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ABSTRACT

We consider three nonparametric tests for functional form, varying parameters, and omitted variables in

regression models both of time series data and of cross-sectional data. The Þrst test is to compare the sums

of squared residuals from the null and the alternative models and the second test is to compare the Þtted

values of the null and alternative models. The third test is the nonparametric conditional moment test,

which is to see if the residuals from the null model is related to the conditioning variables in the alternative

models. Bootstrap procedures are used for these tests and their performance is examined via monte carlo

experiments.
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1 Introduction

Since the path-breaking work of Karl Pearson (1900) the 20th century saw the signiÞcant advances in the

parametric statistical and econometric hypothesis testing procedures, see Bera (2000) for an excellent survey.

A problem with the parametric testing procedures is that the tests may not be consistent under the misspeci-

Þed alternative hypotheses. In the last two decades a rich literature has developed on constructing consistent

model speciÞcation tests using nonparametric estimation techniques. Bierens (1982) was Þrst to provide a

consistent conditional moment test for model misspeciÞcation. Ullah (1985) Þrst suggested the construction

of model speciÞcation test using nonparametric estimation technique. Nonparametric speciÞcation test for

time series data was Þrst proposed by Robinson (1989).

Since the publication of these works various test statistics have been proposed for consistently testing

parametric regression functional form, e.g. Andrews (1997), Azzalini, Bowman, and Härdle (1989), Bierens

(1982, 1990), Bierens and Ploberger (1997), Cai, Fan, and Yao (2000), De Jong (1996), Eubank and Spiegel-

man (1990), Eubank and Hart (1992), Fan and Li (1996), Fan, Zhang, and Zhang (2001), Gozalo (1993),

Härdle and Mammen (1993), Hart (1997), Hong and White (1995), Horowitz and Härdle (1994), Horowitz

and Spokoiny (2000), Li andWang (1996), Robinson (1991), Ullah (1985), Whang (2000), Wooldridge (1992),

Yatchew (1992), and Zheng (1996), among others. Similarly several papers have appeared on testing the

signiÞcance of omitted or excluded variables from the model, e.g. Äit-Sahalia, Bickel, and Stoker (1994), Fan

and Li (1996), Härdle and Mammen (1993), Li (1999), Linton and Gozalo (1997), Racine (1997), Ullah and

Vinod (1993), and Whang and Andrews (1993), among others. Delgado and Stengos (1994), Lavergne and

Vuong (1996), and Ullah and Singh (1989) explore non-nested hypothesis testing problems. In addition to

omitted variables and functional forms, there are many papers which look into the nonparametric approach

to general hypothesis testing problems encountered in econometrics, e.g. Cai, Fan, and Yao (2000), Fan,

Zhang, and Zhang (2001), Hart (1997), Lewbel (1993, 1995), Robinson (1989), and Ullah and Singh (1989),

among others. For details, see Pagan and Ullah (1999).

While most of the early developments in the nonparametric hypothesis testing appeared for the indepen-

dent data, except e.g. Robinson (1989), in recent years the problem of hypothesis testing with the dependent

time series data has been addressed by many authors. For example, Berg and Li (1998), Fan and Li (1997),

Hjellvik and Tjøstheim (1995, 1996), Hjellvik, Yao, and Tjøstheim (1998), Kreiss, Neumann, and Yao (1998),

Lee (2001), and Lee and Ullah (2001), among others, have considered the tests for functional form and omit-

ted variables. In particular, for time series, testing for omitted variables is often to identify the number of

lags. Nonparametric lag selection in nonlinear time series models are studied by Auestad and Tjøstheim

(1990), Cheng and Tong (1992), Fan and Li (1999a), Granger and Lin (1994), Granger, Maasoumi, and
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Racine (2000), Hong and White (2001), Tjøstheim and Auestad (1994), Tschernig and Yang (2000), and

Yao and Tong (1994). Chen and Fan (1999) provided consistent tests for time series models, but the asymp-

totic distributions of their tests are nonstandard. In a major development, Fan and Li (1999b) developed

the central limit theorems for the degenerate U-statistics for the weakly dependent data. This has provided

a signiÞcant breakthrough and important contribution in Li (1999) who shows the asymptotic normality

of Li and Wang (1998) type tests for wide range of hypotheses testing problems, with dependent data, e.g.

parametric functional forms in regression, single index models, semiparametric regressions, variable selection,

and mean-variance ratio hypothesis in Þnance.

We note here that the test statistics for most of the testing problems described above are based on

the following alternative procedures: (1) Ullah (1985) type F or likelihood ratio procedure comparing the

residual sum of squares under the null and alternative hypotheses, also see Azzalini, Bowman, and Härdle

(1989), Cai, Fan, and Yao (2000) and Fan, Zhang, and Zhang (2001), (2) the procedure comparing the sum of

squares of the differences in the Þtted values of the models under the null and alternative speciÞcations, e.g.

Härdle and Mammen (1993), Ullah and Vinod (1993), Äit-Sahalia, Bickel, and Stoker (1994), and (3) the

conditional moment procedure looking into the covariance between the residual under the null and the model

speciÞed under the alternative (e.g., Zheng (1996), Fan and Li (1996), and Li and Wang (1998)). These three

alternative procedures are equivalent in the sense that they conform to the same population value of the null

hypothesis of no difference between the null and alternative speciÞcations. However, sample statistics based

on them are different and may give different results. The purpose here is not to introduce a new procedure

of nonparametric testing, instead the modest aim is to explore the bootstrap simulation comparison of these

three procedures with respect to size and power properties in small as well as large samples. In the earlier

simulation studies usually the case of testing a parametric speciÞcation is considered by only one of the

three procedures. This is perhaps the Þrst study which considers all the three procedures and looks into not

only the testing of a parametric speciÞcation but the testing of varying parameters and omitted variables.

We also consider both the independent cross-section and dependent time-series data models. Both the naive

bootstrap and wild bootstrap procedures are used for our analysis.

The plan of the paper is as follows. In Section 2, we present the nonparametric kernel regression estimator.

