Visualizing and Clustering High-Throughput Data with R/Bioconductor

Overview

Thomas Girke

December 5, 2014
Overview

Graphics Environments
 Base Graphics
 Grid Graphics
 lattice
 ggplot2

Specialty Graphics

Genome Graphics
 ggbio
 Additional Genome Graphics

Clustering
 Background
 Hierarchical Clustering Example
 Non-Hierarchical Clustering Examples
Outline

Overview

Graphics Environments
 Base Graphics
 Grid Graphics
 lattice
 ggplot2

Specialty Graphics

Genome Graphics
 ggbio
 Additional Genome Graphics

Clustering
 Background
 Hierarchical Clustering Example
 Non-Hierarchical Clustering Examples
Graphics in R

- Powerful environment for visualizing scientific data
- Integrated graphics and statistics infrastructure
- Publication quality graphics
- Fully programmable
- Highly reproducible
- Full \LaTeX\ & Sweave support
- Vast number of R packages with graphics utilities
Documentation on Graphics in R

General

- Graphics Task Page [Link]
- R Graph Gallery [Link]
- R Graphical Manual [Link]
- Paul Murrell’s book R (Grid) Graphics [Link]

Interactive graphics

- rggobi (GGobi) [Link]
- iplots [Link]
- Open GL (rgl) [Link]
Graphics Environments

Viewing and saving graphics in R

- On-screen graphics
- postscript, pdf, svg
- jpeg/png/wmf/tiff/...

Four major graphic environments

- Low-level infrastructure
 - R Base Graphics (low- and high-level)
 - grid: Manual [Link], Book [Link]

- High-level infrastructure
 - lattice: Manual [Link], Intro [Link], Book [Link]
 - ggplot2: Manual [Link], Intro [Link], Book [Link]
Outline

Overview

Graphics Environments
 Base Graphics
 Grid Graphics
 lattice
 ggplot2

Specialty Graphics

Genome Graphics
 ggbio
 Additional Genome Graphics

Clustering
 Background
 Hierarchical Clustering Example
 Non-Hierarchical Clustering Examples
Outline

Overview

Graphics Environments
 Base Graphics
 Grid Graphics
 lattice
 ggplot2

Specialty Graphics

Genome Graphics
 ggbio
 Additional Genome Graphics

Clustering
 Background
 Hierarchical Clustering Example
 Non-Hierarchical Clustering Examples
Important high-level plotting functions

- `plot`: generic x-y plotting
- `barplot`: bar plots
- `boxplot`: box-and-whisker plot
- `hist`: histograms
- `pie`: pie charts
- `dotchart`: cleveland dot plots
- `image`, `heatmap`, `contour`, `persp`: functions to generate image-like plots
- `qqnorm`, `qqline`, `qqplot`: distribution comparison plots
- `pairs`, `coplot`: display of multivariant data

Help on these functions

- `?myfct`
- `?plot`
- `?par`
Matrices and data frames
Vectors
Named vectors
Scatter Plot: very basic

Sample data set for subsequent plots

```r
> set.seed(1410)
> y <- matrix(runif(30), ncol=3, dimnames=list(letters[1:10], LETTERS[1:3]))

> plot(y[,1], y[,2])
```
> pairs(y)
Scatter Plot: with labels

```r
> plot(y[,1], y[,2], pch=20, col="red", main="Symbols and Labels")
> text(y[,1]+0.03, y[,2], rownames(y))
```

Symbols and Labels
Scatter Plots: more examples

Print instead of symbols the row names

```r
> plot(y[,1], y[,2], type="n", main="Plot of Labels")
> text(y[,1], y[,2], rownames(y))
```

Usage of important plotting parameters

```r
> grid(5, 5, lwd = 2)
> op <- par(mar=c(8,8,8,8), bg="lightblue")
> plot(y[,1], y[,2], type="p", col="red", cex.lab=1.2, cex.axis=1.2,
+       cex.main=1.2, cex.sub=1, lwd=4, pch=20, xlab="x label",
+       ylab="y label", main="My Main", sub="My Sub")
> par(op)
```

Important arguments

- `mar`: specifies the margin sizes around the plotting area in order: `c(bottom, left, top, right)`
- `col`: color of symbols
- `pch`: type of symbols, samples: `example(points)`
- `lwd`: size of symbols
- `cex.*`: control font sizes
- For details see `?par`
Scatter Plots: more examples

Add a regression line to a plot

```r
> plot(y[,1], y[,2])
> myline <- lm(y[,2]~y[,1]); abline(myline, lwd=2)
> summary(myline)
```

Same plot as above, but on log scale

```r
> plot(y[,1], y[,2], log="xy")
```

Add a mathematical expression to a plot

```r
> plot(y[,1], y[,2]); text(y[1,1], y[1,2],
>    expression(sum(frac(1,sqrt(x^2*pi))))), cex=1.3)
```
Exercise 1: Scatter Plots

Task 1 Generate scatter plot for first two columns in iris data frame and color dots by its Species column.

Task 2 Use the xlim/ylim arguments to set limits on the x- and y-axes so that all data points are restricted to the left bottom quadrant of the plot.

