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ABSTRACT

A subset of stations from the daily U.S. Historical Climatology Network (HCN) is used as a basis for a
historical database of temperature extreme occurrence in the United States. The dataset focuses on daily tem-
perature occurrences that exceed (fall below) the 90th (10th) percentiles of daily maximum and minimum
temperature. Using a variety of techniques, the temperature extreme occurrence data are homogenized to account
for nonclimatic shifts resulting from station relocations, changes in instrument type, and variations in the time
of observations. Given the daily resolution of the extreme data, these potential sources of inhomogeneity require
testing and adjustment using methods other than those conventionally used with mean temperature data. A data
estimation technique, specific to extremes, is also used to produce serially complete exceedence records. Stations
are also identified based on their current degree of urbanization using satellite observations. The dataset is
intended to provide a research-quality source of temperature extreme data, analogous and complementary to the
daily HCN dataset.

Two analyses are presented that illustrate the influence of adjustment. The change in temperature extreme
occurrence with time reverses at between 15% and 20% of the HCN stations depending upon whether adjusted
or unadjusted series is used. Changes in the distribution of extreme occurrences during drought and nondrought
years are also shown to occur.

1. Introduction

Interest in the occurrence of temperature extremes has
increased due, in part, to concerns of CO2-induced cli-
mate change. Based on statistical estimates, Mearns et
al. (1984) expect a tripling in the likelihood of heat wave
occurrences (5 consecutive days with maximum tem-
peratures greater than 358C) given a 1.78C increase in
the mean temperature of Des Moines, Iowa. Recent
model estimates also reflect large changes in extreme
events. Using an equilibrium solution for doubled CO2,
Zwiers and Kharin (1998) show an increase of as much
as 108C in the 20-yr return period value of maximum
temperature. The 20-yr recurrence interval minimum
temperature increases by as much as 208C across the
central and eastern United States in these simulations.
Such projections are critical to assessing the conse-
quences of climate variations, since temperature ex-
tremes rather than averages are likely to produce the
greatest societal impacts (Karl and Easterling 1999).

Despite such projections and impacts, relatively little
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work has examined observed changes in extreme tem-
perature events. Easterling et al. (2000) give a brief
overview of the literature related to temporal variations
in temperature extremes. In most cases, these studies
have focussed on 08C as an extreme temperature thresh-
old.

DeGaetano (1996) examined trends in daily temper-
atures (both maximum and minimum) exceeding the
90th (or 10th) percentile of the distribution of all daily
values across the northeastern United States. He found
significant trends toward fewer cold minimum temper-
ature threshold exceedences and more warm minimum
temperature exceedences over the period from 1959 to
1993. A significant number of trends toward fewer warm
maximum temperature threshold exceedences was also
detected at the 22 stations that were analyzed.

David R. Easterling (2000, personal communication)
examined U.S. extreme temperature trends based on the
exceedence of fixed (08 and 32.28C) thresholds and sta-
tion-dependent percentiles. He shows a slight downward
trend in the number of warm maximum temperature
extremes, but notes large positive anomalies during the
1930s and 1950s drought years. Kalkstein and Davis
(1989) also highlight the number of extreme tempera-
tures that occurred in the 1930s. However, using a
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FIG. 1. Distribution of HCN-XT stations with beginning year of
record indicated by 3 ($1950), C (1930–49), ▫ (1910–29), or ∗ (pre-
1910).

threshold equal to the 98.5th percentile, they find no
exceedence trend over the 1931–96 period. Similarly,
Kunkel et al. (1999) found no overall trend in 4-day
heat waves with temperatures exceeding the 10-yr re-
currence interval value.

Gaffen and Ross (1999) examined trends in extreme
apparent temperatures and found increases in the num-
ber of days exceeding the 85th percentile over the period
from 1948 to 1995. Although this agrees with the find-
ings of Balling and Idso (1990), intuitively these results
are in conflict with D. Easterling (2000, personal com-
munication) and DeGaetano (1996). These differences
can be attributed to the the exclusion of the 1930s in
the earlier studies, a potential urban influence at the
stations used by Gaffen and Ross and water vapor trends
(Ross and Elliot 1996).