Section 3 presents the three procedures of nonparametric hypothesis testing. Then in Section 4 we give our

simulation results. Finally, Section 5 gives conclusions.
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2 Nonparametric Regression

Let us consider the regression model

yt = m(xt) + ut = E(yt|xt) + ut (1)

where, t = 1, . . . , n, yt is a scalar dependent variable, xt = (xt1, . . . , xtk) is an 1×k vector, m(xt) = E(yt|xt)
is the true but unknown regression function and ut is the error term such that E (ut|xt) = 0. The model in
(1) includes the autoregressive model as a special case in which xt consists of lagged values of yt. For the

time series case we assume that {yt, xt} is a strictly stationary discrete-time stochastic process.
A parametric approach to estimate m (xt) in (1) may begin by Þtting a linear parametric regression

model through the data as

yt = α+ βxt + ut (2)

= Xtδ + ut

or more generally a nonlinear parametric model yt = m (xt, δ) + ut, where Xt = (1 xt) and δ = (α β)
0. One

can obtain a least squares (LS) estimator of �m (xt) by m(xt, �δ) where �δ is the LS estimator of δ obtained by

minimizing the global LS objective function

nX
t=1

u2
t =

nX
t=1

(y −m(xt,δ))2. (3)

However, this global parametric LS estimator, based on the global modelling, is inconsistent and biased at

least in the regions of data where the a priori speciÞed regression is not correctly speciÞed.

An alternative improved approach is to use the nonparametric kernel regression estimation of the unknown

m(xt). Essentially the idea behind the kernel regression is to model the regression function m (xt) locally.

For example, to obtain the regression function at a given point x, we apply the standard linear regression

technique to the data in the interval of length h around x. That is, for the data in the interval of length h,

we consider the linear model

yt = α (x) + xtβ (x) + ut, (4)

= Xtδ (x) + ut,

and then estimate δ (x) by minimizing the local LS or weighted LS errors

nX
t=1

u2
tKtx =

nX
t=1

(yt −Xtδ (x))2Ktx (5)

with respect to δ (x) , where Ktx = K
¡
xt−x
h

¢
is called a kernel (weight) function and h → 0 as n → ∞ is

usually called window width (smoothing parameter). Generally the kernel function can be any probability
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density function having a Þnite second moment. The estimator so obtained is

�δ (x) = (X0K (x)X)
−1

X0K (x)y (6)

where K (x) is the n×n diagonal matrix with diagonal elements Ktx (t = 1, ..., n) , X is an n×(k + 1) matrix
with the t-th row Xt, and y is an n× 1 vector. The estimator of m (xt) is then given by m (xt) = Xtδ (xt) .
The approach in (4) is called local linear regression and the estimator in (6) is known as the local linear LS

(LLLS) estimator. For details on the kernel regression estimators and the choices of K(·) and h, see Wand
and Jones (1995), Fan and Gijbels (1996), and Pagan and Ullah (1999).

It is interesting to note the special cases and generalization of (4) and (6). When h =∞, the local linear
regression modelling in (4) becomes global modelling in (2) and the LLLS estimator �δ (x) in (6) becomes the

global LS estimator of �δ. This is because when h =∞, Ktx = K (0) and the minimization of
P
(yt−Xtδ (x))2

becomes the minimization of K (0)
P
(yt −Xtδ (x))2 = minimization of

P
(yt −Xtδ)2 . Also note that when

Xt = 1, the LLLS estimator �δ (x) reduces to

�δ (x) = �α (x) = (i0K (x) i)
−1

i0K (x)y (7)

=

Pn
t=1 ytKtxPn
t=1Ktx

which is the Nadaraya (1964) and Watson (1964) kernel regression estimator, where i is an n× 1 vector of
unit elements. The LLLS can be extended to the p-th order local polynomial LS estimator where, for k = 1,

Xt = [1, xt, . . . , x
p
t ] and δ is a (p+ 1)× 1 vector, see Fan and Gijbels (1996).

One advantage of the local estimators is that they can be viewed as the varying coefficient (functional

coefficient) estimators. This is because �δ (x) may have varying values at different data points xt. In this

sense the local linear model yt = Xtδ (x) + ut is a varying coefficient model yt = m (xt) + ut where m (xt) =

Xtδ (xt) ' Xtδ (x) where δ (xt) ' δ (x) is the Þrst term of the Taylor�s approximation around x. This is in

contrast to the global estimator �δ which is the estimator of δ in the constant coefficient model.

The above idea of varying coefficients model can be extended to the situations where the coefficients are

varying with respect to zt which may be a subset of xt or something else, i.e.,

E(yt|xt) =m(xt) = Xtδ(zt). (8)

Examples of these include functional coefficient autoregressive model (Chen and Tsay 1993, Cai, Fan, and

Yao 2000), smooth coefficient model (Li, Huang, and Fu 1997), random coefficient model (Raj and Ullah

1981), smooth transition autoregressive model (Granger and Teräsvirta 1993), exponential autoregressive

model (Haggan and Ozaki 1981), and threshold autoregressive model (Tong 1990). Also see Section 4. To

estimate δ(zt) we can again do a local approximation δ(zt) ' δ(z) and then minimize
P
[yt −Xtδ(z)]2Ktz
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with respect to δ(z), where Ktz = K(
zt−z
h ). This gives the varying coefficient estimator

�δ(z) = (X0K(z)X)−1X0K(z)y

where K(z) is a diagonal matrix of Ktz, t = 1, . . . , n.When zt = xt, this reduces to the LLLS estimator �δ(x)

in (6).

Cai, Fan, and Yao (2000) consider a local linear approximation δ(zt) ' δ(z) + D(z)(zt − z)0 where
D(z) = ∂δ(zt)

∂z0
t
evaluated at zt = z. The LL varying coefficient (LLVC) estimator of Cai, Fan, and Yao (2000)

is then obtained by minimizing

nX
t=1

[yt −Xtδ(zt)]2Ktz =
nX
t=1

[yt −Xtδ(z)− [(zt − z)⊗Xt]vecD(z)]2Ktz

=
nX
t=1

[yt −Xz
t δ
z(z)]2Ktz

with respect to δz(z) = [δ(z)0 (vecD(z))0]0 where Xz
t = [Xt (zt − z)⊗Xt]. This gives

δ̈z(z) = (Xz0K(z)Xz)−1Xz0K(z)y, (9)

and δ̈(z) = (I 0)δ̈z(z). Hence

�m(x) = (1 x 0)δ̈z(z) = (1 x)δ̈(z). (10)

For the asymptotic properties of these varying coefficient estimators, see Cai, Fan, and Yao (2000).