Structure of iris data set:

```r
> class(iris)
[1] "data.frame"
> iris[1:4,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1          3.5          1.4       0.2      setosa
2 4.9          3.0          1.4       0.2      setosa
3 4.7          3.2          1.3       0.2      setosa
4 4.6          3.1          1.5       0.2      setosa

> table(iris$Species)

setosa  versicolor  virginica
     50          50          50
```
Line Plot: Single Data Set

> plot(y[,1], type="l", lwd=2, col="blue")

![Line Plot](image-url)
Line Plots: Many Data Sets

```r
> split.screen(c(1,1));
[1] 1
> plot(y[,1], ylim=c(0,1), xlab="Measurement", ylab="Intensity", type="l", lwd=2, col=1)
> for(i in 2:length(y[1,])) {
+   screen(1, new=FALSE)
+   plot(y[,i], ylim=c(0,1), type="l", lwd=2, col=i, xaxt="n", yaxt="n", ylab="",
+   xlab="", main="", bty="n")
+ }
> close.screen(all=TRUE)
```

![Line Plot Example](image-url)
Bar Plot Basics

```r
> barplot(y[1:4,], ylim=c(0, max(y[1:4,])+0.3), beside=TRUE,
+        legend=letters[1:4])
> text(labels=round(as.vector(as.matrix(y[1:4,])),2), x=seq(1.5, 13, by=1)
+       +sort(rep(c(0,1,2), 4)), y=as.vector(as.matrix(y[1:4,]))+0.04)
```
Bar Plots with Error Bars

```r
> bar <- barplot(m <- rowMeans(y) * 10, ylim=c(0, 10))
> stdev <- sd(t(y))
> arrows(bar, m, bar, m + stdev, length=0.15, angle = 90)
```
Mirrored Bar Plots

```r
> df <- data.frame(group = rep(c("Above", "Below"), each=10), x = rep(1:10, 2), y = c(runif(10, 0, 1), runif(10, -1, 0)))
> plot(c(0,12), range(df$y), type = "n")
> barplot(height = df$y[df$group == 'Above'], add = TRUE, axes = FALSE)
> barplot(height = df$y[df$group == 'Below'], add = TRUE, axes = FALSE)
```
> hist(y, freq=TRUE, breaks=10)
> plot(density(y), col="red")
Pie Charts

```r
> pie(y[,1], col=rainbow(length(y[,1]), start=0.1, end=0.8), clockwise=TRUE)
> legend("topright", legend=row.names(y), cex=1.3, bty="n", pch=15, pt.cex=1.8,
+ col=rainbow(length(y[,1]), start=0.1, end=0.8), ncol=1)
```

![Pie Chart](attachment:image.png)
Color Selection Utilities

Default color palette and how to change it

> palette()

[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow" "gray"

> palette(rainbow(5, start=0.1, end=0.2))
> palette()

[1] "#FF9900" "#FFBF00" "#FFE600" "#F2FF00" "#CCFF00"

> palette("default")

The gray function allows to select any type of gray shades by providing values from 0 to 1

> gray(seq(0.1, 1, by= 0.2))

[1] "#1A1A1A" "#4D4D4D" "#808080" "#B3B3B3" "#E6E6E6"

Color gradients with colorpanel function from gplots library

> library(gplots)
> colorpanel(5, "darkblue", "yellow", "white")

Much more on colors in R see Earl Glynn’s color chart Link
Arranging Several Plots on Single Page

With `par(mfrow=c(nrow,ncol))` one can define how several plots are arranged next to each other.

```r
> par(mfrow=c(2,3)); for(i in 1:6) { plot(1:10) }
```

![Plots arranged in a 2x3 grid](image)
Arranging Plots with Variable Width

The `layout` function allows to divide the plotting device into variable numbers of rows and columns with the column-widths and the row-heights specified in the respective arguments.

```r
nf <- layout(matrix(c(1,2,3,3), 2, 2, byrow=TRUE), c(3,7), c(5,5),
             respect=TRUE)
# layout.show(nf)
for(i in 1:3) { barplot(1:10) }
```

![Bar plots arranged with variable width using the `layout` function]
After the `pdf()` command all graphs are redirected to file `test.pdf`. Works for all common formats similarly: jpeg, png, ps, tiff, ...

```r
> pdf("test.pdf"); plot(1:10, 1:10); dev.off()
```

Generates Scalable Vector Graphics (SVG) files that can be edited in vector graphics programs, such as InkScape.

```r
> svg("test.svg"); plot(1:10, 1:10); dev.off()
```
Exercise 2: Bar Plots

Task 1 Calculate the mean values for the Species components of the first four columns in the iris data set. Organize the results in a matrix where the row names are the unique values from the iris Species column and the column names are the same as in the first four iris columns.

Task 2 Generate two bar plots: one with stacked bars and one with horizontally arranged bars.

Structure of iris data set:

```r
> class(iris)
[1] "data.frame"

> iris[1:4,
```

```r
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
  1  5.1        3.5       1.4        0.2  setosa
  2  4.9        3.0       1.4        0.2  setosa
  3  4.7        3.2       1.3        0.2  setosa
  4  4.6        3.1       1.5        0.2  setosa

> table(iris$Species)
```

```r
  setosa  versicolor    virginica
         50          50          50
```
Outline

Overview

Graphics Environments

Base Graphics

Grid Graphics

lattice

ggplot2

Specialty Graphics

Genome Graphics

ggbio

Additional Genome Graphics

Clustering

Background

Hierarchical Clustering Example

Non-Hierarchical Clustering Examples
What is *grid*?
- Low-level graphics system
- Highly flexible and controllable system
- Does not provide high-level functions
- Intended as development environment for custom plotting functions
- Pre-installed on new R distributions

Documentation and Help
- Manual
- Book
Outline

Overview

Graphics Environments
 Base Graphics
 Grid Graphics
 lattice
 ggplot2

Specialty Graphics

Genome Graphics
 ggbio
 Additional Genome Graphics

Clustering
 Background
 Hierarchical Clustering Example
 Non-Hierarchical Clustering Examples
What is *lattice*?

- High-level graphics system
- Developed by Deepayan Sarkar
- Implements Trellis graphics system from S-Plus
- Simplifies high-level plotting tasks: arranging complex graphical features
- Syntax similar to R’s base graphics

Documentation and Help

- Manual [Link](#)
- Intro [Link](#)
- Book [Link](#)

`library(help=lattice)` opens a list of all functions available in the lattice package

Accessing and changing global parameters:

`?lattice.options` and `?trellis.device`
> library(lattice)
> p1 <- xyplot(1:8 ~ 1:8 | rep(LETTERS[1:4], each=2), as.table=TRUE)
> plot(p1)
> library(lattice)
> p2 <- parallelplot(~iris[1:4] | Species, iris, horizontal.axis = FALSE,
+ layout = c(1, 3, 1))
> plot(p2)
Outline

Overview

Graphics Environments
 Base Graphics
 Grid Graphics
 lattice
 ggplot2

Specialty Graphics

Genome Graphics
 ggbio
 Additional Genome Graphics

Clustering
 Background
 Hierarchical Clustering Example
 Non-Hierarchical Clustering Examples
What is ggplot2?

