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ABSTRACT

The causal relationship between money and income (output) has been an important topic that
has been extensively studied. However, those empirical studies are almost entirely on Granger-
causality in the conditional mean. Compared to conditional mean, conditional quantiles give a
broader picture of a variable in various scenarios. In addition, under some asymmetric loss functions,
conditional quantiles (rather than conditional mean) may be optimal forecasts. In this paper, we
explore whether forecasting the conditional quantile of output growth may be improved using
money. We compare the check (tick) loss functions of the quantile forecasts of output growth with
and without using the past information on money growth, and assess the statistical significance
of the loss-differential of the unconditional and conditional predictive abilities. As conditional
quantiles can be inverted to the conditional distribution, we also test for Granger-causality in the
conditional distribution (via using a nonparametric copula function). Using U.S. monthly series
of real personal income and industrial production for income, and M1 and M2 for money, for
1959-2001, we find that out-of-sample quantile forecasting for output growth, particularly in tails,
is significantly improved by accounting for money. On the other hand, money-income Granger-
causality in the conditional mean is quite weak and unstable. These empirical findings in this paper
have never seen in the money-income literature. The new results have an important implication
on monetary policy, showing that the effectiveness of monetary policy has been underestimated
by merely testing Granger-causality in mean. Money does Granger-cause income more strongly
than it has been known and therefore the information on money growth can (and should) be more
utilized in implementing monetary policy.

Keywords : Money-income Granger-causality, Conditional mean, Conditional quantile, Conditional
distribution
JEL Classification : C2, C5, E4, E5

∗We thank Michael Owyang and the seminar participants of Symposium on Econometric Theory and Applications
(SETA2006, Xiamen) for useful discussions and comments. We thank Yongmiao Hong for his GAUSS code used for
Hong and Li (2005). All errors are our own. A part of the research was conducted while Lee was visiting the California
Institute of Technology. Lee thanks for their hospitality and the financial support during the visit. Yang thanks for
the Chancellor’s Distinguished Fellowship from the University of California, Riverside.

†Corresponding author. Department of Economics, University of California, Riverside, CA 92521-0427, U.S.A.
Tel: +1 (951) 827-1509. Fax: +1 (951) 827-5685. Email: tae.lee@ucr.edu

‡Department of Economics, University of California, Riverside, CA 92521-0427, U.S.A. E-mail:
weiping.yang@gmail.com



1 Introduction

Granger-causality (GC), introduced by Granger (1969, 1980, 1988), is one of the important issue

that has been much studied in empirical macroeconomics and empirical finance. Particularly the

study on money and income is one of the most studied subject in economics. In this paper, we extend

the literature in two ways. The literature on money-income causality is studies for the conditional

mean and most papers have used the in-sample significance of money variable in the output growth

equation. (In this paper, the terms, income and output, will be used interchangeably.) First, we go

beyond the conditional mean, and examine the conditional distribution and conditional quantiles.

Second, we examine the out-of-sample predictive contents of money variable for forecasting output

growth.

While GC is naturally defined in terms of the conditional distribution (see Granger and New-

bold 1986), almost all the papers in this literature have focused on GC in mean (GCM). The

GC in distribution (GCD) has been less studied empirically perhaps because it is in fact about

independence and so it may be too broad to be useful for its policy implication. More useful may

be the particular quantiles of the conditional distribution as inverting the conditional distribution

we obtain the conditional quantile. Hence, we may examine directly the GC in distribution, or

indirectly via GC in conditional quantiles (GCQ). Granger (2003) notes that the study of the time

series of quantiles is relevant as the predictive distribution can be expressed in terms of the CDF,

the density, the characteristic function, or quantiles.

Vast empirical literature on the money-income causality has very mixed results on GCM —

usually quite unstable and sensitive to the sample periods, data sets and choice of variables (e.g.,

M1 or M2 for money, personal income (PI) or industrial production (IP) for income, with or without

including some other variables such as interest rates and business cycle indicators in the regression,

different countries, etc.). Different countries, sample periods and variables are analyzed in those

empirical studies, but no consensus has been reached. The results in this paper for GCD and GCQ

are much more stable and stronger.

The aim of this paper is to study the GC beyond the conditional mean between money and

income, which is in line with the suggested directions of Granger (2003, 2005, 2006).1 Forecasting

conditional quantiles is important in economic policy when a concern is a particular scenario of the

1Granger (2006) remarks, “For most of its history time series theory considered conditional means, but later
conditional variances. The next natural development would be conditional quantiles, but this area is receiving less
attention than I expected. The last stages are initially conditional marginal distributions, and finally conditional
multivariate distributions. Some interesting theory is starting in these areas but there is enormous amount to be
done.”
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economy. For instance, in asset valuation, different scenarios of output growth are extremely useful

in sensitivity analysis, scenario analysis, and risk management. For industries greatly influenced

by overall macroeconomic conditions, forecasting output growth helps to evaluate the industry

exposure in different scenarios. The fan chart of Bank of England for different quantile forecasts of

inflation rate is another example.

Although it is not stable in the U.S. data whether money growth helps to improve forecasting

of the conditional mean of output growth, we find that there is much stronger evidence whether

it helps to improve forecasting of its conditional quantiles. Forecasting the conditional quantiles

of output growth depends on its conditional distribution, so we also GCD, for which we extend

Hong and Li (2005) and Egorov, Hong, and Li (2006), by using a nonparametric copula function

to test for independent copula. Hong and Li’s (2005) test evaluates a model by testing whether the

out-of-sample probability integral transforms (PIT) of forecasts follow an i.i.d. U[0, 1] distribution.

GCD implies GCQ in some quantiles, although GCD does not necessarily imply GCQ in each

quantile. GCQ in a specific quantile exists if the lagged money variables helps to improve forecasting

the output growth at that quantile. Two quantile regression models for output growth with and

without money growth information are estimated and the out-of-sample average of the “check” loss

values of the two quantile models are compared. Because these two quantile forecasting models are

nested, the unconditional predictive ability test proposed by Diebold and Mariano (1995) and West

(1996) fails in that its asymptotic distribution degenerates. We therefore utilize the conditional

predictive ability test proposed by Giacomini and White (2005).

Our empirical study using several different data sets over various sample periods find the fol-

lowing results. First, for the causality in the conditional mean, differently from Chao, Corradi

and Swanson (2001) who test out-of-sample Granger-causality in mean using moment conditions,

we compare the squared forecast error loss values of the two conditional mean forecasts of output

growth with and without money. The result is very weak for the GCM (as expected from the exist-

ing literature). We find that the predictive ability of a model with including money as a predictor

for the conditional mean of output growth may be even worse than a model without money, and

the result varies sensitively over time as pointed out by Eichenbaum and Singleton (1986), Stock

and Watson (1996), Swanson (1998) and Thoma (1994). Second, for the money-income GC in the

conditional distribution, we use a nonparametric copula function, and find a more stable and sig-

nificant result for GCD in many subsamples even when there exists no significant GCM. Third, for

the GCQ, two quantile regression models with and without money are estimated and their quantile
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forecasts are compared for their out-of-sample check loss values. We find that GCQ is significant in

tail quantiles in most subsamples and most data sets, while it is not significant in the center of the

distribution. Forth, comparing results across different data sets (which consist of different variables

for money and income), it seems that GCQ between money and industrial production (IP) is more

significant that between money and real personal income (PI).

The structure of this paper is as follows. In Section 2, we discuss GC in mean, GC in distribution,

and GC in quantiles. Section 3 reports the empirical findings. Section 4 concludes.

2 Granger-causality

We use the following notation. Let R denote the sample size for estimation (for which we use a

rolling scheme), P the size of the out-of-sample period for forecast evaluation, and T = R + P .

Let x be money growth and y the output growth. Consider the distribution functions conditional

on the information set Ft as Ft+1(x|Ft) = Pr(xt+1 < x|Ft), Gt+1(y|Ft) = Pr(yt+1 < y|Ft), and

Ht+1(x, y|Ft) = Pr(xt+1 < x and yt+1 < y|Ft). Let ft+1(x|Ft), gt+1(y|Ft), and ht+1(x, y|Ft) be the

corresponding densities. Let u = Ft+1(x|Ft) and v = Gt+1(y|Ft). Let Ct+1(u, v|Ft) and ct+1(u, v|Ft)

be the conditional copula function and the conditional copula density function respectively. See

Appendix for a brief introduction on the copula theory. Let the conditional mean of yt+1 be

denoted E(yt+1|Ft). Let Xt = (xt, . . . , xt+1−q)0 and Gt be the information set excluding Xt, i.e.,

Gt = Ft/{Xt}.

2.1 Money-Income Granger-causality in Mean

Starting with Friedman (1956) the debate about role of money on income attract attention of a lot

of economists. Numerous studies have been devoted to the interaction between money and income.

To entangle this interaction, theoretical models are constructed to explore the roles of aggregate

demand fluctuation and money demand fluctuation, such as in Kaldor (1970), Modigliani (1977),

Meltzer (1963), among others. Along with the theoretical development, many empirical studies

have been made following the seminal research of Sims (1972, 1980). Sims (1972) shows money

Granger-causes income, but his result was criticized due to the bias caused by hidden factors.

Sims (1980) applies a VAR model to handle a vector of variables and reports that money does

not Granger cause income after the World War II. After Sims, Granger-causality and VAR models

become the generally accepted instruments for studying the money and income relationship. Stock

and Watson (1989) contend that the deterministic trend plays important roles and uses detrended
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money in the analysis. They find more significant money-income causality with the detrended

money growth rate. Friedman and Kuttner (1992, 1993) and Thoma (1994) also report limited

evidence for the money-income causality, however, they find out varying money-income causality

with regard different sample period or with regard to different variables.2 Swanson (1998) tests

money-income Granger-causality in an error-correction model. Dufour and Renault (1998) and

Dufour et al. (2002) test the long horizon causality.

Definition 1. (Non Granger-causality in mean, NGCM): Xt does not Granger-cause yt+1

in mean if and only if E(yt+1|Xt,Gt) = E(yt+1|Gt) almost surely (a.s.).

To test for Granger-causality in mean (GCM), we can utilize either an in-sample test or an

out-of-sample test. In the literature, most tests of money-income causality focus on in-sample

conditional mean in a Vector Autoregressive (VAR) model. The in-sample Granger-causality test

is to test the joint hypothesis that coefficients of money are all insignificant in the output equation.

A Wald-type test is often used in an in-sample test of GCM. Following Ashley, Granger, and

Schmalensee (1980), we conduct an out-of-sample test for Granger-causality. An out-of-sample test

for GCM is based on two nested models. The first model does not account for money-income GCM

(referred as Model 1 or “NGCM”) and the second does (referred as Model 2 or “GCM”):

Model 1 (NGCM) : yt+1 = E(yt+1|Gt) + ε1,t+1 = V
0
t θ1 + ε1,t+1, (1)

Model 2 (GCM) : yt+1 = E(yt+1|Xt,Gt) + ε2,t+1 =W
0
tθ2 + ε2,t+1, (2)

where Vt ∈ Gt and Wt = (X 0
t V

0
t ) are vectors of regressors. Vt includes a constant term. The

parameters θi are estimated by minimizing the squared error loss using the rolling sample of the

most recent R observations at time t (t = R, . . . , T − 1) :

θ̂1,t = argmin
θ1

tX
s=t−R+1

(ys − V 0s−1θ1)2, (3)

θ̂2,t = argmin
θ2

tX
s=t−R+1

ρα(ys −W 0
s−1θ2)

2. (4)

Denote ŷ1,t+1(θ̂1,t) = V 0t θ̂1,t and ŷ2,t+1(θ̂2,t) = W 0
t θ̂2,t, the forecasts of yt+1 from Model 1 and

Model 2 respectively, and let ε̂i,t+1(θ̂i,t) = yt+1 − ŷi,t+1(θ̂i,t) for the forecast error of Model i. In
2For instance, by replacing the three month T-bill rate by commercial paper rate, the money-income causality

become less significant. But in general, those empirical studies give us relatively controversial results on the money-
income causality.
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Section 3 for the empirical analysis, we choose Xt = (xt, . . . , xt+1−q)0 and Vt = (Y 0t , It, Bt)
0 where

Yt = (yt, . . . , yt+1−q)0, q = 12, It is the 3 month T-bill interest rate, and Bt is the business cycle

coincident index. See Table 1, Panel A.

As the models are nested, we may not use the tests of Diebold and Mariano (1995) and West

(1996). A test for Granger-causality is to compare the loss functions of forecasts conditional on two

information sets, Gt and Ft. As we are interested in comparing the loss of forecasting output growth

yt+1 without and with using the information on past money growth Xt, we use the conditional

predictive ability test of Giacomini and White (GW, 2005) as follows. Let Lt+1(·) be a loss function.