3 Nonparametric Bootstrap Tests

We consider here two types of null hypotheses on m (·) :

H0 : m (xt) = m (xt, δ) (11)

H0 : m (xt) = m (xt1) (12)

where xt = (xt1, xt2) ; xt1 is 1× k1, xt2 is 1× k2, and k = k1 + k2. The alternative hypothesis in each case

is the unspeciÞed nonparametric regression:

H1 : m (xt) = E(yt|xt). (13)

The null hypothesis in (11) can be used as the null hypothesis for testing both for the functional form

as well as the varying coefficient models. As a simple example of (11), we may consider testing for the

functional form to be a linear regression, namely H0 : m (xt, δ) = Xtδ against H1 in (13). However, if H1

in (13) is speciÞed to be local linear models m (xt) = Xtδ (xt) or m (xt) = Xtδ (zt) then the testing for the
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null H0 : m (xt, δ) = Xtδ against H1 : m (xt) = Xtδ (zt) is testing for the constant regression model against

the varying coefficient regression, see Section 4 for more example.

The null hypothesis in (12) is for testing the signiÞcance of the omitted variables xt2, that is to test for

selection of variables or lags. In this case both the null and alternative models are nonparametric. Though

not considered here the test statistics considered below can also be used for testing situations where the null

hypothesis is the partially linear model, m (xt) = xt1β +m (xt2) , single index models m (xt) = m (xt, δ) ,

among others.

We will consider three main approaches for the above testing problems.

The Þrst test procedure we consider is, as suggested in Ullah (1985), to compare the residual sum of

squares RSS0 under the null with the nonparametric residual sum of squares under the alternative, RSS1.

The test statistic is

T =
(RSS0 −RSS1)

RSS1
(14)

where for the null (11) RSS0 =
P
�u2
t , �ut = yt−m(xt, �δ), and for the null (12) RSS0 =

P
�u2
t , �ut = yt− �m (xt1) ,

�m (xt1) is given by (10) with xt = xt1. Further RSS1 =
P
�u2
t , �ut = yt− �m (xt) .We reject the null hypothesis

when T is large.

Fan and Li (1992) show the asymptotic normality of nhk/2T, see also Fan, Zhang, and Zhang (2001,

Theorem 5), and Cai, Fan, and Yao (2000).

Fan, Zhang, and Zhang (2001) further show that a suitably normalized T will have its asymptotic

null distribution that is independent of nuisance parameters. They call this property the Wilks (1938)

phenomenon. An important consequence of this result is that one does not have to derive theoretically the

normalizing factors in order to be able to use the test. As long as the Wilks phenomenon holds, one can

simply simulate the null distribution of the test statistic T. This is in stark contrast with some other tests

whose asymptotic null distributions depend on nuisance parameters. Based on these Wilks results of Fan,

Zhang, and Zhang (2001), Cai, Fan, and Yao (2000) suggest to use the bootstrap method which allows the

implementation of (14). It involves the following steps to evaluate p-values of T to test the null hypotheses

in (11) and (12).

1. Generate the bootstrap residuals {�u∗t } from the centered residuals from the nonparametric (NP) alter-
native model, (�ut− ū) where ū = n−1

P
�ut and �ut = yt − �m (xt) .

(a) For naive bootstrap, {�u∗t} is obtained from randomly resampling {�ut − ū} with replacement.

(b) For wild bootstrap, �u∗t = a(�ut − ū) with probability r = (
√
5 + 1)/2

√
5 and �u∗t = b(�ut − ū) with

probability 1 − r (t = 1, . . . , n), where a = −(√5 − 1)/2 and b = (√5 + 1)/2. See Li and Wang
(1998, pp. 150-151).
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2. Generate the bootstrap sample {y∗t }nt=1 from the null model; from y
∗
t ≡ m(xt, �δ)+ �u∗t (t = 1, . . . , n) for

the null in (11) to test for parametric functional form, and from y∗t = �m (xt1) + �u
∗
t for the null in (12)

to test for omitted variables xt2.

3. Using the bootstrap sample {y∗t , xt, zt}nt=1, calculate the bootstrap test statistic T
∗ using, for the sake

of simplicity, the same h used in estimation with the original sample as done in Cai, Fan, and Yao

(2000).

4. Repeat the above steps B times and use the empirical distribution of T ∗ as the conditional null

distribution of T given {y∗t , xt, zt}nt=1. We use B = 500. The bootstrap p-value of the test T is simply

the relative frequency of the event {T ∗ ≥ T} in the bootstrap resamples.

We use both naive bootstrap (Efron 1979) and wild bootstrap (Wu 1986, Liu 1988). The wild bootstrap

method preserves the conditional heteroskedasticity in the original residuals. For wild bootstrap, see also

Shao and Tu (1995, p. 292), Härdle (1990, p. 247), or Li and Wang (1998, p. 150).

Two more versions of the T -test in (14) can be considered

S =
RSS0 −RSS1

RSS0
, (15)

R =
1

n
(RSS0 −RSS1) , (16)

where S is the same as T with RSS1 in the denominator replaced by RSS0 in the spirit of Rao�s score test,

and R is essentially the numerator of T. In our Monte Carlo study in Section 4 the statistics T, S and R

are compared and calculated on the basis of weighted (trimmed) RSS to control the tail behavior of the

nonparametric estimator. For example, weighted RSS1 =
P
�u2
tw (zt, a) , and for the null in (11) weighted

RSS0 =
P
�u2
tw (zt, a) , where w(zt, a) = 1(|zt/�σz| < a), �σz is the sample standard deviation, a =∞, 2, 1.5,

and 1(·) is the indicator function. The test statistics with weighted RSS�s will be denoted as Ra, Sa, and Ta.
Note that w(zt,∞) = 1 and thus R∞, S∞, T∞ are R,S, T in (14)-(16) without weights. When the weight

w(·, ·) is a known function so that it is not estimated, the Wilks phenomenon continues to hold as shown by
Fan, Zhang, and Zhang (2001, Remark 4.2 and Theorem 9) and thus the Cai, Fan, and Yao (2000) bootstrap

procedure can be applied to the statistics Ra, Sa and Ta with weighted RSS�s.

