlapping gene ranges

```r
> samples <- as.character(targets$FileName)
> samplespath <- paste("./results/", samples, ".bam", sep="")
> names(samplespath) <- samples
> countDF <- data.frame(row.names=names(eByg))
> for(i in samplespath) {
+   aligns <- readGAlignmentsFromBam(i) # Substitute next two lines with this
+   counts <- countOverlaps(eByg, aligns, ignore.strand=TRUE)
+   countDF <- cbind(countDF, counts)
+ }
> colnames(countDF) <- samples
> countDF[1:4,]

SRR064154.fastq  SRR064155.fastq  SRR064166.fastq  SRR064167.fastq
AT1G01010          52            26            60            75
AT1G01020          145           77            82            64
AT1G01030           5            1            13            14
AT1G01040         482          347           302           358
```

> write.table(countDF, "./results/countDF", quote=FALSE, sep="\t", col.names = NA)
> countDF <- read.table("./results/countDF")
The `summarizeOverlaps` function from the GenomicRanges package is easier to use, it provides more options and it is much more memory efficient. See here [Link] for details.

```r
> library(GenomicRanges)
> bfl <- BamFileList(samplespath, yieldSize=50000, index=character())
> countDF2 <- summarizeOverlaps(eByg, bfl, mode="Union", ignore.strand=TRUE)
> countDF2 <- assays(countDF2)$counts
> colnames(countDF2) <- samples
> countDF2[1:4,]

          SRR064154.fastq SRR064155.fastq SRR064166.fastq SRR064167.fastq
AT1G01010     52          26          60          75
AT1G01020    145          77          82          64
AT1G01030       5           1          13          14
AT1G01040    482         346         285         339
```
QuasR does everything in one command.

```r
> countDF3 <- qCount(proj, txdb, reportLevel="gene", orientation="any")
> countDF3[1:4,]

<table>
<thead>
<tr>
<th></th>
<th>width</th>
<th>AP3_fl4a</th>
<th>AP3_fl4b</th>
<th>Tl_fl4a</th>
<th>Tl_fl4b</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT1G01010</td>
<td>1688</td>
<td>46</td>
<td>24</td>
<td>59</td>
<td>70</td>
</tr>
<tr>
<td>AT1G01020</td>
<td>1774</td>
<td>115</td>
<td>71</td>
<td>73</td>
<td>50</td>
</tr>
<tr>
<td>AT1G01030</td>
<td>1905</td>
<td>5</td>
<td>0</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>AT1G01040</td>
<td>6254</td>
<td>464</td>
<td>323</td>
<td>286</td>
<td>349</td>
</tr>
</tbody>
</table>
```

> write.table(countDF3, "results/countDFgene.xls", col.names=NA, quote=FALSE, sep="\t")
Simple RPKM Normalization

RPKM: reads per kilobase of exon model per million mapped reads

```r
> returnRPKM <- function(counts, gffsub) {
+   geneLengthsInKB <- sum(width(reduce(gffsub)))/1000 # Length of exon union
+   millionsMapped <- sum(counts)/1e+06 # Factor for converting to million of
+   rpm <- counts/millionsMapped # RPK: reads per kilobase of exon model.
+   rpkm <- rpm/geneLengthsInKB # RPKM: reads per kilobase of exon model per m
+   return(rpkm)
+ }
> countDFrpkm <- apply(countDF, 2, function(x) returnRPKM(counts=x, gffsub=eByg))
> countDFrpkm[1:4,]

SRR064154.fastq  SRR064155.fastq  SRR064166.fastq  SRR064167.fastq
AT1G01010      231.83437  139.974951  1197.1649  1158.4825
AT1G01020      615.12206  394.445066  1556.8093  940.6477
AT1G01030       19.75249   4.770396  229.8389  191.6169
AT1G01040      580.01080  504.221101  1626.3883 1492.5394

RPKM: for QuasR results

> rpkmDFgene <- t(t(countDF3[,,-1]/countDF3[,1] * 1000)/colSums(countDF3[,,-1]) *1e6)
QC check of the sample reproducibility by computing a correlating matrix and plotting it as a tree. Note: the `plotMDS` function from `edgeR` is a more robust method for this task.