The null hypothesis of NGCM is therefore

H0 : E[Lt+1(yt+1, ŷ1,t+1)− Lt+1(yt+1, ŷ2,t+1)|Ft] = 0, t = R, . . . , T − 1. (5)

Under the H0 the loss differential ∆Lt+1 ≡ Lt+1(yt+1, ŷ1,t+1)−Lt+1(yt+1, ŷ2,t+1) is a martingale dif-

ference sequence (MDS), which implies E(ht∆Lt+1) = 0 for any ht that is Ft-measurable. Denoting

Zt+1 = ht∆Lt+1, the GW (2005) statistic is

GWR,P = PZ̄
0
R,P Ω̂

−1
P Z̄R,P , (6)

where Z̄ 0R,P =
1
P

PT−1
t=R ht∆Lt+1 and Ω̂P =

1
P

PT−1
t=R Zt+1Z

0
t+1. Under some regularity conditions,

GWR,P →d χ2q as P →∞ under H0 (GW 2005, Theorem 1).3

We choose the “test” function, ht, such that it is Ft-measurable but not Gt-measurable. For

simplicity, we choose ht = Xt = (xt, . . . , xt+1−q)0.4

We choose the loss function, Lt+1(yt+1, ŷi,t+1) = ε̂2i,t+1 (i = 1, 2), the squared error loss, to test

money-income Granger-causality in mean, for the out-of-sample forecast evaluation because the

conditional mean is the optimal forecast under the squared error loss. We also minimize the same

loss for in-sample parameter estimation as shown in (3) and (4). Therefore, Zt+1 = ht∆Lt+1 =

ht(ε̂
2
1,t+1− ε̂22,t+1). To be consistent with the literature using monthly series, we choose ht using 12

lags of money growth rate, i.e., ht = Xt = (xt . . . xt−11)0 with q = 12.

3Chao, Corradi and Swanson (2003) propose an out-of-sample test using following test statistic

CCSR,P =
1

P

T−1X
t=R

ε̂1,t+1h(Xt),

which follows zero-mean normal distribution asymptotically with its asymptotic variance affected by estimation error.
4Two possible ways to improve the power of the test are (i) to choose q in a way to maximize the test power

and (ii) to choose ht from transforms of Xt as suggested in Bierens (1990), Stinchcombe and White (1998), or Hong
(1999). We do not consider these extensions in this paper for simplicity and also to match the choice of ht with
the vast literature on GCM. Following Lee et al. (1993) and Stinchcombe and White (1998), ht will be called a test
function.
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Because the GW statistic is for equal conditional predictive ability, the rejection of the null

hypothesis only implies that the two models are not equal in conditional predictive ability. To

choose one model over the other, we follow the decision rule suggested by GW (2005) to construct

a statistic as

IP =
1

P

T−1X
t=R

1(α̂0Pht < 0), (7)

where 1(·) is the indicator function and α̂P is the coefficient of ht by regressing ∆Lt+1 on ht

(t = R, . . . , T − 1). As the rejection of H0 occurs when the test function ht can predict the loss

difference ∆Lt+1 in out-of-sample, α̂
0
Pht ≈ E(∆Lt+1|Ft) will be the out-of-sample predicted loss

differences. If IP is greater than 0.5, Model 1 (NGCM) will be selected; otherwise Model 2 (GCM)

will be selected.

2.2 Asymmetric GCM vs GCQ

Hayo (1998) nicely summarizes five stylized facts found in the empirical literature on the existence

and strength of GCM between money and output using U.S. data: (a) In a model with only two

variables, money Granger-causes output (Sims 1972). (b) The statistical significance of the effect

of money on output will be lower when including other variables in a multivariate test such as

prices and interest rates (Sims 1980). (c) The use of narrow money is less likely to support GC

from money to output than broad money (King and Plosser 1984). (d) Assuming that variables

are trend stationary and modelling them in (log-) levels with a deterministic trend is more likely

to lead to significant test results than assuming difference stationary and employing growth rates

(Christiano and Ljungquist 1988, Stock and Watson 1989, Hafer and Kutan 1997). (e) Allowing

asymmetric effects of money on output growth and including the business cycle greatly influences

results and strengthens the causal effect of money (Cover 1992, Thoma 1994, Weise 1999, Lo and

Piger 2005, Ravn and Sola 2004, Psaradakis, Ravn, and Sola 2005).

Hayo (1998) revisited the above U.S. stylized facts using a broad data base of 14 EU-countries

plus Canada and Japan. It is found that very few of the above, particularly (b) and (d), can be

sustained. Also found in the literature is that GCM is unstable, change with the sample periods,

data to use (variables and frequency), and countries. Psaradakis, Ravn, and Sola (2004, pp. 666-

667) provide some summary on this instability evidence from the literature. Davis and Tanner

(1997) finds the instability of the GCM across countries.

What appears to be robust is (e). Thoma (1994) shows for monthly data on M1 that the state

of business cycle has considerable influence on the results and strengthens the GCM of money.
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When real activity declines the effect of money on output becomes stronger, while the opposite

takes place during a recovery. Numerous papers in the literature have found that the evidence for

the GCM becomes more evident when some asymmetry has been introduced. Weise (1999) and

Lo and Piger (2005) classify the three forms of asymmetry studies in a large body of empirical

literature on money-income causality.

A1 (sign asymmetry): asymmetry related to the direction of the monetary policy action (Cover

1992, Dolado et al 2004)

A2 (size asymmetry): asymmetry related to the size of the policy action. (Ravn and Sola 2004,

Dolado et al 2004)

A3 (business cycle asymmetry): asymmetry related to the existing business cycle business cycle

phase (Thoma 1994, Weise 1999, Lo and Piger 2005, Garcia and Schaller 2002)

Weise (1999) find no evidence for A1, some evidence for A2, and strong evidence for A3.

Bernanke and Gertler (1995) and Galbraith (1996) explains A3 via credit rationing and its threshold

effects in the relationship between money and output. Lo and Piger (2005) examine A3 using a

regime switching model in the response of U.S. output to monetary policy and find that policy

actions during recessions have larger output effects than those taken during expansions. To deal

with the instability and the asymmetry in GCM between money and income, many researchers

have used split subsamples or rolling samples or nonlinear models such as regime switching models

and threshold models.

The objective of this paper is to study GCQ, which is useful for scenario analysis in implementing

monetary policy. Our empirical results (in Section 3) for GCQ is “symmetric”, in that GCQ is

insignificant in or near the center of the predicted distribution of the output growth while it is

strongly significant in both tails. (The results of Section 3 shows that GCQ is strong in both tails.)

The difference between the asymmetric GCM and GCQ is that the former refers to the empirical

fact that the predictive power of past money growth to predict the mean of output growth is stronger

when the past output growth is negative (in recession), while the (symmetric) GCQ refers to the fact

the predictive power of past money growth to predict the quantiles of output growth is stronger

when the scenario of our interest is the future output growth in tails of its predicted distribution.

Hence, the asymmetric GCM prescribes a monetary policy based on the past information, while

the GCQ enables a monetary policy to be based on the forward looking scenarios of output growth.

The GCQ can indicate how/whether the past and current money growth affects the various future

states (i.e., quantiles) of the output growth. Now we turn to GCD and GCQ in the next two
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subsections.

2.3 Money-Income Granger-causality in Distribution

Most empirical studies on money-income causality focus on Granger-causality in mean. As discussed

above, in many cases, one may care about conditional distribution of output growth. Even without

significant Granger-causality in mean, Granger-causality in distribution (GCD) may be significant.

Definition 2. (Non Granger-causality in distribution, NGCD): Xt does not Granger-cause

yt+1 in distribution if and only if Pr(yt+1 < y|Xt,Gt) = Pr(yt+1 < y|Gt) a.s. for all y.

Remark: Note that we can write for y ∈ R,

Gt+1(y|Ft) = Pr(yt+1 < y|Ft) = E[1(yt+1 < y|Ft] = E(zt+1|Ft), (8)

Gt+1(y|Gt) = Pr(yt+1 < y|Gt) = E[1(yt+1 < y|Gt] = E(zt+1|Gt), (9)

where zt+1 = 1(yt+1 < y). Therefore, Definition 2 is equivalent to

E(zt+1|Ft) = E(zt+1|Gt) a.s. for all y. (10)

Hong, Liu, and Wang (2005) use this to test for Granger-causality in risk for a fixed value of y

between two financial markets (Xt and yt+1). The GCD between Xt and yt+1 can be viewed as

GCM between Xt and zt+1. ¤
There is GCD if Pr(yt+1 < y|Xt,Gt) 6= Pr(yt+1 < y|Gt) for some y. Xt does not Granger-cause

yt+1 in distribution if Gt+1(y|Xt,Gt) = Gt+1(y|Gt) a.s. or gt+1(y|Xt,Gt) = gt+1(y|Gt) a.s. We use

the latter in density form to test for GCD by testing the null hypothesis that

H0 : gt+1(y|Xt,Gt) = gt+1(y|Gt) a.s. (11)

The null hypothesis H0 in (11) that Xt = (xt, . . . , xt+1−q)0 does not Granger-cause yt+1 in distri-

bution implies the following q hypotheses:

H
(l)
0 : gt+1(y|xt+1−l,Gt) = gt+1(y|Gt) a.s. l = 1, . . . , q. (12)

Denote F
(l)
t+1(x|Gt) = Pr(xt+1−l < x|Gt), Gt+1(y|Gt) = Pr(yt+1 < y|Gt), and H(l)

t+1(x, y|Gt) =

Pr(xt+1−l < x and yt+1 < y|Gt). Let f (l)t+1(x|Gt), gt+1(y|Gt), and h
(l)
t+1(x, y|Gt) be the corresponding

densities. Denote the PITs as u
(l)
t+1 = F

(l)
t+1(xt+1−l|Gt) and vt+1 = Gt+1(yt+1|Gt). Let C

(l)
t+1(u

(l), v|Gt)

8



and c
(l)
t+1(u

(l), v|Gt) be the conditional copula function and the conditional copula density function

respectively. Then, from equation (31) in Appendix,

gt+1(y|xt+1−l,Gt) = h
(l)
t+1(x, y|Gt)/f

(l)
t+1(x|Gt) (13)

= gt+1(y|Gt)× c(l)t (F
(l)
t+1(x|Gt), Gt(y|Gt)|Gt), l = 1, . . . , q. (14)

Hence, H
(l)
0 can be written as

H
(l)
0 : c

(l)
t+1(F

(l)
t+1(x|Gt), Gt(y|Gt)|Gt) = 1, l = 1, . . . , q. (15)

Hence, a test of GCD is equivalent to a test of whether this copula density function is an independent

copula for l = 1, . . . , q. To test for this, we extend Hong and Li (2005) to testing for independence

between one variable yt+1 and a set of variables Xt. In our test of money-income Granger-causality

in distribution, H
(l)
0 is based on the independence between PIT value of yt+1 and PIT value of

xt+1−l. We test H
(l)
0 using a nonparametric copula density ĉ

(l)
P (u, v) estimated by a product kernel

function based on the out-of-sample PIT values of {xt+1−l, yt+1}T−1t=R , i.e.,

ĉ
(l)
P (u, v) =

1

P

T−1X
t=R

K(u, û
(l)
t+1)K(v, v̂t+1), (16)

where K(·) is the kernel function in the product kernel, and

û
(l)
t+1 = F̂

(l)
t+1(xt+1−l) =

1

R+ 1

tX
s=t−R+1

1(xs ≤ xt+1−l), (17)

v̂t+1 = Ĝt+1(yt+1) =
1

R+ 1

tX
s=t−R+1

1(ys ≤ yt+1), t = R, . . . , T − 1, (18)

are the out-of-sample PIT values for xt+1−l and yt+1 respectively calculated with respect to the

marginal empirical distribution functions (EDF) that have been estimated using the rolling samples

of the most recent R observations at each time t (t = R, . . . , T − 1). To circumvent the boundary

problem (as the PITs are bounded on [0 1]), we apply the boundary-modified kernel used by Hong

and Li (2005):

Kh(x, y) =

⎧⎪⎪⎨⎪⎪⎩
h−1k

¡x−y
h

¢.R 1
−(x/h) k(u)du, if x ∈ [0, h),

h−1k
¡x−y
h

¢
, if x ∈ [h, 1− h),

h−1k
¡x−y
h

¢.R (1−x)/h
−1 k(u)du, if x ∈ (1− h, 1],

(19)

where k(·) is a symmetric kernel function and h is the bandwidth. For the null hypothesis H(l)
0 ,

the test statistic is based on a quadratic form5

M̂P (l) =

Z 1

0

Z 1

0
[ĉ
(l)
P (u, v)− 1]

2dudv. (20)

5See Granger (2003, p. 695) for a similar but different statistic based on the Hellinger entropy between two
densities. See also Hong and Li (2005, footnote 12) on the comments on their test using the Hellinger entropy.
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The test statistic Q̂P (l) is centered and scaled based on M̂P (l), i.e.,

Q̂P (l) = [PhM̂P (l)−A0h]/V
1/2
0 , l = 1, . . . , q, (21)

where A0h is the nonstochastic centering factor and V0 is the nonstochastic scale factor. Specifically,

A0h ≡
∙
(h−1 − 2)

Z 1

−1
k2(u)du+ 2

Z 1

0

Z b

−1
k2b (u)dudb

¸2
− 1, (22)

V0 ≡ 2

"Z 1

−1

∙Z 1

−1
k(u+ v)k(v)dv

¸2
du

#2
, (23)

in which kb(·) = k(·)/
R b
−1 k(v)dv. Hong and Li (2005) show, under some regularity conditions,

Q̂P (l) follows the standard normal distribution asymptotically as P →∞ under H
(l)
0 . As in Hong

and Li (2005) and Egorov et al. (2006), we also compute the test statistic WP = q
−1/2Pq

l=1 Q̂P (l),

which follows the standard normal distribution asymptotically as P →∞ under H0, for any fixed

q. For the empirical analysis in Section 3, Q̂P (l) (l = 1, . . . , q) and WP are reported with q = 12 in

Table 3.