The second test procedure we consider is to compare the Þtted values from the null and alternative

models as suggested in Härdle and Mammen (1993), Ullah and Vinod (1993), and Äit-Sahalia, Bickel, and

Stoker (1994). For the null in (11), this is given by

Qa =
1

n

nP
t=1
(m(xt, �δ)− �m(xt))

2w(zt, a). (17)
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For the omitted variable testing in (12), m(xt, �δ) in (17) is replaced by the NP estimator �m (xt1) with xt2

omitted. The bootstrap procedure described above for Ra, Sa, Ta may also be applied to Qa.

The third test procedure we consider is the conditional moment test for E(ut|xt) = 0, which is identical
to testing

E[utE(ut|xt)f(xt)] = 0, (18)

where f(xt) is the density of xt. A sample estimator of the left hand side of (18) is

L0 =
1

n

nP
t=1

�utE(�ut|xt) �f(xt) (19)

=
1

n(n− 1)hk
nP
t=1

nP
t0=1,t0 6=t

�ut�ut0Kt0t

where �ut = yt−m(xt, �δ) = yt−Xt�δ to test for the null hypothesis in (11) or �ut = yt− �m(xt1) to test for the

null hypothesis in (12), E(�ut|xt) =
P
t0 6=t �ut0Kt0t/

P
t0 6=tKt0t from (7), and �f(xt) = [(n− 1)hk]−1

P
t0 6=tKt0t

is the kernel density estimator; Kt0t = K(xt0−xt

h ). Note that we estimate the auxiliary regression function

E(�ut|xt) from the local constant LS estimator (7) of Nadaraya and Watson, not from the LLVC estimator

of Cai, Fan, and Yao (2000) in (9) just to maintain the original formula of Li and Wang (1998) and Zheng

(1996).

The asymptotic test statistic is then given by

L = nhk/2 L
0

√
�σ

d→ N(0, 1) (20)

where �σ = 2(n(n−1)hk)−1
P
t

P
t0 6=t �u

2
t �u

2
t0K

2
t0t is a consistent estimator of the asymptotic variance of nh

k/2L0,

see Zheng (1996), Fan and Li (1996), Li and Wang (1998), Fan and Ullah (1999), and Rahman and Ullah

(1999), for details. Also, see Pagan and Ullah (1999, Ch. 3) and Ullah (2001) for the relationship between

R, Q and L test statistics. Based on the asymptotic results of Fan and Li (1996, 1997, 1999b) and Li (1999)

for dependent data, Berg and Li (1998) establish the asymptotic validity of using the wild bootstrap method

for L for time-series. The bootstrap p-values for L to test for the adequacy of the linear parametric model,

m(xt, δ) = Xtδ in (11), can be computed as follows.

1. Generate the bootstrap residuals {�u∗t} from the residual from the null model �ut = yt −Xt�δ :

(a) For naive bootstrap, {�u∗t} is obtained from randomly resampling {�ut} with replacement.

(b) For wild bootstrap, �u∗t = a�ut with probability r and �u∗t = b�ut with probability 1− r as discussed
above.

2. Generate the bootstrap sample {y∗t }nt=1 from the null model y
∗
t ≡ m(xt, �δ)+�u∗t = Xt�δ+�u∗t (t = 1, . . . , n)

for the null in (11) to test for neglected nonlinearity.
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3. Using the bootstrap sample {y∗t }nt=1, calculate the bootstrap test statistic L
∗.

4. Repeat the above steps B times and use the empirical distribution of L∗ as the null distribution of L.

We use B = 500. The bootstrap p-value of the test L is the relative frequency of the event {L∗ ≥ L}
in the bootstrap resamples.

For testing the omitted variables in the null (12), we replace Xt�δ in the steps 1 and 2 above by the NP

regression estimator �m(xt1) in (10) with xt = xt1 and with xt2 omitted, and use centered NP residuals. That

is,

1. Generate the bootstrap residuals {�u∗t} from the centered residuals from the NP alternative model, (�ut−
ū) where ū = n−1

P
�ut and �ut = yt − �m (xt1) .

2. Generate the bootstrap sample {y∗t }nt=1 from the null model y∗t = �m (xt1) + �u
∗
t .

For parametric models, Davidson and MacKinnon (1999) show that the size distortion of a bootstrap

test is at least of the order n−1/2 smaller than that of the corresponding asymptotic test. For nonparametric

models, h also enters in the order of reÞnement. Li and Wang (1998) show that if the distribution of Lj

(j = A for asymptotic, B for naive bootstrap, and W for wild bootstrap) admit an Edgeworth expansion

then the bootstrap distribution approximates the null distribution of L with an error of order n−1/2hk/2

improving over the normal approximation. Since L is asymptotically normal under the null, the bootstrap

tests LB and LW are more accurate than the asymptotic test LA, as conÞrmed in the simulation of the next

section. See Hall (1992) for further discussion on Edgeworth expansions and the extent of the reÞnements

in various contexts.

The above three different testing approaches are related. Under the null in (11) H0 : m(xt) = m(xt, δ),

the RSS based test statistics R,S, T will be expected to be zero as E(yt − m(xt, δ))2 = E(yt −m(xt))2.
Also, by construction E(ut|xt) = 0 under the null, which implies E[utE(ut|xt)f(xt)] = 0 for the L test.

From this, we get the relationship used for the Q test because E[utE(ut|xt)f(xt)] = E[E(ut|xt)2f(xt)] =
E[{E(yt|xt)−m(xt, δ)}2f(xt)] = 0.

4 Monte Carlo

In this section we examine the Þnite sample properties of the test statistics T, Q, and L especially with the

empirical null distributions being generated by the bootstrap method. Asymptotic critical values are also

used for the L test. We consider four cases as indicated in �blocks� below. All of the error terms εt below

are i.i.d. N(0, 1).
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BLOCK 1

This block is to study the size and power of the tests for functional form or varying coefficients in time

series models. Let xt = yt−1. The following two models are taken from Lee, White, and Granger (1993).