- High-level graphics system
- Implements grammar of graphics from Leland Wilkinson
- Streamlines many graphics workflows for complex plots
- Syntax centered around main ggplot function
- Simpler qplot function provides many shortcuts

Documentation and Help

- Manual
- Intro
- Book
- Cookbook for R
ggplot2 Usage

- **ggplot** function accepts two arguments
 - Data set to be plotted
 - Aesthetic mappings provided by `aes` function
- Additional parameters such as geometric objects (e.g. points, lines, bars) are passed on by appending them with `+` as separator.
- List of available `geom_*` functions: [Link](#)
- Settings of plotting theme can be accessed with the command `theme_get()` and its settings can be changed with `theme()`.
- Preferred input data object
 - `qgplot`: `data.frame` (support for vector, matrix, ...)
 - `ggplot`: `data.frame`
- Packages with convenience utilities to create expected inputs
 - `plyr`
 - `reshape`
qplot Function

- **qplot syntax** is similar to R’s basic **plot function**
- **Arguments:**
 - **x**: x-coordinates (e.g. col1)
 - **y**: y-coordinates (e.g. col2)
 - **data**: data frame with corresponding column names
 - **xlim, ylim**: e.g. xlim=c(0,10)
 - **log**: e.g. log="x" or log="xy"
 - **main**: main title; see ?plotmath for mathematical formula
 - **xlab, ylab**: labels for the x- and y-axes
 - **color, shape, size**
 - **...**: many arguments accepted by plot function
Create sample data

```r
> library(ggplot2)
> x <- sample(1:10, 10); y <- sample(1:10, 10); cat <- rep(c("A", "B"), 5)
```

Simple scatter plot

```r
> qplot(x, y, geom="point")
```

Prints dots with different sizes and colors

```r
> qplot(x, y, geom="point", size=x, color=cat,
+       main="Dot Size and Color Relative to Some Values")
```

Drops legend

```r
> qplot(x, y, geom="point", size=x, color=cat) +
+       theme(legend.position = "none")
```

Plot different shapes

```r
> qplot(x, y, geom="point", size=5, shape=cat)
```
qplot: Scatter Plot with qplot

```r
> p <- qplot(x, y, geom="point", size=x, color=cat,
+ main="Dot Size and Color Relative to Some Values") +
+ theme(legend.position = "none")
> print(p)
```

![Dot Size and Color Relative to Some Values](image)
qplot: Scatter Plot with Regression Line

```r
> set.seed(1410)
> dsmall <- diamonds[sample(nrow(diamonds), 1000), ]
> p <- qplot(carat, price, data = dsmall, geom = c("point", "smooth"),
>            method = "lm")
> print(p)
```

![Scatter plot with regression line](image)
qplot: Scatter Plot with Local Regression Curve (loess)

```r
> p <- qplot(carat, price, data=dsmall, geom=c("point", "smooth"), span=0.4)
> print(p) # Setting 'se=FALSE' removes error shade
```
ggplot Function

- More important than qplot to access full functionality of **ggplot2**
- Main arguments
 - data set, usually a `data.frame`
 - aesthetic mappings provided by `aes` function
- General `ggplot` syntax
 - `ggplot(data, aes(...)) + geom_*() + ... + stat_*() + ...`
- Layer specifications
 - `geom_*`(mapping, data, ..., geom, position)
 - `stat_*`(mapping, data, ..., stat, position)
- Additional components
 - scales
 - coordinates
 - facet
- `aes()` mappings can be passed on to all components (`ggplot`, `geom_*`, etc.). Effects are global when passed on to `ggplot()` and local for other components.
 - `x`, `y`
 - `color`: grouping vector (factor)
 - `group`: grouping vector (factor)
Changing Plotting Themes with ggplot

- Theme settings can be accessed with `theme_get()`
- Their settings can be changed with `theme()

Some examples
 - Change background color to white
    ```
    ... + theme(panel.background=element_rect(fill = "white", colour = "black"))
    ```
Plots and layers can be stored in variables

```r
> p <- ggplot(dsmall, aes(carat, price)) + geom_point()
> p # or print(p)
```

Returns information about data and aesthetic mappings followed by each layer

```r
> summary(p)
```

Prints dots with different sizes and colors

```r
> bestfit <- geom_smooth(methodw = "lm", se = F, color = alpha("steelblue", 0.5))
> p + bestfit # Plot with custom regression line
```

Syntax to pass on other data sets

```r
> p %+% diamonds[sample(nrow(diamonds), 100),]
```

Saves plot stored in variable `p` to file

```r
> ggsave(p, file="myplot.pdf")
```
ggplot: Scatter Plot

```r
> p <- ggplot(dsmall, aes(carat, price, color=color)) +
+     geom_point(size=4)
> print(p)
```

![Scatter Plot Diagram]
ggplot: Scatter Plot with Regression Line

```r
p <- ggplot(dsmall, aes(carat, price)) + geom_point() +
  geom_smooth(method="lm", se=FALSE) +
  theme(panel.background=element_rect(fill = "white", colour = "black"))
print(p)
```
ggplot: Scatter Plot with Several Regression Lines

```r
> p <- ggplot(dsmall, aes(carat, price, group=color)) +
  +   geom_point(aes(color=color), size=2) +
  +   geom_smooth(aes(color=color), method = "lm", se=FALSE)
> print(p)
```