It is likely that the absence of a high quality, long-
term homogeneous set of daily maximum and minimum
temperature data has led to this relatively small collec-
tion of studies and contributed to these contrasting re-
sults. Unlike monthly mean temperature data sets such
as the U.S. Historical Historical Climatology Network
(HCN; Karl et al. 1990) and global HCN (Peterson and
Vose 1997), a set of serially complete, homogenized
daily temperatures has yet to be assembled. Although
the daily HCN dataset (Easterling et al. 1999) provides
a foundation for such a benchmark dataset, difficulties
in adjusting daily series for changes in observation time,
station relocations, and instrument changes have pre-
cluded the development of a homogenized daily dataset
analogous to the monthly HCN. Recently, however, a
method to homogenize daily temperature extreme series
has been developed (Allen and DeGaetano 2000). This,
in addition to the development of a temperature esti-
mation procedure specific to extreme occurrences (Allen
and DeGaetano 2001), has allowed us to create a long-
term set of homogenized maximum and minimum tem-
perature extremes (both cold and warm) for a subset of
daily HCN stations. To facilitate the use of these data,
not only in trend analysis, but potentially with regard
to describing or forecasting interannual variations in
temperature extreme occurrence, this paper documents
the data and methods used to develop this set of daily
temperature extremes, which is referred to as the Daily
Historical Climatology Network for Extreme Temper-
ature (HCN-XT). Examples of the influence of data ho-
mogenization are also presented.

2. Dataset development

a. Station selection

The HCN-XT dataset is composed of a subset of 361
stations (Fig. 1) selected from the 1096-station Daily
Historical Climatology Network (Easterling et al. 1999).
The initial selection of stations was based on the com-
pleteness of the data record. Stations at which .10%
of the daily observations were missing received no fur-

ther consideration. Stations with nonstandard thermom-
etry were also excluded, except in the case when this
instrument was used only in the earliest portion of the
record. In this case, the analyzed record was limited to
that with either liquid-in-glass thermometers, a maxi-
mum–minimum temperature sensor (MMTS), or any of
the hygrothermographs in use at first-order weather sta-
tions.

The records of the retained stations were divided into
subseries, with each segment reflecting a change in lo-
cation or thermometer type based on the HCN station
history file. Based on this metadata, a relocation was
assumed when the distance from the previous site was
listed as $0.1 miles; the move was associated with a
documented change in latitude, longitude, or elevation;
or the instrumentation height changed. Although min-
imization of the number of station relocations was not
an explicit aim, to facilitate subsequent homogenization,
each subseries was required to be at least 10 yr in length.

Under several circumstances, stations not meeting the
10-yr constant location requirement were also selected.
Less than 10-yr segments at the beginning of the station
records were omitted and the remaining records re-
tained. Stations at which the most recent subseries ex-
ceeded 49 yr and stations having the majority (.75%)
of subseries with lengths $20 yr were also included.
Finally, 24 stations were chosen from data-sparse areas
to subjectively balance the spatial distribution of sta-
tions. Whenever possible these stations were selected
to maximize record and subseries length while mini-
mizing the number of subseries.

Of the 361 stations, the majority have records that
begin between 1930 and 1950. At 76 stations, records
begin prior to 1910. Another 87 stations have obser-
vations that start from 1910 to 1930. Five additional
stations begin observations after 1950. The spatial dis-
tribution of these sites is shown in Fig. 1.
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FIG. 2. Boxplots of average estimation errors, over all station sub-
series. Errors reflect temperatures within the range T92 2 T97 (T8 2
T3 for cold max and min temperatures). The gray band indicates errors
that, when rounded, equal zero.

b. Estimation of missing data

Although data estimation techniques such as those
described by Eischeid et al. (2000) and DeGaetano et
al. (1995) provide rigorous methods for creating serially
complete temperature series, Allen and DeGaetano
(2001) show these methods to be biased when only the
most extreme temperature observations are considered.
Therefore, missing temperature data were estimated us-
ing a procedure developed by Allen and DeGaetano
(2001). The method is a variation of a least squares
regression approach that focuses on obtaining accurate
estimates of annual exceedence counts (e.g., the number
of days exceeding the 90th percentile, T90) and counts
of consecutive extreme exceedences, while minimizing
the estimation error associated with each individual ex-
treme temperature observation.