DGP 1 Linear AR(1)

yt = 0.6yt−1 + εt

DGP 2 Threshold Autoregressive (TAR(1)) (Nonlinear AR)

yt = 0.9yt−1 + εt |yt−1| ≤ 1

= −0.3yt−1 + εt |yt−1| > 1

Note that DGP 1 is a constant parameter model whereas the alternative DGP 2 is a varying parameter

model yt = yt−1δ (yt−1)+ εt, where δ(yt−1) = 0.9 or −0.3 depending on xt = zt = yt−1. In this sense testing

for DGP 1 against DGP 2 is also a test for varying parameters.

BLOCK 2

This block is to study the size and power of the tests for functional form in cross-sectional models. Let vt1

and vt2 be drawn from IN(0, 1). Two regressors xt1 and xt2 are deÞned as xt1 = vt1 and xt2 = (vt1+vt2)/
√
2.

Let xt = (xt1 xt2). The following two models are taken from Zheng (1996).

DGP 3

yt = 1+ xt1 + xt2 + εt

DGP 4

yt = |1+ xt1 + xt2|5/3 + εt

BLOCK 3

This block is to study the size and power of the tests for lag selection in time series models. Let

xt = (yt−1 yt−2). The alternative model DGP 6 is taken from Cai, Fan, and Yao (2000).

DGP 5 Exponential AR(1)

yt = a1(yt−1)yt−1 + 0.2εt

a1(yt−1) = 0.138 + (0.316 + 0.982yt−1) exp(−3.89y2
t−1)

DGP 6 Exponential AR(2)

yt = a1(yt−1)yt−1 + a2(yt−1)yt−2 + 0.2εt

10



a1(yt−1) = 0.138 + (0.316 + 0.982yt−1) exp(−3.89y2
t−1)

a2(yt−1) = −0.437− (0.659 + 1.260yt−1) exp(−3.89y2
t−1)

BLOCK 4

This block is to study the size and power of the tests for variable selection in cross-sectional models. Let vt1

and vt2 be drawn from IN(0, 1). Two regressors xt1 and xt2 are deÞned as xt1 = vt1 and xt2 = (vt1+vt2)/
√
2.

Let xt = (xt1 xt2). The alternative model DGP 8 is taken from Zheng (1996).

DGP 7

yt = |1+ xt1|5/3 + εt

DGP 8

yt = |1+ xt1 + xt2|5/3 + εt

To estimate �ut for the null model and �ut for the alternative model, the information set used are xt = yt−1

for Block 1, xt = (yt−1 yt−2) for Block 3, and xt = (xt1 xt2) for Blocks 2, 4. The omitted variable is yt−2

for Block 3 and xt2 for Block 4.

We use a scalar �threshold variable� zt for all models: zt = yt−1 for Blocks 1 and 3, and zt = xt1 for

Blocks 2 and 4.

For the Qa, Ra, Sa, and Ta tests, as suggested by Cai, Fan, and Yao (2000), we select h using out-of-

sample cross-validation. Let m and Q be two positive integers such that n > mQ. The basic idea is Þrst

to use Q sub-series of lengths n − qm (q = 1, . . . , Q) to estimate the coefficient functions δq(zt) and then

to compute the one-step forecast errors of the next segment of the time series of length m based on the

estimated models. That is to choose h minimizing the average of the mean square forecast errors

AMS(h) =

QX
q=1

AMSq(h) (21)

where

AMSq(h) =
1

m

n−qm+mX
t=n−qm+1

[yt −Xz
t δ̈
z
q (z)]

2 (22)

and δ̈zq (·) are computed from the sample {yt xt}n−qmt=1 . We use m = [0.1n], Q = 4, and the Epanechinikov

kernel K(z) = 3
4(1− z2)1(|z| < 1).

For the L test, as in Li and Wang (1998, p. 154), we use a standard normal kernel. Note that xt is an

1× k vector, and k = 1 for Block 1 and k = 2 for Blocks 2, 3, 4. Thus the smoothing parameter h is chosen
as hi = c�σin

−1/5 (i = 1) for the cases with k = 1, and hi = c�σin
−1/6 (i = 1, 2) for the cases with k = 2,
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where �σi is the sample standard deviation of i-th element of xt. The four values of c = 0.1, 0.5, 1, and 2

are used, and the corresponding estimated rejection probability will be denoted as Lc. In computing L, h
k

shown in (19) and (20) is replaced with
Qk
i=1 hi.

Test statistics are denoted as Qja, R
j
a, S

j
a, T

j
a and L

j
c, with the superscripts j = A,B,W referring to the

methods of obtaining the null distributions of the test statistics; asymptotics (j = A), naive bootstrap

(j = B), and wild bootstrap (j =W ).

Monte Carlo experiments are conducted with 500 bootstrap resamples and 1000 monte carlo replications.

The amount of computing time needed to get the size results (Panels A and B) of the 36 statistics shown in

tables for both 5% and 10% levels was as follows. It took a 600MHz-256MB Pentium III PC approximately

a day for n = 50, 2-3 days for n = 100, and 5-7 days for n = 200. So, it took the PC roughly 7-10 days for

size results of each table. It took another 7-10 days for power results (Panels C and D) of each table. It took

less for Tables 1 and 2 where the null hypothesis is (11) than for Tables 3 and 4 where the null hypothesis is

(12) and thus both the null and alternative models are nonparametric. For the whole results of the paper,

it took the PC about 2 months. A GAUSS code for computing all the tests is available from the authors.

Table 1 presents the empirical size (DGP 1) and power (DGP 2) of testing for neglected nonlinearity in

time series models in Block 1. We observe the following.

1. The L test using bootstrap (LB and LW ) exhibits excellent size behavior and is better than all the

other tests (LA, Qj ,Rj , Sj , and T j , j = A,B,W ).

2. R is better than S and T. S and T are identical. Q behaves similarly to R. The tests of Q,R, S, T

tend to be over-sized for n = 50, and under-sized with n = 100, 200 which is more apparent with larger

sample size.

3. Trimming for Ra, Sa, Ta and Qa is useful when n is small. For example, for n = 50, T2 works better

than T∞. However, the trimming makes the size worse when n is large (say, n = 200).

4. The asymptotic test LA works better with smaller c. LAc is not reliable for c > 0.1 and getting worse as

c gets larger. The bootstrap tests LB and LW work very well with all four values of c. The asymptotic

LA is sensitive to c while the bootstrap tests LB and LW are not sensitive to c. This is different from

what is found Lee and Ullah (2001) where the bootstrap tests LB and LW are also sensitive to c.