![Scatter Plot with Several Regression Lines](image)
ggplot: Scatter Plot with Local Regression Curve (loess)

```r
> p <- ggplot(dsmall, aes(carat, price)) + geom_point() + geom_smooth()
> print(p)  # Setting 'se=FALSE' removes error shade
```

![Scatter Plot with Local Regression Curve](image-url)
ggplot: Line Plot

```r
> p <- ggplot(iris, aes(Petal.Length, Petal.Width, group=Species, 
+                 color=Species)) + geom_line()
> print(p)
```

![Line Plot of Petal.Length vs Petal.Width for Iris Species](image)
ggplot: Faceting

```r
> p <- ggplot(iris, aes(Sepal.Length, Sepal.Width)) +
+     geom_line(aes(color=Species), size=1) +
+     facet_wrap(~Species, ncol=1)
> print(p)
```

![ggplot faceting example](chart.png)
Exercise 3: Scatter Plots

Task 1 Generate scatter plot for first two columns in iris data frame and color dots by its Species column.

Task 2 Use the `xlim`, `ylim` functions to set limits on the x- and y-axes so that all data points are restricted to the left bottom quadrant of the plot.

Task 3 Generate corresponding line plot with faceting show individual data sets in separate plots.

Structure of iris data set:

```r
> class(iris)
[1] "data.frame"

> iris[1:4,]

       Sepal.Length Sepal.Width Petal.Length Petal.Width Species
   1          5.1        3.5          1.4        0.2   setosa
   2          4.9        3.0          1.4        0.2   setosa
   3          4.7        3.2          1.3        0.2   setosa
   4          4.6        3.1          1.5        0.2   setosa

> table(iris$Species)

       setosa  versicolor  virginica
          50           50           50
```
Sample Set: the following transforms the iris data set into a ggplot2-friendly format.

Calculate mean values for aggregates given by Species column in iris data set

```r
iris_mean <- aggregate(iris[,1:4], by=list(Species=iris$Species), FUN=mean)
```

Calculate standard deviations for aggregates given by Species column in iris data set

```r
iris_sd <- aggregate(iris[,1:4], by=list(Species=iris$Species), FUN=sd)
```

Convert `iris_mean` with `melt`

```r
library(reshape2) # Defines melt function
df_mean <- melt(iris_mean, id.vars=c("Species"), variable.name = "Samples", value.name="Values")
```

Convert `iris_sd` with `melt`

```r
df_sd <- melt(iris_sd, id.vars=c("Species"), variable.name = "Samples", value.name="Values")
```

Define standard deviation limits

```r
limits <- aes(ymax = df_mean[,"Values"] + df_sd[,"Values"], ymin=df_mean[,"Values"])
```
ggplot: Bar Plot

```r
> p <- ggplot(df_mean, aes(Samples, Values, fill = Species)) +
  +   geom_bar(position="dodge", stat="identity")
> print(p)
```

![Bar plot showing the distribution of measurements across species](image)
ggplot: Bar Plot Sideways

> p <- ggplot(df_mean, aes(Samples, Values, fill = Species)) +
+ geom_bar(position="dodge", stat="identity") + coord_flip() +
+ theme(axis.text.y=theme_text(angle=0, hjust=1))
> print(p)
ggplot: Bar Plot with Faceting

```r
> p <- ggplot(df_mean, aes(Samples, Values)) + geom_bar(aes(fill = Species), stat="identity") + facet_wrap(~Species, ncol=1)
> print(p)
```

![Bar Plot with Faceting](image)

Visualizing and Clustering High-Throughput Data with R/Bioconductor

Graphics Environments

ggplot2
ggplot: Bar Plot with Error Bars

```r
> p <- ggplot(df_mean, aes(Samples, Values, fill = Species)) +
+       geom_bar(position="dodge", stat="identity") + geom_errorbar(limits = TRUE)
> print(p)
```

![Bar plot with error bars](image)
ggplot: Changing Color Settings

```r
> library(RColorBrewer)
> # display.brewer.all()
> p <- ggplot(df_mean, aes(Samples, Values, fill=Species, color=Species)) +
+     geom_bar(position="dodge", stat="identity") + geom_errorbar(limits, position="dodge") +
+     scale_fill_brewer(palette="Blues") + scale_color_brewer(palette = "Greys")
> print(p)
```

![Bar chart with different colors for species in ggplot2](image)
ggplot: Using Standard Colors

```r
p <- ggplot(df_mean, aes(Samples, Values, fill=Species, color=Species)) +
  geom_bar(position="dodge", stat="identity") + geom_errorbar(limits, position="dodge") +
  scale_fill_manual(values=c("red", "green3", "blue")) +
  scale_color_manual(values=c("red", "green3", "blue"))
print(p)
```
ggplot: Mirrored Bar Plots

```r
df <- data.frame(group = rep(c("Above", "Below"), each=10), x = rep(1:10, 2), y = c(runif(10, 0, 1), runif(10, -1, 0))
p <- ggplot(df, aes(x=x, y=y, fill=group)) + geom_bar(stat="identity", position="identity")
print(p)
```

![Mirrored Bar Plots](image)
Task 1 Calculate the mean values for the Species components of the first four columns in the iris data set. Use the melt function from the reshape2 package to bring the results into the expected format for ggplot.

Task 2 Generate two bar plots: one with stacked bars and one with horizontally arranged bars.