2.4 Money-Income Granger-causality in Quantile

Let the conditional quantile of yt+1 be denoted qα(yt+1|Ft) such that Gt+1(qα(yt+1|Ft)|Ft) = α.

The conditional quantile qα(yt+1|Xt,Gt) can be obtained by inverting the conditional distribution

Gt+1(y|Ft) = α. Recall that Gt is the information set excluding Xt, i.e., Gt = Ft/{Xt}. We now

define GC in conditional quantile (GCQ).

Definition 3. (Non Granger-causality in quantile): Xt does not Granger-cause yt+1 in

α-quantile if and only if qα(yt+1|Xt,Gt) = qα(yt+1|Gt) a.s.

GC in conditional quantile refers to the case that qα(yt+1|Xt,Gt) 6= qα(yt+1|Gt). If Xt does not

Granger-cause yt+1 in distribution, qα(yt+1|Xt,Gt) = qα(yt+1|Gt) since gt+1(y|Xt,Gt) = gt+1(y|Gt).

Therefore, non-Granger-causality in distribution implies non-Granger-causality in conditional quan-

tile. GC in distribution does not necessarily imply GC in each quantile, while significant GC in any

conditional quantile implies significant GC in distribution. For some quantiles, Xt may Granger-

cause yt+1, while for other quantiles it may not. Granger (2003, p. 700) notes that some quantiles

may differ from other quantiles in time series behavior (such as long memory and stationarity). For

example, different parts of the distribution can have different time series properties; one tail could

be stationary and the other tail may have a unit root.

10



While the quantile forecast qα(yt+1|Xt,Gt) can be derived from inverting the density forecast, in

this paper we use a linear quantile regression. An out-of-sample test for GCQ is based on two nested

linear models. The first model does not account for money-income GC in α-quantile (referred as

Model 1 or “NGCQ”) and the second does (referred as Model 2 or “GCQ”):

Model 1 : yt+1 = qα(yt+1|Gt) + e1,t+1 = V 0t θ1(α) + e1,t+1, (24)

Model 2 : yt+1 = qα(yt+1|Xt,Gt) + e2,t+1 =W 0
tθ2(α) + e2,t+1, (25)

where Vt ∈ Gt and Wt = (X 0
t V

0
t ) are vectors of regressors and Vt includes a constant term.

The parameters θi(α) are estimated by minimizing the “check” function discussed in Koenker

and Bassett (1978) using the rolling sample of the most recent R observations at time t (t =

R, . . . , T − 1) :

θ̂1,t(α) = arg min
θ1(α)

tX
s=t−R+1

ρα(ys − V 0s−1θ1(α)),

θ̂2,t(α) = arg min
θ2(α)

tX
s=t−R+1

ρα(ys −W 0
s−1θ2(α)),

where ρα(e) ≡ [α−1(e < 0)]e. Denote q̂1α,t+1(θ̂1,t(α)), q̂2α,t+1(θ̂2,t(α)) for the α-quantile forecasts of

yt+1 from Model 1 and Model 2 respectively, and let êi,t+1(θ̂i,t(α)) = yt+1 − q̂iα,t+1(θ̂i,t(α)).

A test for Granger-causality is to compare the check-loss functions of forecasts conditional on

two information sets, Gt and Ft. We again use the conditional predictive ability test of GW (2005).

Let Lt+1(yt+1, ŷi,t+1) = ρα(êi,t+1(θ̂i,t(α))) be the check-loss function. The null hypothesis of NGCQ

is therefore

H0 : E[ρα(ê1,t+1(θ̂1,t(α)))− ρα(ê2,t+1(θ̂2,t(α)))|Ft] = 0, t = R, . . . , T − 1. (26)

Under the H0 the loss differential ∆Lt+1 ≡ ρα(ê1,t+1(θ̂1,t(α))) − ρα(ê2,t+1(θ̂2,t(α))) is an MDS,

which implies E(ht∆Lt+1) = 0 for any ht that is Ft-measurable. Denoting Zt+1 = ht∆Lt+1,

the GW (2005) statistic is of the same form as in (6) with Z̄ 0R,P =
1
P

PT−1
t=R ht∆Lt+1 and Ω̂P =

1
P

PT−1
t=R Zt+1Z

0
t+1. Under some regularity conditions, GWR,P →d χ2q as P → ∞ under H0. We

choose the same test function ht = Xt = (xt, . . . , xt+1−q)0 as before with q = 12. When the null

hypothesis of the equal conditional predictive ability is rejected, the forecast model selection rule

is the same as in (7) in Section 2.1.

In Section 3 for the empirical analysis, we chooseXt = (xt, . . . , xt+1−q)0 and Yt = (yt, . . . , yt+1−q)0

with q = 12, and let Gt = σ(Vt) be the σ-field generated by Vt = (Y
0
t , It, Bt)

0 where It denotes the 3
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month T-bill interest rate and Bt denotes the business cycle coincident index. See Table 1, Panel

A.

3 Empirical Analysis

In the literature, empirical studies of Granger-causality in mean commonly apply VAR models with

exogenous variables. Different exogenous variables, such as treasury bill rates, federal funds rates,

commercial paper rates and business cycle indicators are used. Industry production or disposable

personal income is used as the proxy for income, while M2 or M1 is used as the proxy for money

stock. The estimation relies on a recursive method or a rolling window method. Results for Granger-

causality test vary greatly in the literature with different choice of variables and sample periods.

We examine the money-income causality in mean with four data sets using an out-of-sample test.

We use monthly data of real personal income, industrial production index, M1 money stock,

M2 money stock, 3-month T-bill rate and the Stock and Watson experimental coincident index in

the empirical study. The sample period is from 1959:04 to 2001:12 (513 observations). The source

of the Stock and Watson experimental coincident index is the website of James Stock, while source

for all other data is the Federal Reserve Economic Database (FRED) of Federal Reserve Bank of

St. Luis.

We construct four data sets with different money and income variables. Data Sets 1 and 2 use

real personal income as income, and use M2 and M1 for money respectively. Data Sets 3 and 4 use

industrial production as income, and also use M2 and M1 for money respectively. The description

of those data sets is listed in Panel A of Table 1. Noting that output, money and interest rate

series are all non-stationary processes, we take the log-difference of output and money series and

first difference of interest rate series. Business cycle index (the Stock and Watson experimental

coincident index) is a stationary process itself. Denote yt as the output growth rate at time t, mt as

the money growth rate at time t, It as change of interest rate and Bt as the business cycle indicator

at time t.

For all out-of-sample tests and quantile forecasting, in each subsample we set T = 360 (30

years), with R = 240 (20 years) and P = 120 (10 years). Forecasting horizon is 1, and a recursive

method is used in each subsample. We also shift the subsample by one year each time. There are

12 subsamples used. We also construct Subsample 13 to 16 with whole sample (T = 500), but with

a different combination of R and P . A description of those subsamples is listed in Panel B of Table

1.
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3.1 Money-Income Granger-causality in Mean

In the forecasting setting, as discussed in Section 2, an out-of-sample Granger-causality test is

more appropriate. Therefore, we estimate two nested models. Model 1 is the model without

money-income Granger-causality in mean, while Model 2 is the model with money-income Granger-

causality in mean:

Model 1 : yt = β0 +
12X
l=1

βy,lyt−l + βIIt−1 + βBBt−1 + ε1,t, (27)

Model 2 : yt = β0 +
12X
l=1

βy,lyt−l +
12X
l=1

βm,lmt−l + βIIt−1 + βBBt−1 + ε2,t. (28)

The unconditional out-of-sample mean quadratic losses of these two models for all 16 subsamples

and 4 data sets are reported in Table 2, Panel A. In Data Set 1, 2 and 4, the unconditional mean

squared forecast error (MSFE) of Model 2 is generally less than that of Model 1, while in Data Set

3 the MSFE of Model 1 are smaller.

The p-values of GWR,P and IP statistics are listed in Panel B of Table 2. The p-values of GWR,P

indicate that the null hypothesis of the equal conditional predictive ability can not be rejected for

all subsamples and for all four data sets.

Comparing Data Sets 1,2 to Data Sets 3, 4, GCM remains insignificant whether real personal

income or industrial production is used. Similarly GCM is not significant with M1 or M2. The

results of the different sample periods (Subsample 1 to 12) are very robust, which show that with

the shift of the sample window, money-income causality in mean remains insignificant across all

the data sets. With the increase of ratio of P/R form Subsamples 13 to 16, GCM still remains

insignificant.

In a forecasting model, using so many lagged money variables in Model 2 may cause the “over-fit”

of the model and damage the forecasting performance. Therefore, in order to reduce the number of

parameters in the large model, we also check the robustness of our GCM results by using a weighed

moving average of (xt, . . . , xt+1−q) for estimation and forecasting, e.g.,
Pq
l=1wlxt+1−l with weights

wl such that
Pq
l=1wl = 1. We use three such different weight functions, namely a linear declining

weight, a equal weight (wl = q
−1), and a beta polynomial function which creates flexible nonlinear

declining weights as introduced in Ghysels et al. (2006). We use these weighted moving average (a

scalar) in place of the q-vector Xt in estimation, forecasting, and testing. It is found that Model

2 (GCM) is still no better than Model 1 (NGCM) in terms of predictive ability. Hence, we find

that out-of-sample GCM is not significant. Adding the information on lagged money growth rate is
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not very useful to improve the conditional mean forecasting of U.S. output growth over the various

sample periods and different choices of the variables.

3.2 Money-Income Granger-Causality in Distribution

We conduct an out-of-sample nonparametric test based on Hong and Li (2005) for money-income

Granger-causality in distribution as discussed in Section 2. Given a specific l, a nonparametric

copula function is estimated for the paired PITs values {û(l)t+1, v̂t+1}T−1t=R . For the boundary-modified

kernel in (19), we use a quartic kernel k(u) = 15
16(1−u2)21(|u| ≤ 1). For simplicity, bandwidths for

u and v are assumed to be the same. Following Hong and Li (2005), we set h = σ̂uP
−1/6, where

σ̂u is the standard error of û
(l)
t+1.

In Table 3, we report test statistics Q̂P (l) (l = 1, . . . , q) and WP for different data sets and

different sample periods with q = 12. The results indicate significant Granger-causality in distri-

bution for all data sets and most sub-samples. Although we do not find significant GCM in all

subsamples, we find strong GCD in most subsamples in the four data sets. From Subsamples 1 to

12, however, we find that GCD between different lags of money and output changes over time. The

results also indicate that the money-income GCD varies with sub-samples.

3.3 Money-Income Granger-Causality in Quantile

As discussed in Section 2, significant GCD does not imply GCQ in each conditional quantile.

Therefore, in our empirical study, we choose α = 0.05, 0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95. We

check the GCQ in these different quantiles of the conditional distribution of output growth.

We use the check loss function to compare the unconditional and conditional predictive ability

of the GCQ and the NGCQ models.6 The unconditional mean forecast check loss values for the

GCQ and the NGCQ models at the above quantiles are reported in Table 4. The unconditional

mean forecast loss ratios of GCQ to NGCQ model are depicted in Figures 1 and 2. The ratio

less than 1 indicates the money-income Granger-causality in quantile. To compare the conditional

check loss values the p-values of GWR,P and IP statistics are reported in Table 5.