```r
> library(ape)
> d <- cor(countDFrpkm, method="spearman")
> hc <- hclust(dist(1-d))
> plot.phylo(as.phylo(hc), type="p", edge.col=4, edge.width=3, show.node.label=TRUE, no.margin=TRUE)
```
Exercise 1: *QuasR* with Antisense Read Counting

**Task 1** Align reads from all 4 samples.

**Task 2** Count reads in sense and antisense. Discuss differences. Why is this analysis meaningless for the provided non-strand-specific RNA-Seq samples?

**Task 3** Identify all genes where the antisense counts are $\geq 3$-fold higher than the sense counts in at least 2 out of the 4 samples.

**Task 4** Plot the result of the most pronounced antisense expression case with *ggbio*. 
Outline

Overview

**RNA-Seq Analysis**
- Aligning Short Reads
- Counting Reads per Feature

**DEG Analysis**
- GO Analysis
- View Results in IGV & ggbio
- Differential Exon Usage

References
Identify DEGs with Simple Fold Change Method

Compute mean values for replicates

```r
> source("http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/colAg.R")
> countDFrpkm_mean <- colAg(myMA=countDFrpkm, group=c(1,1,2,2), myfct=mean)
> countDFrpkm_mean[1:4,]

SRR064154.fastq_SRR064155.fastq SRR064166.fastq_SRR064167.fastq
AT1G01010 185.90466 1177.8237
AT1G01020 504.78356 1248.7285
AT1G01030 12.26145 210.7279
AT1G01040 542.11595 1559.4639
```

Log2 fold changes

```r
> countDFrpkm_mean <- cbind(countDFrpkm_mean, log2ratio=log2(countDFrpkm_mean[,2]/countDFrpkm_mean[,1]))
> countDFrpkm_mean <- countDFrpkm_mean[is.finite(countDFrpkm_mean[,3]),]
> degs2fold <- countDFrpkm_mean[countDFrpkm_mean[,3] >= 1 | countDFrpkm_mean[,3] <= -1,]
> degs2fold[1:4,]

SRR064154.fastq_SRR064155.fastq SRR064166.fastq_SRR064167.fastq log2ratio
AT1G01010 185.90466 1177.8237 2.663489
AT1G01020 504.78356 1248.7285 1.306723
AT1G01030 12.26145 210.7279 4.103180
AT1G01040 542.11595 1559.4639 1.524377
```

```r
> write.table(degs2fold, ".//results/degs2fold.xls", quote=FALSE, sep="\t", col.names = NA)
> degs2fold <- read.table("./results/degs2fold.xls")
```
Identify DEGs with DESeq Library

Raw count data are expected here!

```r
> library(DESeq)
> countDF <- read.table("./results/countDF")
> conds <- targets$Factor
> cds <- newCountDataSet(countDF, conds) # Creates object of class CountDataSet derived from eSet class
> counts(cds)[1:4,] # CountDataSet has similar accessor methods as eSet class.

> SRR064154.fastq SRR064155.fastq SRR064166.fastq SRR064167.fastq
AT1G01010 52 26 60 75
AT1G01020 145 77 82 64
AT1G01030 5 1 13 14
AT1G01040 482 347 302 358

> cds <- estimateSizeFactors(cds) # Estimates library size factors from count data. Alternatively, one can provide here the true library sizes with sizeFactors(cds) <- c(..., ...)
> cds <- estimateDispersions(cds) # Estimates the variance within replicates
> res <- nbinomTest(cds, "AP3", "TRL") # Calls DEGs with nbinomTest
> res <- na.omit(res)
> res2fold <- res[res$log2FoldChange >= 1 | res$log2FoldChange <= -1,]
> res2foldpadj <- res2fold[res2fold$padj <= 0.05,]
> res2foldpadj[1:4,1:8]