Structure of iris data set:

> class(iris)
[1] "data.frame"

> iris[1:4,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa

> table(iris$Species)

 setosa versicolor virginica
 50 50 50
ggplot: Data Reformatting Example for Line Plot

> y <- matrix(rnorm(500), 100, 5, dimnames=list(paste("g", 1:100, sep=""), paste("Sample", 1:5, sep="")))
> y <- data.frame(Position=1:length(y[,1]), y)
> y[1:4,] # First rows of input format expected by melt()

<table>
<thead>
<tr>
<th>Position</th>
<th>Sample1</th>
<th>Sample2</th>
<th>Sample3</th>
<th>Sample4</th>
<th>Sample5</th>
</tr>
</thead>
<tbody>
<tr>
<td>g1</td>
<td>1</td>
<td>1.0002088</td>
<td>-0.21324932</td>
<td>1.27195056</td>
<td>1.0479301</td>
</tr>
<tr>
<td>g2</td>
<td>2</td>
<td>-1.2024596</td>
<td>-1.5004962</td>
<td>-0.01111579</td>
<td>0.07584497</td>
</tr>
<tr>
<td>g3</td>
<td>3</td>
<td>0.1023678</td>
<td>-0.5153367</td>
<td>0.28564390</td>
<td>1.41522878</td>
</tr>
<tr>
<td>g4</td>
<td>4</td>
<td>1.3294248</td>
<td>-1.2084007</td>
<td>-0.19581898</td>
<td>-0.42361768</td>
</tr>
</tbody>
</table>

> df <- melt(y, id.vars=c("Position"), variable.name = "Samples", value.name="Values")
> p <- ggplot(df, aes(Position, Values)) + geom_line(aes(color=Samples)) + facet_wrap(~Samples, ncol=1)
> print(p)
> ## Represent same data in box plot
> ## ggplot(df, aes(Samples, Values, fill=Samples)) + geom_boxplot()
ggplot: Jitter Plots

\[
\begin{aligned}
 &> p \leftarrow \text{ggplot(dsmall, aes(color, price/carat)) + } \\
 &\quad \text{geom_jitter(alpha = I(1 / 2), aes(color=color))} \\
 &> \text{print(p)}
\end{aligned}
\]
ggplot: Box Plots

```r
> p <- ggplot(dsmall, aes(color, price/carat, fill=color)) + geom_boxplot()
> print(p)
```

![Box Plot Diagram]

Visualizing and Clustering High-Throughput Data with R/Bioconductor

Graphics Environments
ggplot: Density Plot with Line Coloring

```r
> p <- ggplot(dsmall, aes(carat)) + geom_density(aes(color = color))
> print(p)
```

![Density Plot with Line Coloring](image-url)
ggplot: Density Plot with Area Coloring

```r
> p <- ggplot(dsmall, aes(carat)) + geom_density(aes(fill = color))
> print(p)
```

![Density Plot with Area Coloring](image)
ggplot: Histograms

```r
> p <- ggplot(iris, aes(x=Sepal.Width)) + geom_histogram(aes(y = ..density..,
+ fill = ..count..), binwidth=0.2) + geom_density()
> print(p)
```

![Histogram of Sepal Width](image)
ggplot: Pie Chart

```r
> df <- data.frame(variable=rep(c("cat", "mouse", "dog", "bird", "fly")),
+   value=c(1,3,3,4,2))
> p <- ggplot(df, aes(x = ",", y = value, fill = variable)) +
+   geom_bar(width = 1, stat="identity") +
+   coord_polar("y", start=pi / 3) + ggtitle("Pie Chart")
> print(p)
```

![Pie Chart](image-url)
ggplot: Wind Rose Pie Chart

```r
> p <- ggplot(df, aes(x = variable, y = value, fill = variable)) +
+   geom_bar(width = 1, stat="identity") + coord_polar("y", start=pi / 3) +
+   ggtitle("Pie Chart")
> print(p)
```

![Pie Chart Image]
ggplot: Arranging Graphics on One Page

```r
> library(grid)
> a <- ggplot(dsmall, aes(color, price/carat)) + geom_jitter(size=4, alpha = I(1 / 1.5), aes(color=color))
> b <- ggplot(dsmall, aes(color, price/carat, color=color)) + geom_boxplot()
> c <- ggplot(dsmall, aes(color, price/carat, fill=color)) + geom_boxplot() + theme(legend.position = "none")
> grid.newpage() # Open a new page on grid device
> pushViewport(viewport(layout = grid.layout(2, 2))) # Assign to device viewport with 2 by 2 grid layout
> print(a, vp = viewport(layout.pos.row = 1, layout.pos.col = 1:2))
> print(b, vp = viewport(layout.pos.row = 2, layout.pos.col = 1))
> print(c, vp = viewport(layout.pos.row = 2, layout.pos.col = 2, width=0.3, height=0.3, x=0.8, y=0.8))
```
ggplot: Arranging Graphics on One Page

Visualizing and Clustering High-Throughput Data with R/Bioconductor

Graphics Environments

ggplot2
ggplot: Inserting Graphics into Plots

```r
> # pdf("insert.pdf")
> print(a)
> print(b, vp=viewport(width=0.3, height=0.3, x=0.8, y=0.8))
> # dev.off()
```

![Inserting Graphics into Plots](image)
Outline

Overview

Graphics Environments
 Base Graphics
 Grid Graphics
 lattice
 ggplot2

Specialty Graphics

Genome Graphics
 ggbio
 Additional Genome Graphics

Clustering
 Background
 Hierarchical Clustering Example
 Non-Hierarchical Clustering Examples
Venn Diagrams (Code)

```r
> source("http://faculty.ucr.edu/~tgirke/Documents/R_BioCond/My_R_Scripts/overLapper.R")

> setlist5 <- list(A=sample(letters, 18), B=sample(letters, 16), C=sample(letters, 20), D=sample(letters, 22), E=sample(letters, 18))
> OLlist5 <- overLapper(setlist=setlist5, sep="_", type="vennsets")
> counts <- sapply(OLlist5$Venn_List, length)
> # pdf("venn.pdf")
> vennPlot(counts=counts, ccol=c(rep(1,30),2), lce1=1.5, ccex=c(rep(1.5,5), rep(0.6,25),1.5))
> # dev.off()
```
Figure: Venn Diagram