In terms of check losses and loss ratios, the GCQ model performs better than the NGCQ model

in almost all subsamples of four data sets in the tails . In the central region, however, the GCQ

model has lower check losses than the NGCQ model only in a few subsamples. We find the same

pattern in the rolling subsamples (Subsample 1 to 12). This implies that GCQ is stable across the

6Besides the standard check loss, as a robust check, we also use the loss functions of the tick-exponential family
introduced in Komunjer (2005). The results using these generalized check functions were essentially the same as those
reported here with the standard check loss function and therefore not reported for space.
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data sets. In the whole data subsamples (Subsample 13 to 16), we find more significant GCQ with

the increase of P .

According to the p-values of GWR,P and IP for the conditional predictive ability test, the GCQ

model is significantly better to the NGCQ model in the tails of Data Set 1, 3 and 4, but not in

Data Set 2. After accounting for money-income Granger-causality, quantile forecasting of output is

improved at tails. The Granger-causality in quantile seems to be more significant between money

and industrial production (Data Set 3 and 4) than that between money and personal income (Data

Set 1 and 2). Comparing results of Data Set 1 and 2, we find M2 more significantly Granger-causes

real personal income than M1 does. Causality between M2 and industrial production and that

between M1 and industrial production are comparable to each other. Money does not improve

forecasting of the output growth in conditional mean and the conditional quantiles close to median.

However, in tails, money does significantly improve the forecasting of output tail quantiles.

4 Conclusions

The relationship between money and income is a much-studied but controversial topic in the liter-

ature. This paper follows a VAR framework and applies an out-of-sample test for money-income

Granger-causality. We find that money-income Granger-causality in mean is not significant for all

data sets and all subsample periods.

We test the money-income Granger-causality in distribution by a nonparametric copula. We

find more significant Granger-causality in distribution in all data sets. We define Granger-causality

in quantile and compare two quantile forecasts with or without money-income Granger-causality in

quantile. Empirical results show the potential of improving quantile forecasting of output growth

rate by incorporating information on money-income causality in quantile, especially in the tails.

Causality between money and industrial production seems to more significant than that between

money and real personal income, while M2 has stronger causality in quantiles to real personal

income than M1 does. However, money is not very useful for forecasting near the center quantiles

of the conditional distribution of output growth.

These empirical findings in this paper have never seen in the money-income literature. The new

results on GCQ have an important implication on monetary policy, showing that the effectiveness

of monetary policy has been underestimated by merely testing Granger-causality in mean. Money

does Granger-cause income more strongly than it has been known and therefore the information

on money growth can (and should) be more utilized in implementing monetary policy.
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5 Appendix: Copula

As in Granger (2003, p. 694) and Patton (2006), we define the conditional copula as follows.

Sklar’s Theorem for Conditional Copula: Let Ht+1(x, y) be a bivariate conditional distribution

function with conditional margin distributions Ft+1(x) and Gt+1(y). Then there exists a conditional

copula function C such that for all x, y

Ht+1(x, y) = Ct+1(Ft+1(x), Gt+1(y)), (29)

where Ft(x) = Pr [X ≤ x|Ft] ,Gt(y) = Pr [Y ≤ y|Ft] .

There are two important corollaries to this theorem:

Representation of Conditional Copula functions: The bivariate conditional copula function

can be obtained from the bivariate conditional joint distribution function Ht(x, y) by the following:

Ct+1(u, v) = Ht+1(F
−1
t+1(u), G

−1
t+1(v)) (30)

where u = Ft+1(x) and v = Gt+1(y).

Decomposition of Bivariate Density: Let ht+1(x, y) =
∂2Ht+1(x,y)

∂x∂y , ft+1(x) =
∂Ft+1(x)

∂x , and

gt+1(y) =
∂Gt+1(y)

∂y . Then

ht+1(x, y) = ft+1(x)× gt+1(y)× ct+1(Ft+1(x), Gt+1(y)), (31)

where c(u, v) = ∂2C(u,v)
∂u∂v is the conditional copula density function.

A copula function is called the independent copula if Ct+1(u, v) = uv and ct+1(u, v) = 1.
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Table 1. Description of Data Sets and Samples 
 

Panel A. Description of Data Sets 
 

 
Income  

Y 
Money 

x 
Interest Rate  

I 
Business Cycle Index  

B Observations
Data Set 1 Real Personal Income M2 3-Month T-bill Rate Coincident Index 513 
Data Set 2 Real Personal Income M1 3-Month T-bill Rate Coincident Index 513 
Data Set 3 Industrial Production Index M2 3-Month T-bill Rate Coincident Index 513 
Data Set 4 Industrial Production Index M1 3-Month T-bill Rate Coincident Index 513 

Note:  (1)   To make these series stationary, we take log-difference of income and money variables, and take 
first difference of interest rate.  

(2) The business cycle index series are taken from James Stock’s web page, 
http://ksghome.harvard.edu/~.JStock.Academic.Ksg/xri/0201/xindex.asc, while the other data are 
obtained from the Federal Reserve Economic Database (FRED) of Federal Reserve Bank of St. Luis.  

(3) All data are monthly data, with sample period of 1959:04 to 2001:12.  
  

 
Panel B. Description of Subsamples in Out-of-sample Tests 

 

 
Starting 
Month 

Ending 
Month T R P 

Subsample 1 1959:05 1990:04 360 240 120 
Subsample 2 1960:05 1991:04 360 240 120 
Subsample 3 1961:05 1992:04 360 240 120 
Subsample 4 1962:05 1993:04 360 240 120 
Subsample 5 1963:05 1994:04 360 240 120 
Subsample 6 1964:05 1995:04 360 240 120 
Subsample 7 1965:05 1996:04 360 240 120 
Subsample 8 1966:05 1997:04 360 240 120 
Subsample 9 1967:05 1998:04 360 240 120 
Subsample 10 1968:05 1999:04 360 240 120 
Subsample 11 1969:05 2000:04 360 240 120 
Subsample 12 1970:05 2001:04 360 240 120 
Subsample 13 1960:05 2001:12 500 380 120 
Subsample 14 1960:05 2001:12 500 320 180 
Subsample 15 1960:05 2001:12 500 260 240 
Subsample 16 1960:05 2001:12 500 200 300 

Note: (1)   Subsample 1 to 12 have a fixed window of 30 years, with 20 years as in-
sample period and 10 years as out-of-sample period. Subsamples are 
moving forward by a year each time.  

(2) Subsample 13 to 16 are the samples that contain all observations but with 
different combination of R and P. Due to the 12 lags used in the model and 
log-difference of money and income, there are 500 observations.  



Table 2.  Out-of-Sample Test for Granger-causality in Mean  
 

Panel A. Comparing Unconditional Predictive Ability (Squared error loss) 
  Data Set 1 Data Set 2 Data Set 3 Data Set 4 
Loss Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 
Subsample 1 0.0738 0.0717 0.0738 0.0705 0.0417 0.0424 0.0417 0.0427 
Subsample 2 0.0778 0.0744 0.0778 0.0750 0.0415 0.0419 0.0415 0.0418 
Subsample 3 0.0779 0.0745 0.0779 0.0741 0.0386 0.0392 0.0386 0.0381 
Subsample 4 0.0927 0.0884 0.0927 0.0902 0.0378 0.0377 0.0378 0.0365 
Subsample 5 0.0651 0.0641 0.0651 0.0662 0.0418 0.0420 0.0418 0.0401 
Subsample 6 0.0823 0.0780 0.0823 0.0784 0.0460 0.0468 0.0460 0.0455 
Subsample 7 0.0837 0.0805 0.0837 0.0802 0.0447 0.0449 0.0447 0.0443 
Subsample 8 0.0820 0.0776 0.0820 0.0775 0.0435 0.0436 0.0435 0.0417 
Subsample 9 0.0812 0.0760 0.0812 0.0762 0.0448 0.0450 0.0448 0.0434 
Subsample 10 0.0818 0.0768 0.0818 0.0770 0.0509 0.0516 0.0509 0.0498 
Subsample 11 0.0839 0.0785 0.0839 0.0788 0.0484 0.0485 0.0484 0.0472 
Subsample 12 0.1124 0.1036 0.1124 0.1031 0.0452 0.0455 0.0452 0.0438 
Subsample 13 0.1252 0.1162 0.1252 0.1155 0.0406 0.0405 0.0406 0.0395 
Subsample 14 0.0926 0.0881 0.0926 0.0874 0.0418 0.0419 0.0418 0.0409 
Subsample 15 0.1014 0.0956 0.1014 0.0949 0.0414 0.0420 0.0414 0.0410 
Subsample 16 0.0993 0.0937 0.0993 0.0920 0.0416 0.0420 0.0416 0.0413 

Notes:  Quadratic loss values for two models are reported. “Model 1” refers to the model without Granger-causality in 
mean, while “Model 2” refers to the model with Granger-causality in mean. The loss value of Model 2 is shaded when it 
is smaller than that of Model 1. 
 

Panel B. Test for Conditional Predictive Ability  
  Data Set 1 Data Set 2 Data Set 3 Data Set 4 
 PGW IGW PGW IGW PGW IGW PGW IGW 
Subsample 1 0.3955 0.5667 0.6308 0.3833 0.6314 0.6167 0.3383 0.4333 
Subsample 2 0.5427 0.5583 0.2509 0.4083 0.4873 0.5417 0.3636 0.4083 
Subsample 3 0.2569 0.5667 0.3610 0.3667 0.4353 0.5333 0.8697 0.4417 
Subsample 4 0.5396 0.5250 0.6276 0.4583 0.5154 0.5000 0.4129 0.4083 
Subsample 5 0.7671 0.5250 0.6449 0.5000 0.5722 0.5250 0.2756 0.4333 
Subsample 6 0.5588 0.4750 0.5760 0.4583 0.6943 0.5417 0.2167 0.5167 
Subsample 7 0.6292 0.5083 0.4428 0.5083 0.7674 0.5500 0.3960 0.5167 
Subsample 8 0.6817 0.4583 0.4991 0.5083 0.8779 0.5583 0.3921 0.5083 
Subsample 9 0.5851 0.4333 0.5627 0.5167 0.7594 0.5667 0.4280 0.4750 
Subsample 10 0.5015 0.4083 0.5034 0.4750 0.7118 0.6083 0.3141 0.4750 
Subsample 11 0.5988 0.3833 0.5423 0.4417 0.7641 0.5250 0.6201 0.4750 
Subsample 12 0.4113 0.3250 0.3970 0.4500 0.6066 0.5500 0.6814 0.4583 
Subsample 13 0.6436 0.4167 0.3064 0.4167 0.8561 0.4833 0.6548 0.4250 
Subsample 14 0.5155 0.4500 0.5330 0.4500 0.8597 0.5778 0.3590 0.4333 
Subsample 15 0.3409 0.4583 0.3249 0.3875 0.7694 0.5833 0.5249 0.4083 
Subsample 16 0.2876 0.4233 0.1256 0.3467 0.8342 0.5900 0.3855 0.4600 

Notes: PGW refers to the asymptotic p-value of the nR2 version of the Wald statistics of Giacomini and White (2005). We 
choose a linear test function which contains 12 lags of money growth rate. The asymptotic p-values of the Giacomini and 
White statistics are obtained from a chi-square distribution with 12 degrees of freedom. IGW refers to the IP statistic in 
Giacomini and White (2005). See Section 2.1. At 10% level, if PGW < 0.10 and IGW < 0.5, we may prefer Model 2 (GCM) 
over the Model 1 (NGCM); if PGW < 0.10 and IGW > 0.5, we may prefer Model 1 to Model 2. None of the cases satisfies 
(PGW < 0.10 and IGW < 0.5) or (PGW < 0.10 and IGW >0.5). In fact all p-values are very large. 