<table>
<thead>
<tr>
<th>id</th>
<th>baseMean</th>
<th>baseMeanA</th>
<th>baseMeanB</th>
<th>foldChange</th>
<th>log2FoldChange</th>
<th>pval</th>
<th>padj</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT1G01050</td>
<td>595.24510</td>
<td>275.126601</td>
<td>915.363593</td>
<td>3.32706322</td>
<td>1.734249</td>
<td>7.878492e-18</td>
<td>9.946596e-17</td>
</tr>
<tr>
<td>AT1G01060</td>
<td>299.40527</td>
<td>170.693390</td>
<td>428.117153</td>
<td>2.50810621</td>
<td>1.326598</td>
<td>7.141055e-08</td>
<td>4.507791e-07</td>
</tr>
<tr>
<td>AT1G01070</td>
<td>29.50693</td>
<td>5.717372</td>
<td>53.296498</td>
<td>9.32185294</td>
<td>3.220617</td>
<td>1.413061e-05</td>
<td>6.487233e-05</td>
</tr>
<tr>
<td>AT2G01008</td>
<td>20.01065</td>
<td>37.575725</td>
<td>2.445565</td>
<td>0.06508364</td>
<td>-3.941561</td>
<td>4.908712e-05</td>
<td>2.155565e-04</td>
</tr>
</tbody>
</table>
```
Identify DEGs with *edgeR*’s Exact Method

DEG analysis with classical *edgeR* approach. Note: raw read count data are expected by all methods!

```r
> library(edgeR)
> countDF <- read.table("./results/countDF")
> y <- DGEList(counts=countDF, group=cond)
> y <- estimateCommonDisp(y) # Estimates common dispersion
> y <- estimateTagwiseDisp(y) # Estimates tagwise dispersion
> et <- exactTest(y, pair="AP3", "TRL") # Computes exact test for the negative binomial distribution.
> topTags(et, n=4)
```

<table>
<thead>
<tr>
<th></th>
<th>logFC</th>
<th>logCPM</th>
<th>PValue</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT3G01120</td>
<td>3.189185</td>
<td>15.78303</td>
<td>3.500250e-128</td>
<td>4.060290e-126</td>
</tr>
<tr>
<td>AT1G01100</td>
<td>2.747447</td>
<td>17.07336</td>
<td>3.289500e-115</td>
<td>1.907910e-113</td>
</tr>
<tr>
<td>AT1G01050</td>
<td>3.539622</td>
<td>13.79932</td>
<td>6.577536e-115</td>
<td>2.543314e-113</td>
</tr>
<tr>
<td>ATMG00030</td>
<td>-4.415745</td>
<td>13.12701</td>
<td>2.338291e-107</td>
<td>6.781044e-106</td>
</tr>
</tbody>
</table>

```r
> edge <- as.data.frame(topTags(et, n=50000))
> edge2fold <- edge[edge$logFC >= 1 | edge$logFC <= -1,]
> edge2foldpadj <- edge2fold[edge2fold$FDR <= 0.01,]
```
Identify DEGs with *edgeR*’s GLM Approach

DEG analysis with *edgeR* using generalized linear models (glm)

```r
> library(edgeR)
> countDF <- read.table("./results/countDF")
> y <- DGEList(counts=countDF, group=conds) # Constructs DGEList object
> ## Filtering and normalization
> keep <- rowSums(cpm(y)>1) >= 2; y <- y[keep,]
> y <- calcNormFactors(y)
> design <- model.matrix(~0+group, data=y$samples); colnames(design) <- levels(y$samples$group) # Design matrix
> ## Estimate dispersion
> y <- estimateGLMCommonDisp(y, design, verbose=TRUE) # Estimates common dispersions
> Disp = 0.01892, BCV = 0.1375
> y <- estimateGLMTrendedDisp(y, design) # Estimates trended dispersions
> y <- estimateGLMTagwiseDisp(y, design) # Estimates tagwise dispersions
> ## Fit the negative binomial GLM for each tag
> fit <- glmFit(y, design) # Returns an object of class DGEGLM
> contrasts <- makeContrasts(contrasts="AP3-TRL", levels=design) # Contrast matrix is optional
> lrt <- glmLRT(fit, contrast=contrasts[,1]) # Takes DGEGLM object and carries out the likelihood ratio test.
> edgeglm <- as.data.frame(topTags(lrt, n=length(rownames(y))))
> ## Filter on fold change and FDR
> edgeglm2fold <- edgeglm[edgeglm$logFC >= 1 | edgeglm$logFC <= -1,]
> edgeglm2foldpadj <- edgeglm2fold[edgeglm2fold$FDR <= 0.01,]
```
Comparison Among DEG Results