This is because {y∗t } in this paper is not recursively generated (as described above) while Lee and
Ullah (2001) generated {y∗t } recursively for time series data. Note that in this paper we generated the
bootstrap data {y∗t } conditional on {xt} for both the cases when xt is exogenous (Blocks 2, 4) and
the cases when xt is lagged dependent variables (Blocks 1, 3). The bootstrap method used in Lee and

12



Ullah (2001) may be called the �recursive� bootstrap, while the bootstrap method used in this paper

may be called the �conditional� bootstrap. As discussed in Lee (2001), the bootstrap method treating

xt as given and generating {y∗t } conditional on xt gives more robust size behavior than the recursive
bootstrap even for the time series data.

5. Turning to the power behavior, although the size of LB and LW are quite robust to c, the power of

these tests can vary with c and is generally best with larger c. The tests Q,R, S, T have a similar power

pattern but these are slightly worse than L.

Table 2 presents the size (DGP 3) and power (DGP 4) of testing for neglected nonlinearity in cross-

sectional models in Block 2. The following observations are made. All the size results in Table 1 for time

series (summarized above) hold here for Table 2 with cross-sectional data. While the size of LB and LW are

quite robust to c, the power of these tests can vary with c and is higher with larger c.

Table 3 presents the size (DGP 5) and power (DGP 6) of testing for lag selection in time series models

in Block 3. The results are very similar to those in Tables 1 and 2. The tests LB and LW have good size

and power in testing for lag selection in nonparametric time series models as well as to test for parametric

functional forms.

Table 4 presents the size (DGP 7) and power (DGP 8) of testing for variable selection in cross-sectional

models in Block 4. The results are again very similar to those in Tables 1, 2, and 3. The tests LB and LW

have very good size and power in testing for omitted variables in cross-sectional models.

5 Conclusions

We consider three nonparametric tests for functional form, varying parameters, and omitted variables in

regression models both of time series data and of cross-sectional data. The Þrst approach (R,S, T ) is to

compare the sums of squared residuals from the null and the alternative models and the second test (Q)

is to compare the Þtted values of the null and alternative models. The third test (L) is the nonparametric

conditional moment test, which is to see if the residuals from the null model is related to the conditioning

variables in the alternative models. We Þnd that the bootstrap tests of Li and Wang (1998) and Zheng

(1996) LB and LW have very good size and power properties in all situations we considered.

One of the reasons for the better performance of these L tests compared to R,S, T and Q tests may be

due to the fact that the asymptotic distribution of L is asymptotically normal with the mean zero under the

null hypothesis, whereas this is not the case for R, S and T tests. Therefore it will be an interesting future

study to compare L test with the bias-adjusted R,S,T tests as described in Fan and Li (2001). It will also

be useful to develop the theoretical power properties of the tests under various local alternatives, as studied

13



in Hong and Lee (2001) and Tripathi and Kitamura (2000) in different but related contexts. Moreover, this

paper has considered the tests based on the kernel smoothing procedure only. It will be useful to study how

our study compares with other speciÞcation testing procedures, especially using other smoothing procedures

such as neural network, spline regression, and Fuzzy c-Means algorithm in Giles and Draeseke (2001). Finally

the issue of optimal choice of window-width for the tests considered here needs further future investigations.
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TABLE 1. Testing for Linearity in Time Seris Models (Block 1)

A. Size of Tests at 5% level with DGP 1
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 0.089 0.125 0.089 0.099 0.081 0.075 0.102 0.135 0.101 0.117 0.097 0.089
100 0.041 0.072 0.029 0.036 0.030 0.024 0.049 0.087 0.039 0.050 0.036 0.036
200 0.033 0.059 0.024 0.026 0.021 0.019 0.037 0.066 0.033 0.036 0.027 0.024
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 0.022 0.092 0.025 0.073 0.020 0.055 0.022 0.092 0.025 0.073 0.020 0.055
100 0.018 0.062 0.015 0.031 0.019 0.020 0.018 0.062 0.015 0.031 0.019 0.020
200 0.021 0.057 0.024 0.028 0.015 0.018 0.021 0.057 0.024 0.028 0.015 0.018
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.047 0.059 0.055 0.013 0.049 0.048 0.001 0.046 0.042 0.000 0.039 0.039
100 0.031 0.041 0.042 0.015 0.044 0.047 0.006 0.049 0.046 0.000 0.043 0.047
200 0.038 0.045 0.044 0.027 0.052 0.057 0.008 0.047 0.048 0.002 0.050 0.041

B. Size of Tests at 10% level with DGP 1
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 0.109 0.164 0.112 0.127 0.104 0.096 0.126 0.170 0.128 0.147 0.122 0.113
100 0.057 0.102 0.049 0.051 0.041 0.039 0.080 0.113 0.064 0.069 0.067 0.061
200 0.048 0.097 0.038 0.036 0.033 0.031 0.064 0.121 0.054 0.056 0.050 0.045
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 0.048 0.127 0.048 0.105 0.045 0.079 0.048 0.127 0.048 0.105 0.045 0.079
100 0.041 0.093 0.032 0.048 0.036 0.043 0.041 0.093 0.032 0.048 0.036 0.043
200 0.048 0.102 0.041 0.044 0.033 0.037 0.048 0.102 0.041 0.044 0.033 0.037
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.089 0.121 0.117 0.033 0.103 0.094 0.005 0.102 0.101 0.000 0.077 0.094
100 0.060 0.096 0.086 0.029 0.093 0.083 0.011 0.092 0.096 0.000 0.090 0.097
200 0.065 0.092 0.103 0.050 0.099 0.095 0.020 0.103 0.100 0.003 0.094 0.090