Table 3.  Hong and Li (2005) Statistics for Granger-causality in Distribution 
 

Panel A. Data Set 1 
 QP(1) QP(2) QP(3) QP(4) QP(5) QP(6) QP(7) QP(8) QP(9) QP(10) QP(11) QP(12) WP 

Subsample 1 -1.164 -0.355 -0.193 -0.229 2.150 1.206 -0.204 2.222 1.055 1.140 2.424 1.157 2.658
Subsample 2 -1.753 -1.212 -0.764 -0.301 1.545 1.346 -0.234 1.866 0.655 -0.021 0.065 -0.359 0.241
Subsample 3 -2.935 -1.085 -2.476 -1.640 0.223 0.304 -1.558 0.110 -0.973 -0.983 -0.833 -1.295 -3.793
Subsample 4 -1.872 -0.579 -1.775 -0.122 1.642 2.369 -0.773 0.626 -1.083 -0.788 -1.880 -1.597 -1.683
Subsample 5 0.890 1.235 0.486 1.375 3.590 2.695 -0.651 0.519 -1.060 -0.704 -1.677 -1.401 1.529
Subsample 6 2.698 2.601 2.909 3.512 5.836 4.960 2.546 4.006 3.670 3.238 0.755 1.044 10.905
Subsample 7 4.016 4.716 6.046 6.882 9.078 7.232 5.285 5.970 4.752 3.929 3.003 3.110 18.481
Subsample 8 2.574 2.539 2.617 3.478 4.914 4.695 4.233 4.840 5.256 6.664 4.192 4.796 14.664
Subsample 9 3.576 3.185 2.984 3.442 6.540 5.483 4.270 4.413 5.569 5.853 3.627 3.055 15.011
Subsample 10 0.989 0.359 1.164 0.865 3.570 3.142 1.757 1.906 3.300 4.354 2.645 1.774 7.455
Subsample 11 0.174 -1.117 -0.544 -0.657 1.023 0.641 0.431 -0.479 1.001 2.244 1.430 -0.598 1.024
Subsample 12 -0.536 -0.901 0.926 -0.227 2.011 0.930 -0.629 -1.333 0.706 1.551 0.106 -1.677 0.268
Subsample 13 -1.021 -1.603 0.861 -0.067 1.565 0.586 -0.672 -1.078 0.570 0.893 0.153 -1.436 -0.361
Subsample 14 -1.949 -2.155 -0.796 -0.403 2.311 0.543 -0.636 0.453 1.008 0.381 -0.157 -0.952 -0.679
Subsample 15 -0.509 -0.776 0.548 1.193 3.539 2.725 -0.492 1.080 2.170 1.235 1.472 -0.666 3.325
Subsample 16 0.934 -0.159 2.836 2.348 5.388 4.182 1.121 1.973 4.238 3.190 2.699 0.022 8.306

Panel B. Data Set 2 
 QP(1) QP(2) QP(3) QP(4) QP(5) QP(6) QP(7) QP(8) QP(9) QP(10) QP(11) QP(12) WP 

Subsample 1 -0.626 0.721 1.533 0.240 0.691 1.174 0.216 0.444 -0.365 2.648 3.470 1.886 3.474
Subsample 2 -0.259 -0.147 0.434 0.112 0.378 -0.277 -0.413 -0.034 -0.801 0.997 1.077 1.187 0.651
Subsample 3 0.270 0.271 1.280 0.178 0.325 0.767 0.114 0.089 -1.340 0.818 1.992 1.121 1.699
Subsample 4 1.702 2.618 2.743 0.986 0.842 2.338 1.739 0.726 -0.296 1.560 2.613 2.203 5.709
Subsample 5 0.324 0.909 1.313 -0.407 0.631 1.541 1.812 0.067 -0.111 1.712 2.158 1.376 3.269
Subsample 6 0.840 0.693 0.848 0.299 0.501 1.094 1.541 -0.046 0.116 0.929 1.660 1.185 2.789
Subsample 7 -0.560 -0.479 -1.397 -1.455 -1.003 -1.067 0.493 -0.294 -0.601 1.226 1.590 0.847 -0.779
Subsample 8 -0.270 -1.352 -1.248 -2.133 -1.155 -1.511 0.065 -1.869 -1.529 -1.133 -0.335 -0.633 -3.783
Subsample 9 0.813 0.131 0.346 -1.537 -0.908 -0.922 0.408 -0.756 -0.597 -0.183 -0.666 -0.816 -1.354
Subsample 10 1.782 0.259 0.256 0.029 0.802 -0.093 0.849 0.270 0.221 0.846 0.034 0.179 1.569
Subsample 11 2.476 1.799 2.393 1.418 2.244 0.427 1.450 1.061 1.229 1.539 0.651 0.071 4.838
Subsample 12 3.791 4.578 3.340 2.832 2.921 2.061 2.949 2.224 1.984 3.407 2.254 1.116 9.658
Subsample 13 4.966 6.319 4.890 4.689 4.864 4.351 4.352 3.218 2.594 3.200 1.454 0.695 13.161
Subsample 14 -0.766 -0.466 -1.353 -1.676 -0.884 -1.348 -1.122 -1.771 -2.595 -0.932 -0.722 -1.447 -4.354
Subsample 15 0.977 2.046 0.747 0.623 1.101 1.080 0.992 0.738 -1.424 1.353 1.550 0.119 2.859
Subsample 16 2.919 4.084 1.919 2.774 3.192 2.569 2.763 2.585 0.936 3.634 3.602 1.337 9.328



Panel C. Data Set 3 
 QP(1) QP(2) QP(3) QP(4) QP(5) QP(6) QP(7) QP(8) QP(9) QP(10) QP(11) QP(12) WP 

Subsample 1 -0.615 0.016 0.146 0.928 -0.115 0.168 -0.151 0.326 2.457 -0.071 1.421 2.722 2.088
Subsample 2 -0.300 -0.815 0.019 1.556 0.475 0.261 0.801 0.475 1.795 -0.868 0.222 1.316 1.425
Subsample 3 -0.060 -0.967 -0.555 1.109 0.137 -0.209 1.186 -0.415 0.356 -1.425 -0.517 0.362 -0.288
Subsample 4 0.014 -0.536 -0.359 1.680 0.984 -1.029 2.589 -1.096 -1.084 -1.383 -1.583 -0.990 -0.806
Subsample 5 2.386 1.871 1.918 2.767 2.283 -0.206 2.836 -0.456 -0.509 -0.544 -0.938 -0.098 3.265
Subsample 6 5.011 3.332 4.553 4.846 4.428 2.777 5.834 3.137 2.581 2.407 2.474 1.736 12.447
Subsample 7 6.930 6.254 7.004 7.478 7.165 5.471 8.036 5.632 4.028 4.295 4.189 3.525 20.209
Subsample 8 3.827 3.372 3.387 1.905 2.774 2.882 5.560 2.936 3.152 4.378 4.365 3.206 12.051
Subsample 9 2.280 2.517 2.700 2.307 3.241 2.444 4.931 2.811 3.201 3.455 3.263 1.826 10.097
Subsample 10 -0.104 0.173 0.674 0.465 0.751 0.610 4.171 1.762 2.069 1.711 2.810 1.370 4.752
Subsample 11 -0.913 -0.488 0.451 -0.486 -0.845 -0.022 2.940 -0.120 -0.038 -0.019 0.462 -1.177 -0.073
Subsample 12 -0.607 -0.053 1.151 -0.569 -0.888 0.111 3.074 1.057 -0.799 -1.001 -0.544 -1.068 -0.039
Subsample 13 -1.405 -0.420 0.336 -1.792 -1.984 -0.551 1.892 -0.218 -0.714 -1.051 -1.105 -1.855 -2.559
Subsample 14 -1.442 -0.785 -0.192 -1.350 -1.317 -1.215 0.822 -0.899 -0.981 -1.895 -0.923 -1.736 -3.439
Subsample 15 0.246 1.173 1.756 1.320 0.184 0.472 2.490 0.552 1.379 -0.947 0.133 -0.636 2.344
Subsample 16 1.280 3.100 2.357 1.237 0.257 1.908 4.866 2.181 2.295 -0.182 1.413 -0.018 5.974

Panel D. Data Set 4 
 QP(1) QP(2) QP(3) QP(4) QP(5) QP(6) QP(7) QP(8) QP(9) QP(10) QP(11) QP(12) WP 

Subsample 1 -1.119 -0.602 0.120 1.060 0.214 0.450 2.082 1.653 0.335 0.331 2.063 2.448 2.608
Subsample 2 -1.115 -0.902 -0.074 0.064 -0.367 -0.175 1.451 0.760 0.738 -0.411 2.154 2.960 1.467
Subsample 3 -0.561 -0.065 0.352 0.990 0.864 -0.107 1.218 1.396 0.066 -0.341 1.256 1.520 1.901
Subsample 4 -0.769 0.080 0.668 0.636 1.222 0.018 1.120 1.023 0.175 -0.067 0.465 0.824 1.557
Subsample 5 -0.536 0.101 0.277 0.599 1.114 -0.087 1.990 1.728 0.319 0.361 1.049 1.063 2.303
Subsample 6 -0.027 0.393 0.699 1.620 1.823 0.299 1.881 0.709 -0.082 0.335 0.939 1.063 2.786
Subsample 7 -1.776 -0.610 -0.342 -0.113 0.079 0.163 0.651 -0.499 -0.536 0.530 0.964 0.814 -0.195
Subsample 8 -1.990 -1.006 -0.855 -0.610 -0.992 -1.358 -0.886 -1.827 -2.647 -1.487 -0.756 -0.484 -4.300
Subsample 9 -0.502 -0.045 0.883 0.102 -0.326 -0.414 -0.108 -1.599 -1.475 -0.800 -0.985 -1.025 -1.816
Subsample 10 1.337 1.417 0.869 1.182 1.140 0.600 0.789 -0.639 0.279 1.175 0.262 0.964 2.707
Subsample 11 2.623 2.696 1.990 3.156 1.929 1.471 1.420 0.046 1.301 2.397 1.588 2.965 6.808
Subsample 12 3.591 4.635 3.488 5.044 3.510 2.387 2.021 1.413 2.933 4.781 3.947 4.621 12.231
Subsample 13 3.700 5.968 4.239 5.951 3.888 3.603 2.776 1.696 1.864 3.690 2.936 4.388 12.903
Subsample 14 -1.802 -0.420 -0.943 0.036 -1.665 -1.146 -1.540 -2.198 -1.991 -1.360 -0.682 0.166 -3.910
Subsample 15 -0.469 1.639 0.581 1.826 0.052 -0.764 0.347 0.469 -0.398 0.331 1.220 3.715 2.468
Subsample 16 1.570 3.996 2.187 5.170 2.128 2.021 1.834 0.875 1.990 2.435 3.387 6.474 9.834

Notes: QP(l) and WP are asymptotically N(0,1) as P goes to infinity. They are one-sided test with the upper tailed 5% N(0,1) critical value of 
1.645. Shaded are the statistics significant at 5% level. 



Table 4.  Out-of-Sample Test for Granger-causality in Quantiles  
Comparing Unconditional Predictive Ability (Check loss) 

 
Panel A. Data Set 1 

 
α=0.05 α=0.10 α=0.20 α=0.30 α=0.40 α=0.50 α=0.60 α=0.70 α=0.80 α=0.90 α=0.95 Sub-

sample NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ 
1 0.0342 0.0264 0.0537 0.0551 0.0603 0.0617 0.0705 0.0710 0.0741 0.0729 0.0751 0.0723 0.0731 0.0722 0.0718 0.0711 0.0647 0.0654 0.0471 0.0483 0.0343 0.0292 
2 0.0399 0.0277 0.0538 0.0535 0.0613 0.0641 0.0721 0.0715 0.0766 0.0743 0.0789 0.0745 0.0756 0.0738 0.0734 0.0733 0.0651 0.0690 0.0483 0.0491 0.0345 0.0301 
3 0.0413 0.0272 0.0541 0.0528 0.0627 0.0652 0.0718 0.0712 0.0787 0.0741 0.0820 0.0749 0.0791 0.0749 0.0761 0.0706 0.0649 0.0652 0.0457 0.0449 0.0321 0.0290 
4 0.0361 0.0259 0.0586 0.0573 0.0719 0.0720 0.0828 0.0851 0.0932 0.0930 0.0952 0.0920 0.0928 0.0899 0.0868 0.0832 0.0731 0.0713 0.0498 0.0463 0.0311 0.0296 
5 0.0244 0.0224 0.0419 0.0427 0.0553 0.0565 0.0678 0.0694 0.0802 0.0780 0.0806 0.0790 0.0792 0.0752 0.0739 0.0693 0.0647 0.0594 0.0430 0.0367 0.0236 0.0232 
6 0.0327 0.0300 0.0418 0.0415 0.0594 0.0566 0.0716 0.0738 0.0826 0.0793 0.0829 0.0833 0.0829 0.0782 0.0790 0.0710 0.0650 0.0615 0.0463 0.0390 0.0285 0.0223 
7 0.0332 0.0311 0.0412 0.0445 0.0580 0.0567 0.0714 0.0743 0.0801 0.0819 0.0823 0.0826 0.0817 0.0804 0.0797 0.0766 0.0679 0.0643 0.0468 0.0423 0.0284 0.0238 
8 0.0305 0.0277 0.0406 0.0394 0.0580 0.0573 0.0701 0.0733 0.0782 0.0829 0.0804 0.0821 0.0790 0.0800 0.0784 0.0752 0.0665 0.0655 0.0466 0.0420 0.0277 0.0218 
9 0.0277 0.0289 0.0423 0.0378 0.0606 0.0594 0.0730 0.0738 0.0763 0.0820 0.0800 0.0842 0.0830 0.0836 0.0796 0.0781 0.0626 0.0617 0.0396 0.0362 0.0255 0.0183 
10 0.0280 0.0274 0.0425 0.0379 0.0602 0.0572 0.0730 0.0764 0.0802 0.0838 0.0814 0.0846 0.0814 0.0826 0.0797 0.0792 0.0664 0.0653 0.0415 0.0392 0.0260 0.0173 
11 0.0294 0.0291 0.0443 0.0395 0.0641 0.0592 0.0755 0.0776 0.0816 0.0875 0.0838 0.0867 0.0844 0.0855 0.0817 0.0809 0.0670 0.0662 0.0426 0.0406 0.0257 0.0168 
12 0.0419 0.0339 0.0602 0.0537 0.0772 0.0701 0.0868 0.0891 0.0937 0.0986 0.0988 0.1006 0.0999 0.1010 0.0936 0.0950 0.0792 0.0762 0.0521 0.0478 0.0336 0.0259 
13 0.0409 0.0346 0.0664 0.0639 0.0865 0.0869 0.0987 0.1010 0.1053 0.1093 0.1093 0.1099 0.1051 0.1077 0.1027 0.0993 0.0840 0.0838 0.0588 0.0483 0.0335 0.0256 
14 0.0346 0.0324 0.0525 0.0503 0.0692 0.0705 0.0800 0.0821 0.0858 0.0896 0.0894 0.0898 0.0860 0.0879 0.0834 0.0824 0.0699 0.0707 0.0490 0.0450 0.0306 0.0241 
15 0.0379 0.0320 0.0604 0.0593 0.0743 0.0748 0.0855 0.0865 0.0912 0.0922 0.0943 0.0922 0.0909 0.0908 0.0889 0.0859 0.0749 0.0757 0.0535 0.0503 0.0346 0.0280 
16 0.0378 0.0326 0.0589 0.0572 0.0720 0.0728 0.0829 0.0845 0.0879 0.0904 0.0906 0.0895 0.0874 0.0880 0.0856 0.0836 0.0715 0.0728 0.0513 0.0470 0.0313 0.0255 