Data estimation involves the selection of a set of the
15 closest neighboring predictor stations, each free of
documented station moves during the period used to
develop the estimation equations and with the same ob-
servation time category (Karl et al. 1986) as the data
being estimated. Although a maximum separation dis-
tance of 800 km was imposed, most station pairs were
separated by considerably less distance. This require-
ment of constant station location and observation time
precluded the use of non-HCN cooperative network sta-
tions in the estimation procedure as a complete record
of observation time is not available for cooperative net-
work stations.

The 15 potential predictor stations were also required
to share at least 100 extreme temperature days with the
predictand station. Such days experienced nonmissing
temperatures exceeding T90 2 1.18C at the predictand
station, with the offset required to prevent the under-
prediction of temperatures near T90. Furthermore, a tem-
perature pair containing at least one observation for
which the predictand’s temperature is greater than its
97th percentile must be available at each predictor sta-
tion.

Using binned least squares regression, one-predictor
regression equations were developed using data from
each of the 15 selected stations and the corresponding
extreme temperature days from the missing data station.
Binning prevents the unequal weighting (in terms of the
number of observations) of points near the 90th per-
centile relative to those that are more extreme. The de-
pendent sample of extreme temperature days was
grouped such that each bin was associated with a unique
temperature at the predictand (missing temperature) sta-
tion. This set of unique predictand station temperatures
serve as y values in the regression, with x values cor-
responding to the medians of all predictor station tem-
peratures within each bin. Cases for which a negative
regression slope resulted were not considered.

The 15 binned regressions were then evaluated using
cross validation and the equations associated with mean
errors $0.288 or #20.288C omitted. When rounded,

larger errors gave errors $18F. Although the remaining
equations minimize the mean absolute error, they are
still not optimal for categorizing a missing day as ex-
ceeding or not exceeding an extreme temperature thresh-
old. In most cases, the number of days exceeding the
99th percentile is overestimated since the relatively
large number of points near the 90th percentile still
dominate the regression.

To illustrate this bias in exceedence counts, consider
a set of warm temperature extremes and a binned re-
gression equation that, on average, estimates tempera-
tures in the range of 33.98–36.18C as 358C. If 358C is
the 95th percentile, there are more temperatures (days)
between 33.98 and 358C than there are between 358 and
36.18C. Thus, the chance of underestimating the extreme
is greater. To compensate for this problem, the regres-
sions were optimized by iteratively using percentiles
other than median in the most extreme bins. Optimi-
zation continues until the number of estimated days ex-
ceeding the 99th and 95th percentiles is within 10% of
the number of observed days, using cross validation.

After optimizing the 15 binned regression equations
separately, the two that were previously associated with
the lowest mean absolute error are combined. For each
data pair, the combined estimate is simply the median
of the estimates based on the individual equations. The
combination of equations continues (in order of increas-
ing mean absolute error) until the value 100 2 [(R90 1
R95 1 R99)/3] is minimized. Here, Rj is the ratio (3100)
of estimated to actual days exceeding the jth percentile
based on cross validation.

Clearly, the final optimized regression is no longer
the best (in terms of minimizing squared errors) for all
temperatures $T90 2 1.18C, since the slopes and inter-
cepts of the original binned regressions have been
changed. The effect is minimal at temperatures near T90

but introduces a slight negative bias overall, since the
more extreme temperatures are intentionally being un-
derestimated. Nonetheless, the bias is similar (and gen-
erally less) than that associated with the more traditional
data estimation techniques. This leads to individual es-
timates of sufficient accuracy and more importantly un-
biased estimates of threshold exceedence days. Figure
2 shows the distribution of average cross-validation er-
rors (over each homogeneous subseries) associated with
the optimized regressions. Another desirable character-



1270 VOLUME 19J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y

istic of an extreme temperature estimation routine is the
ability to replicate the occurrence of consecutive ex-
ceedences. Based on cross-validation, over 91% of the
$2, $3, and $4 day extreme temperature runs were
simulated by the-estimation procedure.