```r
> source("http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/overLapper.R")
> setlist <- list(edgeRexact=rownames(edge2foldpadj), edgeRglm=rownames(edgeglm2foldpadj), DESeq=as.character(res2foldpadj[,1]), RPKM=rownames(degs2fold))
> OLlist <- overLapper(setlist=setlist, sep="_", type="vennsets")
> counts <- sapply(OLlist$Venn_List, length)
> vennPlot(counts=counts, mymain="DEG Comparison")
```

Unique objects: All = 84; S1 = 64; S2 = 46; S3 = 31; S4 = 74
Heatmap of Top Ranking DEGs

Note: gene-wise clustering is not possible with a single sample pair. The following shows the scaled expression values (here RPKMs) in form of a heatmap.

```r
> library(lattice); library(gplots)
> y <- countDFrpkm[rownames(edgeglm2foldpadj)[1:20],]
> colnames(y) <- targets$Factor
> y <- t(scale(t(as.matrix(y))))
> y <- y[order(y[,1]),]
> levelplot(t(y), height=0.2, col.regions=colorpanel(40, "darkblue", "yellow", "white"), main="Expression Values (DEG Filter: FDR 1%, FC > 2)",
```

Expression Values (DEG Filter: FDR 1%, FC > 2)

```
Gene ID
ATCG00270
ATCG00120
ATCG00020
ATMG00160
ATCG00130
ATCG00140
ATCG00280
ATCG00340
AT2G01021
ATCG00490
ATCG00480
ATMG00030
ATCG00350
ATCG00170
AT2G01008
ATMG00090
AT1G01070
AT1G01050
AT4G00050
AT3G01120
AP3 AP3 TRL TRL
```

Analysis of RNA-Seq Data with R/Bioconductor
RNA-Seq Analysis
DEG Analysis
Slide 40/53
Outline

Overview

RNA-Seq Analysis
  Aligning Short Reads
  Counting Reads per Feature
  DEG Analysis

GO Analysis
  View Results in IGV & ggbio
  Differential Exon Usage

References
The following performs GO term enrichment analysis of one of the identified DEG sets using the `GOstats` package. Another package, among many others, to consider here is the `goseq` Link that considers gene length bias in RNA-Seq data.

```r
> library(GOstats); library(GO.db); library(ath1121501.db)
> geneUniverse <- rownames(countDF)
> geneSample <- res2foldpadj[,1]
> params <- new("GOHyperGParams", geneIds = geneSample, universeGeneIds = geneUniverse,
+ annotation="ath1121501", ontology = "MF", pvalueCutoff = 0.5,
+ conditional = FALSE, testDirection = "over")
> hgOver <- hyperGTest(params)
> summary(hgOver)[1:4,

<table>
<thead>
<tr>
<th>GOMFID</th>
<th>Pvalue</th>
<th>OddsRatio</th>
<th>ExpCount</th>
<th>Count</th>
<th>Size</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO:0008324</td>
<td>0.00267</td>
<td>18 2.12658</td>
<td>6</td>
<td>7</td>
<td>cation transmembrane transporter activity</td>
<td></td>
</tr>
<tr>
<td>GO:0015075</td>
<td>0.00267</td>
<td>18 2.12658</td>
<td>6</td>
<td>7</td>
<td>ion transmembrane transporter activity</td>
<td></td>
</tr>
<tr>
<td>GO:0015077</td>
<td>0.00267</td>
<td>18 2.12658</td>
<td>6</td>
<td>7</td>
<td>monovalent inorganic cation transmembrane transporter activity</td>
<td></td>
</tr>
<tr>
<td>GO:0015078</td>
<td>0.00267</td>
<td>18 2.12658</td>
<td>6</td>
<td>7</td>
<td>hydrogen ion transmembrane transporter activity</td>
<td></td>
</tr>
</tbody>
</table>