 
Note: (1)   The numbers in the first column is referring to the 16 subsamples. See Table 1, Panel B. 
          (2)  “NGCQ” refers to Model 1, the quantile forecasting model without money-income Granger-causality in quantile, i.e, not including the lagged money growth 

rate as independent variables.  
          (3)  “GCQ” refers to Model 2, the quantile forecasting model with money-income Granger-causality in quantile, i.e, including the lagged money growth rate as 

independent variables.  
          (4)   A check loss function proposed by Koenker and Bassett (1978) is used to evaluate the out-of-sample performance of the two quantile forecasting models. 

The out-of-sample average of the loss values are reported in this table.  The loss value of Model 2 is shaded when it is smaller than that of Model 1. 
        

 
 



 
 

Panel B. Data Set 2 
 

α=0.05 α=0.10 α=0.20 α=0.30 α=0.40 α=0.50 α=0.60 α=0.70 α=0.80 α=0.90 α=0.95 Sub-
sample NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ 

1 0.0342 0.0245 0.0537 0.0429 0.0603 0.0626 0.0705 0.0679 0.0741 0.0712 0.0751 0.0735 0.0731 0.0749 0.0718 0.0746 0.0647 0.0670 0.0471 0.0465 0.0343 0.0278 
2 0.0399 0.0249 0.0538 0.0447 0.0613 0.0648 0.0721 0.0702 0.0766 0.0730 0.0789 0.0747 0.0756 0.0775 0.0734 0.0753 0.0651 0.0686 0.0483 0.0468 0.0345 0.0270 
3 0.0413 0.0229 0.0541 0.0439 0.0627 0.0608 0.0718 0.0690 0.0787 0.0737 0.0820 0.0764 0.0791 0.0786 0.0761 0.0756 0.0649 0.0624 0.0457 0.0415 0.0321 0.0254 
4 0.0361 0.0211 0.0586 0.0496 0.0719 0.0686 0.0828 0.0834 0.0932 0.0908 0.0952 0.0952 0.0928 0.0941 0.0868 0.0857 0.0731 0.0684 0.0498 0.0423 0.0311 0.0257 
5 0.0244 0.0217 0.0419 0.0401 0.0553 0.0549 0.0678 0.0724 0.0802 0.0775 0.0806 0.0817 0.0792 0.0786 0.0739 0.0691 0.0647 0.0570 0.0430 0.0351 0.0236 0.0203 
6 0.0327 0.0249 0.0418 0.0409 0.0594 0.0548 0.0716 0.0724 0.0826 0.0817 0.0829 0.0845 0.0829 0.0806 0.0790 0.0709 0.0650 0.0587 0.0463 0.0346 0.0285 0.0182 
7 0.0332 0.0256 0.0412 0.0421 0.0580 0.0558 0.0714 0.0717 0.0801 0.0787 0.0823 0.0842 0.0817 0.0814 0.0797 0.0748 0.0679 0.0641 0.0468 0.0363 0.0284 0.0196 
8 0.0305 0.0268 0.0406 0.0390 0.0580 0.0548 0.0701 0.0725 0.0782 0.0799 0.0804 0.0830 0.0790 0.0780 0.0784 0.0741 0.0665 0.0644 0.0466 0.0361 0.0277 0.0170 
9 0.0277 0.0286 0.0423 0.0384 0.0606 0.0574 0.0730 0.0713 0.0763 0.0825 0.0800 0.0854 0.0830 0.0810 0.0796 0.0748 0.0626 0.0587 0.0396 0.0360 0.0255 0.0183 

10 0.0280 0.0279 0.0425 0.0383 0.0602 0.0592 0.0730 0.0753 0.0802 0.0849 0.0814 0.0853 0.0814 0.0831 0.0797 0.0747 0.0664 0.0644 0.0415 0.0380 0.0260 0.0180 
11 0.0294 0.0297 0.0443 0.0413 0.0641 0.0620 0.0755 0.0787 0.0816 0.0860 0.0838 0.0893 0.0844 0.0856 0.0817 0.0774 0.0670 0.0640 0.0426 0.0381 0.0257 0.0185 
12 0.0419 0.0334 0.0602 0.0501 0.0772 0.0732 0.0868 0.0913 0.0937 0.0995 0.0988 0.1047 0.0999 0.0997 0.0936 0.0918 0.0792 0.0754 0.0521 0.0455 0.0336 0.0268 
13 0.0409 0.0319 0.0664 0.0605 0.0865 0.0862 0.0987 0.1016 0.1053 0.1119 0.1093 0.1110 0.1051 0.1082 0.1027 0.1029 0.0840 0.0899 0.0588 0.0498 0.0335 0.0292 
14 0.0346 0.0272 0.0525 0.0483 0.0692 0.0686 0.0800 0.0809 0.0858 0.0889 0.0894 0.0892 0.0860 0.0884 0.0834 0.0835 0.0699 0.0717 0.0490 0.0440 0.0306 0.0243 
15 0.0379 0.0278 0.0604 0.0527 0.0743 0.0750 0.0855 0.0857 0.0912 0.0925 0.0943 0.0935 0.0909 0.0933 0.0889 0.0890 0.0749 0.0775 0.0535 0.0489 0.0346 0.0287 
16 0.0378 0.0297 0.0589 0.0522 0.0720 0.0731 0.0829 0.0829 0.0879 0.0900 0.0906 0.0900 0.0874 0.0889 0.0856 0.0846 0.0715 0.0742 0.0513 0.0459 0.0313 0.0263 

 
 
 
 
 
 
 
 
 
 

 



 
Panel C. Data Set 3 

 
α=0.05 α=0.10 α=0.20 α=0.30 α=0.40 α=0.50 α=0.60 α=0.70 α=0.80 α=0.90 α=0.95 Sub-

sample NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ 
1 0.0200 0.0163 0.0335 0.0328 0.0528 0.0520 0.0674 0.0685 0.0755 0.0767 0.0823 0.0800 0.0800 0.0764 0.0704 0.0681 0.0572 0.0577 0.0344 0.0345 0.0199 0.0183 
2 0.0197 0.0155 0.0338 0.0306 0.0569 0.0550 0.0693 0.0718 0.0778 0.0779 0.0807 0.0811 0.0780 0.0764 0.0677 0.0664 0.0535 0.0543 0.0332 0.0342 0.0196 0.0174 
3 0.0191 0.0147 0.0315 0.0279 0.0518 0.0513 0.0653 0.0657 0.0744 0.0727 0.0780 0.0750 0.0738 0.0764 0.0664 0.0674 0.0519 0.0517 0.0337 0.0334 0.0195 0.0181 
4 0.0181 0.0149 0.0316 0.0278 0.0515 0.0506 0.0637 0.0607 0.0751 0.0708 0.0747 0.0731 0.0726 0.0722 0.0656 0.0625 0.0505 0.0500 0.0335 0.0356 0.0212 0.0191 
5 0.0198 0.0145 0.0362 0.0299 0.0575 0.0527 0.0701 0.0681 0.0798 0.0735 0.0787 0.0773 0.0746 0.0772 0.0668 0.0660 0.0516 0.0485 0.0329 0.0352 0.0204 0.0192 
6 0.0223 0.0157 0.0379 0.0313 0.0580 0.0607 0.0737 0.0744 0.0828 0.0825 0.0837 0.0859 0.0804 0.0822 0.0707 0.0713 0.0553 0.0541 0.0356 0.0346 0.0214 0.0192 
7 0.0213 0.0166 0.0387 0.0315 0.0592 0.0583 0.0748 0.0728 0.0811 0.0808 0.0806 0.0803 0.0783 0.0800 0.0683 0.0684 0.0539 0.0536 0.0365 0.0333 0.0208 0.0192 
8 0.0206 0.0165 0.0398 0.0310 0.0584 0.0564 0.0734 0.0728 0.0784 0.0784 0.0785 0.0801 0.0758 0.0786 0.0695 0.0687 0.0561 0.0536 0.0344 0.0331 0.0221 0.0201 
9 0.0208 0.0167 0.0392 0.0317 0.0590 0.0578 0.0741 0.0738 0.0812 0.0795 0.0807 0.0814 0.0772 0.0789 0.0703 0.0708 0.0574 0.0543 0.0366 0.0344 0.0232 0.0207 

10 0.0207 0.0168 0.0417 0.0337 0.0659 0.0619 0.0776 0.0774 0.0859 0.0841 0.0855 0.0870 0.0824 0.0833 0.0751 0.0743 0.0623 0.0601 0.0406 0.0373 0.0231 0.0231 
11 0.0195 0.0169 0.0420 0.0332 0.0646 0.0615 0.0809 0.0771 0.0881 0.0874 0.0878 0.0879 0.0828 0.0824 0.0744 0.0737 0.0609 0.0580 0.0392 0.0324 0.0195 0.0185 
12 0.0195 0.0167 0.0421 0.0323 0.0618 0.0578 0.0769 0.0731 0.0821 0.0855 0.0835 0.0827 0.0799 0.0792 0.0724 0.0702 0.0578 0.0556 0.0399 0.0324 0.0197 0.0187 
13 0.0206 0.0172 0.0414 0.0331 0.0607 0.0553 0.0722 0.0708 0.0770 0.0789 0.0813 0.0792 0.0745 0.0723 0.0663 0.0645 0.0552 0.0535 0.0350 0.0297 0.0188 0.0163 
14 0.0195 0.0164 0.0382 0.0318 0.0592 0.0553 0.0719 0.0703 0.0782 0.0799 0.0815 0.0810 0.0757 0.0761 0.0671 0.0663 0.0538 0.0531 0.0339 0.0312 0.0197 0.0176 
15 0.0200 0.0162 0.0367 0.0312 0.0568 0.0543 0.0705 0.0701 0.0776 0.0796 0.0827 0.0813 0.0773 0.0758 0.0684 0.0667 0.0556 0.0560 0.0346 0.0325 0.0193 0.0175 
16 0.0195 0.0161 0.0377 0.0321 0.0582 0.0550 0.0714 0.0702 0.0774 0.0793 0.0820 0.0810 0.0771 0.0759 0.0683 0.0676 0.0557 0.0557 0.0347 0.0317 0.0192 0.0173 

 
 
 
 
 
 
. 
 