In some cases, it was not possible to estimate missing
temperature data. Generally, this occurred when either
a set of predictor stations within 800 km of the missing
data station could not be identified, or when there was
an inadequate number predictor–predictand extreme
temperature pairs to develop a regression. This latter
condition occurred when there were fewer than 50 com-
mon extreme days or when a common extreme exceed-
ing the 95th percentile could not be identified. If a re-
gression could not be developed because of a deficient
sample size, the missing data values were flagged ac-
cording to their potential for exceeding the extreme
threshold. This flag was based on the temperatures ob-
served at the predictor stations. In cases where a tem-
perature observation was available at one or more of
these neighboring stations, the missing data value was
flagged as unlikely to exceed the extreme threshold if
the neighboring station’s temperature was more than
5.58C (108F) below (or above for cold extremes) its
corresponding percentile.

c. Threshold section

Intuitively, the most recent period provides a logical
base for computing station-specific extreme thresholds.
However, the longest homogeneous data subseries also
presents a viable alternative and was selected as a start-
ing point for the temperature extreme database. Using
the longest possible data record ensured a representative
sample of daily temperature occurrences, particularly
within the tails of the empirical distribution. It also
avoided complications associated with documented data
discontinuities within the base period and minimized
the amount of adjusted data.

A primary consideration for choosing the recent re-
cord is to avoid adjusting subsequent (i.e., future) ob-
servations, at least until another discontinuity is intro-
duced. This is of less concern in the analysis of the
extreme series. Parameters such as the mean are oper-
ationally computed and archived, and therefore unpro-
cessed values can be simply added to the series. This
would not be the case if the addition of an adjustment
factor was necessary. For temperature extreme data, ad-
justment involves altering the extreme threshold rather
than a translation of the series mean (section 2e). There-
fore, regardless of the current value of the threshold,
extension of the extreme count series requires new tal-
lies to be computed from the daily observations.

Although the choice of the base period affects the
number of extreme temperature exceedences that a spe-
cific month or year experiences, in most cases it has no
effect on the slope of the data series. An exception oc-
curs if the base period corresponds to the warmest (or

coldest) portion of a nonstationary record. Since thresh-
old exceedence count data are truncated at zero, a per-
centile threshold characteristic of the warmest (coldest)
part of the record may result in no exceedences in the
majority of the cooler (warmer) years. Clearly, this
would skew any trend that may have been present. The
potential for this problem was reduced by using the
longest period, rather than the most recent, as the base
for computing the extreme thresholds.

There are several alternative methods for computing
percentile thresholds. Empirical percentiles, based on
the sorted series of daily temperatures within the base
period, offer one option. However, parametric percen-
tiles based on some theoretical distribution (e.g., nor-
mal) could also be computed. As another option, sep-
arate percentiles can be computed for each year (or sea-
son) within the base period and the median (or average)
of these annual values used as the relevant threshold.
While the first and last approaches yield similar thresh-
olds (Fig. 3), the parametric percentiles are consistently
higher than their empirical counterparts. These differ-
ences are of little practical significance, provided a con-
sistent computation method is adopted throughout the
analysis. The first approach was adopted in this study,
since it provided a more lenient definition of extreme
allowing dataset users greater flexibility in choosing
higher (lower) application-driven extreme thresholds.