C. Power of Tests at 5% level with DGP 2
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 0.422 0.505 0.422 0.452 0.432 0.414 0.457 0.533 0.473 0.488 0.489 0.461
100 0.649 0.731 0.677 0.674 0.684 0.663 0.717 0.776 0.732 0.741 0.744 0.727
200 0.922 0.946 0.908 0.907 0.906 0.905 0.954 0.965 0.947 0.948 0.959 0.956
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 0.232 0.454 0.250 0.397 0.271 0.362 0.232 0.454 0.250 0.397 0.271 0.362
100 0.628 0.739 0.658 0.694 0.675 0.688 0.628 0.739 0.658 0.694 0.675 0.688
200 0.942 0.962 0.945 0.947 0.950 0.956 0.942 0.962 0.945 0.947 0.950 0.956
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.304 0.331 0.325 0.408 0.567 0.549 0.228 0.575 0.569 0.001 0.335 0.388
100 0.656 0.696 0.706 0.857 0.928 0.922 0.773 0.943 0.943 0.086 0.825 0.840
200 0.967 0.973 0.972 0.997 0.999 0.999 0.996 0.998 0.998 0.842 0.998 0.999

D. Power of Tests at 10% level with DGP 2
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 0.474 0.578 0.489 0.501 0.492 0.473 0.514 0.606 0.529 0.539 0.551 0.531
100 0.714 0.792 0.724 0.733 0.734 0.727 0.776 0.823 0.783 0.776 0.787 0.782
200 0.953 0.964 0.911 0.911 0.910 0.909 0.970 0.979 0.970 0.966 0.978 0.976
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 0.329 0.536 0.355 0.472 0.372 0.456 0.329 0.536 0.355 0.472 0.372 0.456
100 0.714 0.807 0.736 0.763 0.741 0.755 0.714 0.807 0.736 0.763 0.741 0.755
200 0.968 0.976 0.961 0.964 0.975 0.975 0.968 0.976 0.961 0.964 0.975 0.975
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.404 0.464 0.450 0.482 0.695 0.702 0.304 0.715 0.724 0.003 0.516 0.573
100 0.763 0.817 0.816 0.902 0.968 0.963 0.836 0.972 0.973 0.163 0.909 0.922
200 0.983 0.989 0.989 0.998 0.999 0.999 0.998 1.000 0.999 0.912 1.000 1.000



Notes: Test statistics are denoted as Qja, R
j
a, S

j
a, T

j
a ,and L

j
c, with the superscripts j = A,B,W refer to the

methods of obtaining the null distributions of the test statistics; using the asymptotics (A), naive bootstrap

(B), and wild bootstrap (W ). The number of bootstrap resamples = 500 and number of monte carlo

replications = 1000. The 95% asymptotic conÞdence interval of the estimated size is (0.036, 0.064) at 5%

nominal level of signiÞcance and (0.081, 0.119) at 10% nominal level of signiÞcance.



TABLE 2. Testing for Linearity in Cross-Sectional Models (Block 2)

A. Size of Tests at 5% level with DGP 3
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 0.056 0.109 0.054 0.071 0.040 0.045 0.064 0.122 0.061 0.082 0.047 0.058
100 0.028 0.080 0.020 0.033 0.010 0.013 0.040 0.099 0.035 0.043 0.026 0.028
200 0.020 0.054 0.007 0.012 0.003 0.002 0.024 0.068 0.014 0.018 0.009 0.008
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 0.014 0.078 0.016 0.052 0.013 0.027 0.014 0.078 0.016 0.052 0.013 0.027
100 0.015 0.061 0.010 0.021 0.007 0.011 0.015 0.061 0.010 0.021 0.007 0.011
200 0.012 0.052 0.005 0.014 0.005 0.007 0.012 0.052 0.005 0.014 0.005 0.007
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.026 0.050 0.030 0.022 0.048 0.049 0.007 0.041 0.041 0.000 0.048 0.050
100 0.038 0.042 0.038 0.016 0.052 0.051 0.009 0.054 0.051 0.001 0.054 0.053
200 0.040 0.046 0.054 0.022 0.040 0.042 0.015 0.053 0.054 0.001 0.057 0.062

B. Size of Tests at 10% level with DGP 3
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 0.076 0.139 0.077 0.093 0.054 0.058 0.097 0.154 0.095 0.116 0.076 0.085
100 0.054 0.116 0.038 0.051 0.022 0.024 0.075 0.132 0.056 0.075 0.042 0.049
200 0.035 0.089 0.016 0.023 0.008 0.008 0.052 0.103 0.030 0.032 0.021 0.023
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 0.030 0.114 0.033 0.080 0.027 0.044 0.030 0.114 0.033 0.080 0.027 0.044
100 0.032 0.106 0.026 0.047 0.022 0.034 0.032 0.106 0.026 0.047 0.022 0.034
200 0.024 0.086 0.017 0.025 0.016 0.014 0.024 0.086 0.017 0.025 0.016 0.014
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.098 0.105 0.084 0.038 0.098 0.093 0.012 0.098 0.101 0.000 0.100 0.105
100 0.087 0.093 0.082 0.049 0.109 0.101 0.020 0.107 0.108 0.002 0.114 0.108
200 0.091 0.103 0.104 0.046 0.086 0.088 0.021 0.094 0.096 0.003 0.112 0.112

C. Power of Tests at 5% level with DGP 4
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 0.999
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.522 0.628 0.478 1.000 1.000 0.993 1.000 1.000 0.995 1.000 1.000 1.000
100 0.946 0.961 0.934 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

D. Power of Tests at 10% level with DGP 4
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.792 0.791 0.672 1.000 1.000 0.998 1.000 1.000 0.999 1.000 1.000 1.000
100 0.993 0.994 0.986 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000



TABLE 3. Lag Selection in Time Series Models (Block 3)

A. Size of Tests at 5% level with DGP 5
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 0.073 0.106 0.077 0.099 0.087 0.094 0.078 0.108 0.084 0.099 0.088 0.096
100 0.013 0.034 0.015 0.022 0.017 0.019 0.013 0.037 0.019 0.023 0.021 0.020
200 0.008 0.025 0.012 0.016 0.013 0.014 0.011 0.028 0.016 0.020 0.017 0.017
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 0.006 0.072 0.010 0.063 0.009 0.055 0.006 0.072 0.010 0.063 0.009 0.055
100 0.002 0.025 0.004 0.014 0.005 0.009 0.002 0.025 0.004 0.014 0.005 0.009
200 0.002 0.021 0.007 0.018 0.011 0.009 0.002 0.021 0.007 0.018 0.011 0.009
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.011 0.037 0.034 0.014 0.051 0.045 0.006 0.040 0.038 0.000 0.045 0.052
100 0.029 0.046 0.043 0.015 0.048 0.048 0.004 0.053 0.056 0.001 0.052 0.054
200 0.040 0.055 0.054 0.018 0.044 0.049 0.008 0.042 0.043 0.003 0.060 0.067