 
 
 
 



 
Panel D. Data Set 4 

 
α=0.05 α=0.10 α=0.20 α=0.30 α=0.40 α=0.50 α=0.60 α=0.70 α=0.80 α=0.90 α=0.95 Sub-

sample NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ NGCQ GCQ 
1 0.0200 0.0167 0.0335 0.0329 0.0528 0.0529 0.0674 0.0694 0.0755 0.0782 0.0823 0.0782 0.0800 0.0749 0.0704 0.0701 0.0572 0.0564 0.0344 0.0343 0.0199 0.0167 
2 0.0197 0.0165 0.0338 0.0322 0.0569 0.0549 0.0693 0.0698 0.0778 0.0765 0.0807 0.0779 0.0780 0.0735 0.0677 0.0670 0.0535 0.0551 0.0332 0.0361 0.0196 0.0173 
3 0.0191 0.0155 0.0315 0.0306 0.0518 0.0489 0.0653 0.0644 0.0744 0.0719 0.0780 0.0744 0.0738 0.0717 0.0664 0.0646 0.0519 0.0526 0.0337 0.0349 0.0195 0.0183 
4 0.0181 0.0164 0.0316 0.0304 0.0515 0.0484 0.0637 0.0609 0.0751 0.0666 0.0747 0.0698 0.0726 0.0720 0.0656 0.0630 0.0505 0.0534 0.0335 0.0356 0.0212 0.0188 
5 0.0198 0.0172 0.0362 0.0327 0.0575 0.0525 0.0701 0.0655 0.0798 0.0711 0.0787 0.0745 0.0746 0.0725 0.0668 0.0662 0.0516 0.0526 0.0329 0.0353 0.0204 0.0188 
6 0.0223 0.0182 0.0379 0.0340 0.0580 0.0565 0.0737 0.0736 0.0828 0.0774 0.0837 0.0799 0.0804 0.0781 0.0707 0.0718 0.0553 0.0565 0.0356 0.0384 0.0214 0.0187 
7 0.0213 0.0191 0.0387 0.0353 0.0592 0.0582 0.0748 0.0697 0.0811 0.0779 0.0806 0.0795 0.0783 0.0768 0.0683 0.0711 0.0539 0.0545 0.0365 0.0361 0.0208 0.0178 
8 0.0206 0.0169 0.0398 0.0349 0.0584 0.0553 0.0734 0.0675 0.0784 0.0759 0.0785 0.0769 0.0758 0.0747 0.0695 0.0709 0.0561 0.0544 0.0344 0.0341 0.0221 0.0187 
9 0.0208 0.0159 0.0392 0.0341 0.0590 0.0557 0.0741 0.0694 0.0812 0.0772 0.0807 0.0787 0.0772 0.0767 0.0703 0.0723 0.0574 0.0580 0.0366 0.0349 0.0232 0.0196 

10 0.0207 0.0168 0.0417 0.0400 0.0659 0.0590 0.0776 0.0732 0.0859 0.0812 0.0855 0.0821 0.0824 0.0799 0.0751 0.0764 0.0623 0.0615 0.0406 0.0390 0.0231 0.0194 
11 0.0195 0.0164 0.0420 0.0389 0.0646 0.0589 0.0809 0.0770 0.0881 0.0813 0.0878 0.0837 0.0828 0.0774 0.0744 0.0742 0.0609 0.0597 0.0392 0.0364 0.0195 0.0189 
12 0.0195 0.0165 0.0421 0.0352 0.0618 0.0555 0.0769 0.0728 0.0821 0.0777 0.0835 0.0788 0.0799 0.0745 0.0724 0.0722 0.0578 0.0574 0.0399 0.0370 0.0197 0.0193 
13 0.0206 0.0168 0.0414 0.0325 0.0607 0.0536 0.0722 0.0671 0.0770 0.0738 0.0813 0.0736 0.0745 0.0710 0.0663 0.0673 0.0552 0.0528 0.0350 0.0327 0.0188 0.0169 
14 0.0195 0.0163 0.0382 0.0325 0.0592 0.0547 0.0719 0.0687 0.0782 0.0771 0.0815 0.0760 0.0757 0.0730 0.0671 0.0679 0.0538 0.0531 0.0339 0.0329 0.0197 0.0175 
15 0.0200 0.0165 0.0367 0.0320 0.0568 0.0531 0.0705 0.0676 0.0776 0.0769 0.0827 0.0766 0.0773 0.0736 0.0684 0.0690 0.0556 0.0542 0.0346 0.0338 0.0193 0.0170 
16 0.0195 0.0162 0.0377 0.0321 0.0582 0.0534 0.0714 0.0685 0.0774 0.0767 0.0820 0.0768 0.0771 0.0739 0.0683 0.0692 0.0557 0.0548 0.0347 0.0336 0.0192 0.0173 

 
 
 
 
 
 
 
 
 



  

Table 5.  Out-of-Sample Test for Granger-causality in Quantiles 
Test for Conditional Predictive Ability 

 
Panel A. Data Set 1 

 
α=0.05 α=0.10 α=0.20 α=0.30 α=0.40 α=0.50 α=0.60 α=0.70 α=0.80 α=0.90 α=0.95 Sub-

sample PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW 
1 0.2818 0.5083 0.5807 0.5167 0.1110 0.5917 0.3490 0.6250 0.8786 0.7500 0.5353 0.6083 0.3963 0.6417 0.1906 0.7083 0.0004 0.5667 0.0137 0.6833 0.0001 0.3333 
2 0.0117 0.4500 0.7422 0.4667 0.0471 0.6083 0.3107 0.5167 0.8232 0.6167 0.9025 0.4833 0.8333 0.5417 0.4207 0.6500 0.0002 0.6750 0.0085 0.6417 0.0015 0.4000 
3 0.0093 0.4167 0.9786 0.4417 0.3736 0.6750 0.5723 0.5583 0.9165 0.5417 0.7042 0.4083 0.2305 0.4167 0.2389 0.4583 0.1774 0.6167 0.0220 0.5667 0.0464 0.3583 
4 0.0030 0.4667 0.9390 0.4667 0.7655 0.5583 0.7137 0.6250 0.8008 0.7417 0.5908 0.6417 0.4173 0.5000 0.2084 0.5083 0.0739 0.4667 0.0192 0.5000 0.0691 0.4583 
5 0.0023 0.4000 0.8785 0.5667 0.7851 0.5583 0.4333 0.6083 0.8219 0.6500 0.4146 0.6000 0.2930 0.4417 0.0937 0.4500 0.0759 0.3500 0.2597 0.3917 0.0133 0.5417 
6 0.1779 0.3500 0.4385 0.4917 0.5595 0.4083 0.5189 0.5333 0.7671 0.5250 0.7387 0.6333 0.4010 0.4333 0.2000 0.4083 0.6170 0.3750 0.0859 0.3917 0.0496 0.4083 
7 0.4243 0.3417 0.0984 0.6000 0.6746 0.4417 0.5268 0.5917 0.5550 0.5583 0.6462 0.5333 0.5811 0.4750 0.2645 0.4583 0.6681 0.3417 0.1077 0.4167 0.0797 0.4417 
8 0.0090 0.2833 0.0540 0.4583 0.4654 0.4750 0.3460 0.5917 0.3853 0.6250 0.7581 0.5750 0.6841 0.4750 0.3531 0.4500 0.6698 0.5167 0.4106 0.3750 0.3230 0.3333 
9 0.1369 0.5083 0.0245 0.1250 0.4969 0.4500 0.6165 0.5333 0.0344 0.6667 0.0833 0.6417 0.5256 0.5417 0.4596 0.4917 0.2128 0.4583 0.3320 0.4167 0.0782 0.3583 

10 0.0308 0.4333 0.0463 0.1583 0.4546 0.4000 0.2683 0.5583 0.0689 0.5583 0.5733 0.6083 0.8052 0.5750 0.5605 0.4833 0.5908 0.4250 0.1066 0.3833 0.0577 0.2917 
11 0.0264 0.4000 0.0482 0.2417 0.6302 0.3000 0.3969 0.4917 0.1790 0.6750 0.7448 0.5917 0.6209 0.5667 0.4993 0.4500 0.5628 0.3667 0.2056 0.3417 0.0101 0.2500 
12 0.0276 0.4167 0.1218 0.1917 0.5791 0.3000 0.2310 0.5083 0.1766 0.6667 0.5141 0.4917 0.7996 0.4917 0.4245 0.4833 0.2632 0.3000 0.0051 0.2667 0.0140 0.2417 
13 0.1685 0.4583 0.0846 0.4167 0.2196 0.3833 0.1963 0.5500 0.1008 0.6000 0.7883 0.6750 0.4584 0.6167 0.2115 0.4417 0.2124 0.4250 0.2393 0.2833 0.0408 0.2500 
14 0.1136 0.5056 0.2827 0.4056 0.3981 0.5000 0.2287 0.6111 0.1810 0.6778 0.7713 0.6944 0.5418 0.6000 0.3520 0.4944 0.2462 0.4944 0.2197 0.3889 0.0011 0.1889 
15 0.0852 0.4958 0.3348 0.4333 0.5132 0.4958 0.3477 0.5917 0.3066 0.6375 0.6190 0.6333 0.4214 0.5833 0.2017 0.4833 0.0854 0.5458 0.0676 0.3917 0.0000 0.2375 
16 0.0105 0.4567 0.0902 0.3967 0.1426 0.5100 0.1308 0.6100 0.0696 0.6600 0.3022 0.5867 0.2714 0.6133 0.1773 0.4867 0.0378 0.5267 0.0237 0.3300 0.0000 0.2433 

 
Notes: (1)   The numbers in the first column is referring to the 16 subsamples. See Table 1, Panel B.  
  (2) PGW refers to the asymptotic p-value of the nR2 version of the Wald statistics of Giacomini and White (2005). We choose a linear test function which contains 12 lags of 

money growth rate. The asymptotic p-values of the Giacomini and White statistics are obtained from a chi-square distribution with 12 degrees of freedom. 
(3) IGW  refers to the IP statistic in Giacomini and White (2005). See Section 2.4. The cases with IGW < 0.5 are in italic font. 
(4) At 10% level, if PGW < 0.10 and IGW < 0.5, we prefer Model 2 (GCQ) over Model 1 (NGCQ). These cases are reported in bold font. If PGW < 0.10 and IGW > 0.5, we prefer 

Model 1 to Model 2. 
 
 
 



  

Panel B. Data Set 2 
 

α=0.05 α=0.10 α=0.20 α=0.30 α=0.40 α=0.50 α=0.60 α=0.70 α=0.80 α=0.90 α=0.95 Sub-
sample PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW 

1 0.2807 0.3667 0.1231 0.3750 0.4618 0.6250 0.2078 0.4667 0.8602 0.3917 0.8072 0.5250 0.9176 0.6000 0.1888 0.5667 0.4006 0.6583 0.2339 0.3667 0.7987 0.5583 
2 0.1806 0.3000 0.0917 0.3583 0.1331 0.6500 0.8506 0.5417 0.6823 0.4667 0.8186 0.4833 0.2067 0.6083 0.3493 0.6083 0.5402 0.6500 0.7581 0.5333 0.4597 0.5667 
3 0.3696 0.3417 0.1491 0.3833 0.3980 0.4750 0.1047 0.5583 0.4155 0.4333 0.7648 0.4250 0.0801 0.5333 0.2544 0.5250 0.4612 0.5250 0.2908 0.5167 0.1073 0.4667 
4 0.3098 0.3833 0.8066 0.3917 0.2213 0.5000 0.5586 0.5500 0.7943 0.4417 0.5041 0.5417 0.4057 0.5000 0.7743 0.5833 0.9892 0.4750 0.4418 0.4917 0.2694 0.4000 
5 0.1841 0.5750 0.7400 0.5500 0.2389 0.5750 0.4050 0.5417 0.9000 0.4417 0.5773 0.5417 0.5708 0.4750 0.6092 0.5000 0.8365 0.4667 0.2673 0.4917 0.2902 0.5250 
6 0.3506 0.4500 0.5748 0.5000 0.7058 0.5917 0.4254 0.5417 0.8269 0.4917 0.3867 0.5667 0.9264 0.4667 0.8446 0.5583 0.6801 0.4917 0.7764 0.4417 0.2083 0.4000 
7 0.1188 0.4917 0.1424 0.4500 0.5984 0.5750 0.1807 0.6167 0.3759 0.5583 0.4557 0.5917 0.9468 0.5000 0.7618 0.5083 0.7373 0.4917 0.9127 0.4667 0.0778 0.4667 
8 0.3962 0.4000 0.1220 0.5250 0.7881 0.5167 0.2918 0.5583 0.5949 0.5750 0.3366 0.5750 0.8092 0.4667 0.8322 0.4833 0.6634 0.4833 0.7598 0.4583 0.1876 0.4000 
9 0.1687 0.3917 0.1529 0.4167 0.9013 0.4583 0.4243 0.5083 0.6083 0.5750 0.5560 0.6000 0.6200 0.4083 0.7952 0.4667 0.7985 0.4417 0.8676 0.4583 0.2678 0.3667 