> htmlReport(hgOver, file = "results/MyhyperGresult.html")
```
Outline

Overview

RNA-Seq Analysis

Aligning Short Reads
Counting Reads per Feature
DEG Analysis
GO Analysis

View Results in IGV & ggbio
Differential Exon Usage

References
Inspect Results in IGV

**View results in IGV**

- Download and open IGV
- Select in menu in top left corner A. thaliana (TAIR10)
- Upload the following indexed/sorted Bam files with File -> Load from URL...
  
  - [http://faculty.ucr.edu/~tgirke/HTML_Presentations/Manuals/Workshop_Dec_6_10_2012/Rrnaseq/results/SRR064155.fastq.bam](http://faculty.ucr.edu/~tgirke/HTML_Presentations/Manuals/Workshop_Dec_6_10_2012/Rrnaseq/results/SRR064155.fastq.bam)

- To view area of interest, enter its coordinates **Chr1:49,457-51,457** in position menu on top.
Generate Similar View with **ggbio** Programmatically

```r
> library(ggbio)
> AP3 <- readGAlignmentsFromBam("./results/SRR064154.fastq.bam", use.names=TRUE, param=ScanBamParam(which=GRanges("Chr1", IRanges(49457, 51457))))
> TRL <- readGAlignmentsFromBam("./results/SRR064166.fastq.bam", use.names=TRUE, param=ScanBamParam(which=GRanges("Chr1", IRanges(49457, 51457))))
> p1 <- autoplot(AP3, geom = "rect", aes(color = strand, fill = strand))
> p2 <- autoplot(TRL, geom = "rect", aes(color = strand, fill = strand))
> p3 <- autoplot(txdb, which=GRanges("Chr1", IRanges(49457, 51457)), names.expr = "gene_id")
> tracks(AP3=p1, TRL=p2, Transcripts=p3, heights = c(0.3, 0.3, 0.4)) + ylab("")
```
Exercise 2: Venn Diagram for Up/Down DEGs

Task 1 Store the identifiers of the upregulated genes from each of the four DEG methods in separate components of a list. Note: the definition of up and down is arbitrary and one needs to check how it is defined by the different DEG methods!

Task 2 Do the same for the downregulated genes.

Task 3 Compare the overlaps among the different up/down sets in a single 4-way venn diagram.
Outline

Overview

RNA-Seq Analysis
- Aligning Short Reads
- Counting Reads per Feature
- DEG Analysis
- GO Analysis
- View Results in IGV & ggbio

Differential Exon Usage

References
Number of reads overlapping gene ranges

```r
> source("data/Fct/gffexonDEXSeq.R")
> gffexonDEXSeq <- exons2DEXSeq(gff=gff)
> ids <- as.character(elementMetadata(gffexonDEXSeq)[, "ids"])
> countDFdex <- data.frame(row.names=ids)
> for(i in samplespath) {
+ aligns <- readBamGappedAlignments(i) # Substitute next two lines with this one.
+ counts <- countOverlaps(gffexonDEXSeq, aligns)
+ countDFdex <- cbind(countDFdex, counts)
+ }
> colnames(countDFdex) <- samples
> countDFdex[1:4,1:2]
```

```
SRR064154.fastq SRR064155.fastq
Parent=AT1G01010:E001__Chr1_3631_3913_+___Parent=AT1G01010.1 2 4
Parent=AT1G01010:E002__Chr1_3996_4276_+___Parent=AT1G01010.1 2 1
Parent=AT1G01010:E003__Chr1_4486_4605_+___Parent=AT1G01010.1 3 3
Parent=AT1G01010:E004__Chr1_4706_5095_+___Parent=AT1G01010.1 6 1
```