Unique objects: All = 26; S1 = 18; S2 = 16; S3 = 20; S4 = 22; S5 = 18
> library(ChemmineR)
> data(sdfsample)
> plot(sdfsample[1], print=FALSE)
Outline

Overview

Graphics Environments
 Base Graphics
 Grid Graphics
 lattice
 ggplot2

Specialty Graphics

Genome Graphics
 ggbio
 Additional Genome Graphics

Clustering
 Background
 Hierarchical Clustering Example
 Non-Hierarchical Clustering Examples
Outline

Overview

Graphics Environments
 Base Graphics
 Grid Graphics
 lattice
 ggplot2

Specialty Graphics

Genome Graphics
 ggbio
 Additional Genome Graphics

Clustering
 Background
 Hierarchical Clustering Example
 Non-Hierarchical Clustering Examples
ggbio: A Programmable Genome Browser

- A genome browser is a visualization tool for plotting different types of genomic data in separate tracks along chromosomes.
- The *ggbio* package (Yin et al., 2012) facilitates plotting of complex genome data objects, such as read alignments (SAM/BAM), genomic context/annotation information (gff/txdb), variant calls (VCF/BCF), and more. To easily compare these data sets, it extends the faceting facility of *ggplot2* to genome browser-like tracks.
- Most of the core object types for handling genomic data with R/Bioconductor are supported: GRanges, GAlignments, VCF, etc. For more details, see Table 1.1 of the *ggbio* vignette.
- *ggbio*’s convenience plotting function is `autoplot`. For more customizable plots, one can use the generic *ggplot* function.
- Apart from the standard *ggplot2* plotting components, *ggbio* defines several new components useful for genomic data visualization. A detailed list is given in Table 1.2 of the vignette.

Useful web sites:

- *ggbio* manual
- *ggbio* functions
- `autoplot` demo
Tracks: Aligning Plots Along Chromosomes

> library(ggbio)
> df1 <- data.frame(time = 1:100, score = sin((1:100)/20)*10)
> p1 <- qplot(data = df1, x = time, y = score, geom = "line")
> df2 <- data.frame(time = 30:120, score = sin((30:120)/20)*10, value = rnorm(120-30 +1))
> p2 <- ggplot(data = df2, aes(x = time, y = score)) + geom_line() + geom_point(size = 2, aes(color = value))
> tracks(time1 = p1, time2 = p2) + xlim(1, 40) + theme_tracks_sunset()
GRanges objects are essential for storing alignment or annotation ranges in R/Bioconductor. The following creates a sample GRanges object and plots its content.

```r
> library(GenomicRanges)
> set.seed(1); N <- 100; gr <- GRanges(seqnames = sample(c("chr1", "chr2", "chr3"), size = N, replace = TRUE), ... 30), sample = sample(c("Normal", "Tumor"), size = N, replace = TRUE), pair = sample(letters, size = N, replace = TRUE))
> autoplot(gr, aes(color = strand, fill = strand), facets = strand ~ seqnames)
```
Plotting Coverage Instead of Ranges

```r
> autoplot(gr, aes(color = strand, fill = strand), facets = strand ~ seqnames, stat = "coverage")
```
Mirrored Coverage Plot

```r
> pos <- sapply(coverage(gr[strand(gr)=="+"]), as.numeric)
> pos <- data.frame(Chr=rep(names(pos), sapply(pos, length)), Strand=rep("+", length(unlist(pos))), Position=unlist(sapply(pos, function(x) 1:length(x))), Coverage=as.numeric(unlist(pos)))
> neg <- sapply(coverage(gr[strand(gr)=="-"], as.numeric)
> neg <- data.frame(Chr=rep(names(neg), sapply(neg, length)), Strand=rep("-", length(unlist(neg))), Position=unlist(sapply(neg, function(x) 1:length(x))), Coverage=-as.numeric(unlist(neg)))
> covdf <- rbind(pos, neg)
> p <- ggplot(covdf, aes(Position, Coverage, fill=Strand)) +
+   geom_bar(stat="identity", position="identity") + facet_wrap(~Chr)
> p
```

![Mirrored Coverage Plot](image)
> autoplot(gr, layout = "circle", aes(fill = seqnames))
More Complex Circular Example

```r
> seqlengths(gr) <- c(400, 500, 700)
> values(gr)$to.gr <- gr[sample(1:length(gr), size = length(gr))]
> idx <- sample(1:length(gr), size = 50)
> gr <- gr[idx]
> ggplot() + layout_circle(gr, geom = "ideo", fill = "gray70", radius = 7, trackWidth = 3) +
+   layout_circle(gr, geom = "bar", radius = 10, trackWidth = 4,
+     aes(fill = score, y = score)) +
+   layout_circle(gr, geom = "point", color = "red", radius = 14,
+     trackWidth = 3, grid = TRUE, aes(y = score)) +
+   layout_circle(gr, geom = "link", linked.to = "to.gr", radius = 6, trackWidth = 1)
```
Viewing Alignments and Variants

To make the following example work, please download and unpack this data archive containing GFF, BAM and VCF sample files.

```r
> library(rtracklayer); library(GenomicFeatures); library(Rsamtools); library(VariantAnnotation)
> ga <- readGAlignmentsFromBam("./data/SRR064167.fastq.bam", use.names=TRUE, param=ScanBamParam(which=GRanges("Chr5", IRanges(4000, 8000))))
> p1 <- autoplot(ga, geom = "rect")
> p2 <- autoplot(ga, geom = "line", stat = "coverage")
> vcf <- readVcf(file="data/varianttools_gnsap.vcf", genome="ATH1")
> p3 <- autoplot(vcf[seqnames(vcf) == "Chr5"], type = "fixed") + xlim(4000, 8000) + theme(legend.position = "none")
> txdb <- makeTranscriptDbFromGFF(file="./data/TAIR10_GFF3_trunc.gff", format="gff3")
> p4 <- autoplot(txdb, which=GRanges("Chr5", IRanges(4000, 8000)), names.expr = "gene_id")
> tracks(Reads=p1, Coverage=p2, Variant=p3, Transcripts=p4, heights = c(0.3, 0.2, 0.1, 0.35)) + ylab("")
```
Additional Sample Plots