10 0.2158 0.4083 0.1697 0.4250 0.8797 0.5500 0.5663 0.5917 0.3183 0.5833 0.2243 0.5750 0.6142 0.4500 0.7359 0.4000 0.7464 0.4333 0.7461 0.4583 0.3208 0.3750 
11 0.1161 0.4167 0.3558 0.4250 0.9078 0.5083 0.4310 0.6000 0.5188 0.5583 0.4967 0.6167 0.7559 0.4833 0.6883 0.4167 0.7432 0.3917 0.6174 0.4667 0.2842 0.3667 
12 0.4149 0.3083 0.2064 0.3750 0.6057 0.4500 0.3425 0.6167 0.3115 0.6083 0.8020 0.6833 0.6114 0.5167 0.7200 0.4417 0.8789 0.5000 0.3480 0.4417 0.1240 0.4333 
13 0.4703 0.2667 0.1809 0.3500 0.4873 0.5000 0.1789 0.5833 0.3375 0.7083 0.6073 0.5250 0.3707 0.6167 0.6284 0.4500 0.7196 0.6250 0.5094 0.4333 0.2045 0.4500 
14 0.4873 0.3333 0.7352 0.3444 0.5495 0.5333 0.1617 0.6056 0.2251 0.6500 0.6093 0.5611 0.5650 0.6111 0.8186 0.4667 0.8099 0.5778 0.7512 0.4667 0.2650 0.5167 
15 0.1730 0.3083 0.4755 0.2917 0.2644 0.5792 0.0625 0.5167 0.2018 0.5708 0.5094 0.5375 0.5353 0.6583 0.8686 0.4958 0.7485 0.6833 0.6875 0.4250 0.1122 0.5000 
16 0.0591 0.3400 0.1244 0.2933 0.1716 0.5700 0.0520 0.5100 0.0596 0.5867 0.4000 0.5133 0.3424 0.5500 0.6366 0.4367 0.5880 0.6167 0.5468 0.4233 0.0294 0.5167 

 
 
 
 
 
 
 
 

 
 
 

 
 
 



  

Panel C. Data Set 3 
 

α=0.05 α=0.10 α=0.20 α=0.30 α=0.40 α=0.50 α=0.60 α=0.70 α=0.80 α=0.90 α=0.95 Sub-
sample PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW 

1 0.0342 0.3000 0.7361 0.5333 0.0454 0.4667 0.3457 0.5750 0.7504 0.5667 0.7219 0.4500 0.5045 0.4833 0.3287 0.4333 0.9278 0.4250 0.1215 0.5083 0.0022 0.4417 
2 0.0002 0.3417 0.1628 0.3417 0.2214 0.4833 0.5189 0.6500 0.6532 0.4917 0.5541 0.6083 0.6286 0.5250 0.7982 0.4167 0.4725 0.5333 0.0689 0.5583 0.0020 0.4333 
3 0.0028 0.3250 0.0606 0.4250 0.4015 0.4833 0.4234 0.5333 0.5310 0.4500 0.6211 0.3917 0.2468 0.6083 0.8133 0.4833 0.2971 0.4583 0.0719 0.5083 0.0016 0.4333 
4 0.0335 0.4083 0.1007 0.4083 0.1330 0.4583 0.6568 0.3333 0.3921 0.3917 0.3471 0.5083 0.3360 0.5250 0.6631 0.2583 0.0740 0.3750 0.0083 0.5333 0.0360 0.4000 
5 0.0783 0.2167 0.0280 0.2583 0.1675 0.2833 0.8474 0.3583 0.5685 0.3083 0.6190 0.5000 0.1731 0.6333 0.6806 0.3667 0.0511 0.2750 0.0147 0.5917 0.0088 0.4333 
6 0.1249 0.2750 0.1017 0.2417 0.7646 0.6750 0.8068 0.4750 0.5166 0.5083 0.2172 0.6000 0.0282 0.5667 0.3202 0.5000 0.0340 0.3667 0.0020 0.4250 0.0085 0.4167 
7 0.1356 0.2083 0.0620 0.1750 0.3267 0.4250 0.5371 0.4000 0.3812 0.4667 0.4027 0.5167 0.1652 0.5833 0.4593 0.5250 0.0195 0.4750 0.0157 0.4000 0.0318 0.3833 
8 0.0539 0.2083 0.1045 0.1417 0.6332 0.4167 0.5413 0.4167 0.5070 0.4583 0.4126 0.6083 0.3790 0.5750 0.3531 0.4917 0.4377 0.3917 0.0129 0.4417 0.0031 0.3333 
9 0.0134 0.2500 0.0170 0.2500 0.8869 0.4250 0.3226 0.4667 0.7960 0.4417 0.2367 0.5333 0.5232 0.5583 0.3490 0.5083 0.1172 0.4083 0.0270 0.4333 0.0044 0.3167 

10 0.0049 0.2333 0.0296 0.1583 0.6305 0.3417 0.7290 0.5250 0.5032 0.4333 0.4176 0.5833 0.6161 0.4833 0.6840 0.4583 0.1679 0.4083 0.0216 0.3833 0.0014 0.4500 
11 0.0023 0.2750 0.0202 0.1417 0.5731 0.3750 0.3595 0.3750 0.8133 0.4583 0.1803 0.4667 0.2682 0.4333 0.5943 0.5000 0.5793 0.3917 0.0075 0.2667 0.2386 0.4000 
12 0.0019 0.3000 0.0164 0.1333 0.3927 0.3417 0.1993 0.4167 0.5847 0.6833 0.1255 0.4750 0.4161 0.4500 0.7979 0.4417 0.4001 0.3333 0.0037 0.2417 0.1045 0.3833 
13 0.0048 0.3167 0.0881 0.2167 0.1320 0.3250 0.7178 0.4833 0.2517 0.5417 0.4681 0.4500 0.2813 0.4000 0.6677 0.4333 0.1654 0.4333 0.0580 0.1833 0.0075 0.4333 
14 0.0019 0.2556 0.1205 0.2056 0.2170 0.3333 0.9851 0.4500 0.7164 0.6556 0.4882 0.5222 0.3393 0.5722 0.6736 0.4778 0.3259 0.4889 0.0875 0.2722 0.0001 0.4111 
15 0.0014 0.2042 0.1190 0.1917 0.0914 0.3917 0.8946 0.5208 0.7946 0.6583 0.3457 0.4833 0.2288 0.4833 0.8215 0.4292 0.2571 0.5125 0.0545 0.3167 0.0000 0.4375 
16 0.0002 0.2167 0.0226 0.1933 0.1229 0.3200 0.8991 0.4567 0.4114 0.6500 0.4170 0.5067 0.1150 0.5400 0.5778 0.5200 0.0722 0.4800 0.0036 0.2533 0.0000 0.4333 

 
 
 
 
 
 
 

 
 

 
 
 
 



  

Panel D. Data Set 4 
 

α=0.05 α=0.10 α=0.20 α=0.30 α=0.40 α=0.50 α=0.60 α=0.70 α=0.80 α=0.90 α=0.95 Sub-
sample PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW PGW IGW 

1 0.0081 0.4833 0.0084 0.4583 0.1951 0.4083 0.1332 0.4250 0.7680 0.4667 0.2510 0.3750 0.5779 0.3583 0.9801 0.5000 0.3654 0.3833 0.0014 0.4333 0.0021 0.3917 
2 0.0037 0.4417 0.0056 0.4000 0.3283 0.4500 0.2313 0.3750 0.1783 0.4000 0.8149 0.4000 0.7112 0.3333 0.7611 0.4917 0.6745 0.5000 0.0202 0.4917 0.0080 0.3917 
3 0.0019 0.5000 0.0078 0.4083 0.7356 0.4000 0.6402 0.4417 0.9155 0.4083 0.9113 0.4083 0.9358 0.4167 0.7816 0.4167 0.3524 0.5500 0.2679 0.4083 0.0119 0.4417 
4 0.0004 0.4500 0.0085 0.4500 0.1666 0.4417 0.6785 0.4250 0.4025 0.3917 0.7741 0.4083 0.6752 0.4417 0.5652 0.4917 0.1638 0.5583 0.0742 0.4500 0.0051 0.4083 
5 0.0111 0.4083 0.1882 0.3583 0.6711 0.3833 0.5476 0.3583 0.6543 0.3583 0.6180 0.3833 0.4914 0.4667 0.7021 0.4750 0.5980 0.5167 0.1346 0.5000 0.0196 0.4917 
6 0.0067 0.3750 0.2514 0.3917 0.3594 0.4750 0.8207 0.4417 0.7712 0.4417 0.3885 0.4833 0.5146 0.5333 0.6875 0.5667 0.7047 0.5250 0.3628 0.4750 0.5757 0.3833 
7 0.0230 0.4000 0.3645 0.3917 0.4066 0.3917 0.4869 0.3917 0.6833 0.4500 0.2507 0.5250 0.1488 0.5583 0.4163 0.5417 0.3176 0.5500 0.0945 0.4583 0.4612 0.4500 
8 0.0930 0.3333 0.5361 0.3167 0.3967 0.4250 0.2520 0.3833 0.7235 0.4667 0.2463 0.5333 0.2189 0.5917 0.5478 0.5833 0.2662 0.5583 0.1818 0.4417 0.2824 0.3917 
9 0.0243 0.2583 0.5334 0.3333 0.2645 0.3667 0.3288 0.3917 0.5132 0.4417 0.4936 0.5250 0.6028 0.5500 0.5393 0.6167 0.2938 0.6333 0.0622 0.3083 0.1289 0.2917 

10 0.0114 0.2667 0.4668 0.3583 0.4884 0.3000 0.5001 0.3333 0.7305 0.3833 0.6840 0.4750 0.2987 0.5000 0.5580 0.6000 0.2553 0.5583 0.3269 0.3000 0.0518 0.3500 
11 0.0378 0.2583 0.0922 0.3000 0.1814 0.3833 0.4745 0.3500 0.6067 0.3250 0.5999 0.3917 0.4640 0.4000 0.9251 0.5667 0.4268 0.5750 0.3540 0.2750 0.2558 0.3417 
12 0.0345 0.3750 0.0233 0.2333 0.0278 0.3417 0.0975 0.3250 0.3869 0.3833 0.7960 0.3500 0.7283 0.3917 0.8043 0.5500 0.0977 0.5500 0.0518 0.3333 0.2169 0.3750 
13 0.0167 0.3583 0.1028 0.1667 0.0111 0.3167 0.0708 0.3500 0.1258 0.3833 0.2977 0.3083 0.8779 0.4333 0.4378 0.6000 0.2789 0.5083 0.4551 0.3250 0.0061 0.4250 
14 0.0005 0.3833 0.0597 0.2833 0.0260 0.3556 0.1560 0.3667 0.3499 0.3833 0.4375 0.3500 0.6112 0.4500 0.4692 0.5389 0.5680 0.4444 0.3593 0.3833 0.0009 0.4056 
15 0.0000 0.3833 0.0111 0.2792 0.0074 0.3833 0.0891 0.3583 0.2700 0.3708 0.2732 0.3250 0.6790 0.4000 0.5759 0.5167 0.4683 0.4125 0.1597 0.3833 0.0000 0.3417 
16 0.0000 0.3967 0.0039 0.2600 0.0002 0.3567 0.0330 0.3900 0.2101 0.4033 0.2876 0.3567 0.5747 0.4767 0.2579 0.5900 0.2720 0.4400 0.0658 0.3533 0.0000 0.3900 

 
 
 
 
 
 

 



 

   

Figure 1.   Loss Ratio for Data Set 1 and Data Set 2 
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Note: Plotted are the ratios of the check loss of GCQ model (Model 2) to that of NGCQ model (Model 1) for different  values of α. The ratio smaller than 1 
indicates money-income Granger-causality in quantile. “GCQ” denotes Granger-causality in quantile and “NGCQ” denotes non-Granger-causality in 
quantile.  Two lines denote the loss ratio for Data Set 1 (solid line, real personal income and M2) and Data Set 2 (dashed line, real personal income and M1).  



 

   

Figure 2.   Loss Ratio for Data Set 3 and Data Set 4 
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Note: Plotted are the ratios of the check loss of GCQ model (Model 2) to that of NGCQ model (Model 1) for different values of α. The ratio smaller than 1 
indicates money-income Granger-causality in quantile. “GCQ” denotes Granger-causality in quantile and “NGCQ” denotes non-Granger-causality in 
quantile.  Two lines denote the loss ratio for Data Set 3 (solid line, industrial production and M2) and Data Set 4 (dashed line, industrial production and M1). 