```r
> write.table(countDFdex, "./results/countDFdex", quote=FALSE, sep="\t", col.names = NA)
> countDFdex <- read.table("./results/countDFdex")
```
Identify genes with differential exon usage

```r
> library(DEXSeq)
> samples <- as.character(targets$Factor); names(samples) <- targets$FileName
> countDFdex[is.na(countDFdex)] <- 0
> ## Construct ExonCountSet from scratch
> exset <- newExonCountSet2(countDF=countDFdex) # fData(exset)[1:4,
> ## Performs normalization
> exset <- estimateSizeFactors(exset)
> ## Evaluate variance of the data by estimating dispersion using Cox-Reid (CR) likelihood estimation
> exset <- estimateDispersions(exset)
>
> ## Fits dispersion-mean relation to the individual CR dispersion values
> exset <- fitDispersionFunction(exset)
> ## Performs Chi-squared test on each exon and Benjmini-Hochberg p-value adjustment for mutliple testing
> exset <- testForDEU(exset)
> ## Estimates fold changes of exons
> exset <- estimatelog2FoldChanges(exset)
> ## Obtain results in data frame
> deuDF <- DEUresultTable(exset)
> ## Count number of genes with differential exon usage
> table(tapply(deuDF$padjust < 0.01, geneIDs(exset), any))
```

FALSE  TRUE
      20     1
Sample plot showing fitted expression of exons

```r
plotDEXSeq(exset, "Parent=AT1G01100", displayTranscripts=TRUE, expression=TRUE, legend=TRUE)

Generate many plots and write them to results directory
mygeneIDs <- unique(as.character(na.omit(deuDF[deuDF$geneID %in% unique(deuDF$geneID),])[, "geneID"]))
DEXSeqHTML(exset, geneIDs=mygeneIDs, path="results", file="DEU.html")
```
Session Information

> sessionInfo()

R version 3.0.2 (2013-09-25)
Platform: x86_64-unknown-linux-gnu (64-bit)
locale:
[1] C

attached base packages:
[1] parallel stats graphics utils datasets grDevices methods base

other attached packages:
[1] DEXSeq_1.8.0 ggbio_1.10.7 ggplot2_0.9.3.1 xtable_1.7-1
[10] G0.db_2.10.1 RSQLite_0.11.4 DBI_0.2-7 Matrix_1.1-0
[19] ape_3.0-11 GenomicFeatures_1.14.0 AnnotationDbi_1.24.0 Biobase_2.22.0
[28] QuasR_1.2.2 Rbowtie_1.2.0 GenomicRanges_1.14.2 XVector_0.2.0

loaded via a namespace (and not attached):
[1] AnnotationForge_1.4.2 BSgenome_1.30.0 BiocInstaller_1.12.0 GSEABase_1.24.0
[10] RCurl_1.95-4.1 VariantAnnotation_1.8.5 XML_3.98-1.1 annotate_1.40.0
[19] colorspace_1.2-4 dichromat_2.0-0 digest_0.6.3 gdata_2.13.2
[28] gtools_3.1.1 hwriter_1.3 labeling_0.2 latticeExtra_0.6-26
[37] rpart_4.1-3 scales_0.2.3 splines_3.0.2 statmod_1.4.18

Analysis of RNA-Seq Data with R/Bioconductor
RNA-Seq Analysis
Differential Exon Usage
Outline

Overview

RNA-Seq Analysis
- Aligning Short Reads
- Counting Reads per Feature
- DEG Analysis
- GO Analysis
- View Results in IGV & ggbio
- Differential Exon Usage

References
URL http://www.hubmed.org/display.cgi?uids=20979621

URL http://www.hubmed.org/display.cgi?uids=22722343

URL http://www.hubmed.org/display.cgi?uids=19910308

URL http://www.hubmed.org/display.cgi?uids=20196867

URL http://www.hubmed.org/display.cgi?uids=23222703