- autoplot demo

 [Link]
Outline

Overview

Graphics Environments
 Base Graphics
 Grid Graphics
 lattice
 ggplot2

Specialty Graphics

Genome Graphics
 ggbio
 Additional Genome Graphics

Clustering
 Background
 Hierarchical Clustering Example
 Non-Hierarchical Clustering Examples
Additional Packages for Visualizing Genome Data

- Gviz [Link]
- RCircos (Zhang et al., 2013) [Link]
- Genome Graphs [Link]
- genoPlotR [Link]
Outline

Overview

Graphics Environments
 Base Graphics
 Grid Graphics
 lattice
ggplot2

Specialty Graphics

Genome Graphics
 ggbio
 Additional Genome Graphics

Clustering
 Background
 Hierarchical Clustering Example
 Non-Hierarchical Clustering Examples
Outline

Overview

Graphics Environments
- Base Graphics
- Grid Graphics
- lattice
- ggplot2

Specialty Graphics

Genome Graphics
- ggbio
- Additional Genome Graphics

Clustering
- Background
- Hierarchical Clustering Example
- Non-Hierarchical Clustering Examples
What is Clustering?

- Clustering is the classification/partitioning of data objects into similarity groups (clusters) according to a defined distance measure.

- It is used in many fields, such as machine learning, data mining, pattern recognition, image analysis, genomics, systems biology, etc.

- Machine learning typically regards data clustering as a form of unsupervised learning.
Why Clustering and Data Mining in R?

- Efficient data structures and functions for clustering.
- Efficient environment for algorithm prototyping and benchmarking.
- Comprehensive set of clustering and machine learning libraries.
- Standard for data analysis in many areas.
- Overview: Clustering Task View on CRAN
Data Transformations

- **Center & standardize**
 1. Center: subtract vector mean from each value
 2. Standardize: divide by standard deviation

\[\Rightarrow \text{Mean} = 0 \text{ and } \text{STDEV} = 1 \]

- **Center & scale with the `scale()` function**
 1. Center: subtract vector mean from each value
 2. Scale: divide centered vector by their root mean square (rms)

\[
x_{rms} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} x_i^2}
\]

\[\Rightarrow \text{Mean} = 0 \text{ and } \text{STDEV} = 1 \]

- **Log transformation**
- **Rank transformation**: replace measured values by ranks
- **No transformation**
Distance Methods

List of most common ones!

- Euclidean distance for two profiles X and Y

$$d(X, Y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Disadvantages: not scale invariant, not for negative correlations

- Maximum, Manhattan, Canberra, binary, Minowski, ...

- Correlation-based distance: $1 - r$
 - Pearson correlation coefficient (PCC)
 $$r = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{\sqrt{(\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2)(\sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} y_i)^2)}}$$

 Disadvantage: outlier sensitive

 - Spearman correlation coefficient (SCC)
 Same calculation as PCC but with ranked values!
There Are Many more Distance Measures

- If the distances among items are quantifiable, then clustering is possible.
- Choose the most accurate and meaningful distance measure for a given field of application.
- If uncertain then choose several distance measures and compare the results.
Cluster Linkage

Single Linkage

Complete Linkage

Average Linkage
Outline

Overview

Graphics Environments
 Base Graphics
 Grid Graphics
 lattice
 ggplot2

Specialty Graphics

Genome Graphics
 ggbio
 Additional Genome Graphics

Clustering
 Background
 Hierarchical Clustering Example
 Non-Hierarchical Clustering Examples
Hierarchical Clustering Steps

1. Identify clusters (items) with closest distance
2. Join them to new clusters
3. Compute distance between clusters (items)
4. Return to step 1
Hierarchical Clustering

Agglomerative Approach

(a)

(b)

(c)
A heatmap is a color coded table. To visually identify patterns, the rows and columns of a heatmap are often sorted by hierarchical clustering trees.

In case of gene expression data, the row tree usually represents the genes, the column tree the treatments and the colors in the heat table represent the intensities or ratios of the underlying gene expression data set.
Hierarchical Clustering Approaches in R

1. Agglomerative approach (bottom-up)
 - `hclust()` and `agnes()`

2. Divisive approach (top-down)
 - `diana()`
Tree Cutting to Obtain Discrete Clusters

1. Node height in tree
2. Number of clusters
3. Search tree nodes by distance cutoff
Example: hclust and heatmap.2

```r
> library(gplots)
> y <- matrix(rnorm(500), 100, 5, dimnames=list(paste("g", 1:100, sep=""), paste("t", 1:5, sep="")))
> heatmap.2(y) # Shortcut to final result
```
Example: Stepwise Approach with Tree Cutting

```r
## Row- and column-wise clustering
hr <- hclust(as.dist(1-cor(t(y), method="pearson")), method="complete")
hc <- hclust(as.dist(1-cor(y, method="spearman")), method="complete")
## Tree cutting
mycl <- cutree(hr, h=max(hr$height)/1.5); mycolhc <- rainbow(length(unique(mycl)), start=0.1, end=0.9); mycolhc <- mycolhc[as.vector(mycl)]
## Plot heatmap
mycol <- colorpanel(40, "darkblue", "yellow", "white") # or try redgreen(75)
heatmap.2(y, Rowv=as.dendrogram(hr), Colv=as.dendrogram(hc), col=mycol, scale="row", density.info="none", trace="none")
```
Outline

Overview

Graphics Environments
 Base Graphics
 Grid Graphics
 lattice
 ggplot2

Specialty Graphics

Genome Graphics
 ggbio
 Additional Genome Graphics

Clustering
 Background
 Hierarchical Clustering Example
 Non-Hierarchical Clustering Examples
K-Means Clustering