B. Size of Tests at 10% level with DGP 5
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 0.085 0.124 0.098 0.121 0.106 0.119 0.090 0.123 0.100 0.121 0.108 0.114
100 0.022 0.051 0.030 0.044 0.031 0.031 0.023 0.061 0.032 0.043 0.035 0.034
200 0.014 0.034 0.021 0.028 0.023 0.023 0.018 0.039 0.028 0.033 0.036 0.032
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 0.018 0.090 0.022 0.080 0.026 0.072 0.018 0.090 0.022 0.080 0.026 0.072
100 0.006 0.035 0.013 0.028 0.013 0.027 0.006 0.035 0.013 0.028 0.013 0.027
200 0.011 0.030 0.017 0.028 0.023 0.027 0.011 0.030 0.017 0.028 0.023 0.027
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.069 0.093 0.075 0.037 0.088 0.092 0.011 0.090 0.084 0.001 0.094 0.092
100 0.090 0.101 0.100 0.031 0.101 0.101 0.010 0.104 0.102 0.003 0.102 0.105
200 0.086 0.096 0.096 0.038 0.098 0.091 0.017 0.096 0.089 0.004 0.110 0.100

C. Power of Tests at 5% level with DGP 6
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 0.983 0.988 0.985 0.988 0.989 0.990 0.999 0.998 0.999 0.998 1.000 0.998
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 0.995 0.998 0.995 0.998 0.997 0.998 0.995 0.998 0.995 0.998 0.997 0.998
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.282 0.496 0.336 0.965 0.976 0.967 0.979 0.985 0.982 0.980 0.986 0.994
100 0.828 0.899 0.836 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

D. Power of Tests at 10% level with DGP 6
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 0.986 0.990 0.987 0.991 0.991 0.991 1.000 0.999 1.000 0.998 1.000 1.000
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 0.997 0.998 0.997 0.998 0.998 0.999 0.997 0.998 0.997 0.998 0.998 0.999
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.571 0.680 0.550 0.979 0.978 0.978 0.985 0.987 0.990 0.984 0.991 0.996
100 0.946 0.961 0.931 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000



TABLE 4. Variable Selection in Cross-Sectional Models (Block 4)

A. Size of Tests at 5% level with DGP 7
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 0.025 0.055 0.032 0.043 0.032 0.036 0.029 0.048 0.035 0.042 0.036 0.036
100 0.011 0.022 0.014 0.021 0.011 0.013 0.013 0.028 0.019 0.024 0.021 0.018
200 0.003 0.014 0.011 0.015 0.008 0.010 0.004 0.013 0.007 0.014 0.008 0.009
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 0.003 0.024 0.007 0.020 0.010 0.022 0.003 0.024 0.007 0.020 0.010 0.022
100 0.006 0.016 0.007 0.013 0.008 0.011 0.006 0.016 0.007 0.013 0.008 0.011
200 0.002 0.010 0.005 0.011 0.005 0.007 0.002 0.010 0.005 0.011 0.005 0.007
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.027 0.057 0.041 0.018 0.051 0.050 0.005 0.058 0.055 0.000 0.045 0.054
100 0.032 0.041 0.038 0.009 0.039 0.041 0.003 0.043 0.042 0.000 0.039 0.040
200 0.041 0.049 0.053 0.020 0.047 0.047 0.004 0.042 0.041 0.000 0.035 0.035

B. Size of Tests at 10% level with DGP 7
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 0.045 0.073 0.051 0.067 0.049 0.050 0.039 0.077 0.047 0.070 0.048 0.052
100 0.017 0.037 0.024 0.030 0.024 0.026 0.021 0.049 0.031 0.041 0.036 0.038
200 0.014 0.028 0.018 0.022 0.016 0.018 0.008 0.030 0.025 0.027 0.022 0.020
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 0.009 0.038 0.016 0.033 0.021 0.035 0.009 0.038 0.016 0.033 0.021 0.035
100 0.008 0.038 0.018 0.030 0.025 0.025 0.008 0.038 0.018 0.030 0.025 0.025
200 0.006 0.023 0.017 0.022 0.013 0.015 0.006 0.023 0.017 0.022 0.013 0.015
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.091 0.098 0.081 0.034 0.105 0.107 0.009 0.114 0.116 0.000 0.097 0.102
100 0.076 0.085 0.079 0.029 0.088 0.084 0.010 0.097 0.100 0.000 0.087 0.090
200 0.085 0.096 0.098 0.038 0.094 0.092 0.011 0.090 0.088 0.000 0.085 0.090

C. Power of Tests at 5% level with DGP 8
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 0.993 0.993 0.992 0.992 0.992 0.991 0.995 0.995 0.994 0.994 0.996 0.995
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 0.993 0.994 0.993 0.993 0.994 0.995 0.993 0.994 0.993 0.993 0.994 0.995
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.154 0.259 0.182 0.907 0.964 0.913 0.952 0.994 0.982 0.777 0.993 0.994
100 0.527 0.589 0.526 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 0.941 0.962 0.948 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

D. Power of Tests at 10% level with DGP 8
n QB∞ QW∞ QB2 QW2 QB1.5 QW1.5 RB∞ RW∞ RB2 RW2 RB1.5 RW1.5
50 0.993 0.995 0.993 0.994 0.992 0.992 0.996 0.996 0.997 0.996 0.996 0.996
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n SB∞ SW∞ SB2 SW2 SB1.5 SW1.5 TB∞ TW∞ TB2 TW2 TB1.5 TW1.5
50 0.995 0.996 0.995 0.996 0.995 0.996 0.995 0.996 0.995 0.996 0.995 0.996
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
n LA0.1 LB0.1 LW0.1 LA0.5 LB0.5 LW0.5 LA1 LB1 LW1 LA2 LB2 LW2
50 0.369 0.414 0.328 0.942 0.982 0.955 0.968 0.995 0.993 0.860 0.997 0.995
100 0.726 0.751 0.688 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
200 0.981 0.988 0.977 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000