1. Choose the number of k clusters
2. Randomly assign items to the k clusters
3. Calculate new centroid for each of the k clusters
4. Calculate the distance of all items to the k centroids
5. Assign items to closest centroid
6. Repeat until clusters assignments are stable
K-Means
Example: Clustering with \texttt{kmeans} Function

\begin{verbatim}
> km <- kmeans(t(scale(t(y))), 3)
> km$cluster
 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18 g19 g20 g21 g22 g23 g24 g25 g26 g27 g28 g29 g30 g31 g32 g33 g34 g35 g36 g37 g38 g39 g40 g41 g42 g43 g44
 2 1 2 3 1 3 1 2 2 1 3 1 3 2 3 3
 g45 g46 g47 g48 g49 g50 g51 g52 g53 g54 g55 g56 g57 g58 g59 g60 g61 g62 g63 g64 g65 g66 g67 g68 g69 g70 g71 g72 g73 g74 g75 g76 g77 g78 g79 g80 g81 g82 g83 g84 g85 g86 g87 g88
 3 3 3 2 2 2 1 2 1 3 2 3 1 1 2 3 3 3 3 3 3 3 2 2 3 3
 g89 g90 g91 g92 g93 g94 g95 g96 g97 g98 g99 g100
 3 1 1 3 2 1 2 1 1 3 3 2
\end{verbatim}
Fuzzy C-Means Clustering

1. In contrast to strict (hard) clustering approaches, fuzzy (soft) clustering methods allow multiple cluster memberships of the clustered items.

2. This is commonly achieved by assigning to each item a weight of belonging to each cluster.

3. Thus, items on the edge of a cluster, may be in the cluster to a lesser degree than items in the center of a cluster.

4. Typically, each item has as many coefficients (weights) as there are clusters that sum up for each item to one.
Example: Fuzzy Clustering with fanny

> library(cluster) # Loads the cluster library.
> fannyy <- fanny(y, k=4, metric = "euclidean", memb.exp = 1.2)
> round(fannyy$membership, 2)[1:4,

g1 0.82 0.04 0.10 0.05
g2 0.82 0.05 0.12 0.01
g3 0.98 0.01 0.01 0.01
g4 0.03 0.82 0.03 0.12

> fannyy$clustering

 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15 g16 g17 g18 g19 g20 g21 g22 g23 g24 g25 g26 g27 g28 g29 g30 g31 g32 g33 g34 g35 g36 g37 g38 g39 g40 g41 g42 g43 g44 g45 g46 g47 g48 g49 g50 g51 g52 g53 g54 g55 g56 g57 g58 g59 g60 g61 g62 g63 g64 g65 g66 g67 g68 g69 g70 g71 g72 g73 g74 g75 g76 g77 g78 g79 g80 g81 g82 g83 g84 g85 g86 g87 g88
1 1 1 1 2 3 4 1 1 1 1 1 1 3 4 4 2 4
2 4 2 4 1 1 3 1 3 4 1 2 3 3 3 2
2 3 3 2 4 3 1 2 1 4 4 4

Principal components analysis (PCA) is a data reduction technique that allows to simplify multidimensional data sets to 2 or 3 dimensions for plotting purposes and visual variance analysis.
Basic PCA Steps

- Center (and standardize) data
- First principal component axis
 - Across centroid of data cloud
 - Distance of each point to that line is minimized, so that it crosses the maximum variation of the data cloud
- Second principal component axis
 - Orthogonal to first principal component
 - Along maximum variation in the data
- 1ˢᵗ PCA axis becomes x-axis and 2ⁿᵈ PCA axis y-axis
- Continue process until the necessary number of principal components is obtained
PCA on Two-Dimensional Data Set
Identifies the Amount of Variability between Components

Example

<table>
<thead>
<tr>
<th>Principal Component</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion of Variance</td>
<td>62%</td>
<td>34%</td>
<td>3%</td>
<td>rest</td>
</tr>
</tbody>
</table>

1st and 2nd principal components explain 96% of variance.
Example: PCA

```r
> pca <- prcomp(y, scale=T)
> summary(pca) # Prints variance summary for all principal components

Importance of components:

<table>
<thead>
<tr>
<th></th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC4</th>
<th>PC5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD</td>
<td>1.0996</td>
<td>1.0505</td>
<td>1.0247</td>
<td>0.9219</td>
<td>0.8873</td>
</tr>
<tr>
<td>Var</td>
<td>0.2418</td>
<td>0.2207</td>
<td>0.2100</td>
<td>0.1700</td>
<td>0.1575</td>
</tr>
<tr>
<td>CVP</td>
<td>0.2418</td>
<td>0.4626</td>
<td>0.6725</td>
<td>0.8425</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

> plot(pca$x, pch=20, col="blue", type="n") # To plot dots, drop type="n"
> text(pca$x, rownames(pca$x), cex=0.8)
```
Multidimensional Scaling (MDS)

- Alternative dimensionality reduction approach
- Represents distances in 2D or 3D space
- Starts from distance matrix (PCA uses data points)
Example: MDS with cmdscale

The following example performs MDS analysis on the geographic distances among European cities.

```r
> loc <- cmdscale(eurodist)
> plot(loc[,1], -loc[,2], type="n", xlab="", ylab="", main="cmdscale(eurodist)"
> text(loc[,1], -loc[,2], rownames(loc), cex=0.8)
```

Visualizing and Clustering High-Throughput Data with R/Bioconductor
Biclustering

Finds in matrix subgroups of rows and columns which are as similar as possible to each other and as different as possible to the remaining data points.

Unclustered ⇒ Clustered
URL http://www.hubmed.org/display.cgi?uids=22937822

Zhang, H., Meltzer, P., Davis, S., 2013. RCircos: an R package for Circos 2D track plots. BMC Bioinformatics 14, 244–244.
URL http://www.hubmed.org/display.cgi?uids=23937229