For each station’s base period, the 1st, 5th, 10th, 90th,
95th, and 99th percentile of daily maximum and min-
imum temperature was computed based on all complete
years within the base period. Since the daily tempera-
tures within the upper and lower deciles tend to be con-
fined to specific seasons, the empirical distribution of
temperatures could be limited to the relevant 3- or 6-
month period. This would provide a much more strin-
gent definition of extreme. Using all days, the 10th per-
centile approximates the 36th coldest day of a specific
year. When confined to winter days, only the nine cold-
est days typically exceed the 10th percentile threshold.
In creating the dataset, it was desirable to restrict the
data as little as possible. Although some restriction was
required for homogenization, the use of a lax definition
of annual percentile extremes, allowed the creation of
a dataset that includes the observations necessary to
conduct analysis based on more stringent (such as sea-
sonal) definitions of extreme. It should also be noted
that the dataset is limited to the analysis of annual ex-
treme exceedences. Investigations of extremes from a
monthly perspective (e.g., extremely warm winter days)
would likely require modification of the routines used
for homogenization and data estimation.

d. Observation time adjustment

The effect of observation time bias on monthly and
annual temperature exceedence counts is analogous to
its influence on average temperature. Figure 4 shows
representative patterns of observation time bias for sea-
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FIG. 3. Comparison of empirical (a) 90th, (b) 95th, and (c) 99th percentiles using
all data with those based on a fit normal distribution (dots) or the median of a
series of annual empirical percentiles (crosses).

sonal exceedence count data. Hourly data from 12 geo-
graphically diverse stations were used to simulate daily
maximum and minimum temperatures based on 24 ob-
servations times. For each simulated observation sched-

ule, seasonal counts were made of exceedences of the
90th and 10th percentiles, with the percentiles being
based on a midnight-to-midnight observation. Seasons
were defined as June–August (JJA) and December–Feb-
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FIG. 4. Representative patterns of temperature extreme occurrence
observation time bias relative to a midnight-to-midnight observation
for (a) max and (b) min temperature. Squares correspond to the 90th
percentile and circles to the 10th percentile. The gray curves show
the observation time bias as a percentage of the midnight value.

TABLE 1. Hourly stations used to develop and validate the
observation time adjustment equations.

Development

Station
Abbrev-

iation

Validation

Station
Abbrev-

iation

Brownsville, TX
Cape Hatteras, NC
Caribou, ME
Fort Myers, FL
New Orleans, LA
Pocatello, ID
Quillayute, WA
Sacramento, CA
San Diego, CA
St. Louis, MO
Salt Lake City, UT
Tucson AZ

BRO
HSE
CAR
FMY
MSY
PIH
UIL
SAC
SAN
STL
SLC
TUS

Asheville, NC
Billings, MT
Corpus Christi, TX
Flagstaff, AZ
Fresno, CA
Los Angeles, CA
Miami, FL
Mobile, AL
Omaha, NE
Phoenix, AZ
Portland, ME
San Francisco, CA

AVL
BIL
CRP
FLG
FAT
LAX
MIA
MOB
OMA
PHX
PWM
SFO

ruary (DJF) for the 90th and 10th percentile thresholds,
respectively.

For warm ($90th percentile) maximum temperatures,
there is almost a 20% (6 days on average) increase in
exceedences when observations are based on an after-
noon instead of a midnight (or morning) observation
time (Fig. 4a). This is a reflection of the maximum
temperature from a relatively warm afternoon being the
highest reading in successive observation intervals.
Cold (#10th percentile) maximum temperatures display
the opposite pattern of bias, with over 20% fewer ex-
ceedences associated with counts from afternoon ob-
servations. In this case, a particularly cold maximum
temperature during one afternoon can be exceeded by
a warmer reading near the end of the 24-h afternoon
observation interval. The colder reading may not be
superceded in the 0000 local time (LT) observation,
since each set of afternoon hours is contained within
separate midnight-to-midnight intervals. An analogous
situation is responsible for the slight increase in cold
maximum temperature exceedences based on morning
observations, since, on average, the temperature at mid-
night is warmer than at an early morning hour.

As opposed to maximum temperatures, few obser-
vation hours are free of observation time bias when
minimum temperature exceedences are considered. Sea-
sonal warm minimum temperature exceedences de-
crease by almost 20% (about 6 days) for morning ob-
servation hours, but increase by 10% when based on
afternoon observation schedules. As with cold maxi-

mum temperatures, this pattern reflects the possibility
that the minimum occurring near the end of the morning-
to-morning interval (or midnight-to-midnight) will be
cooler than an extremely warm minimum occurring near
the beginning of the period. The pattern of bias for cold
minimum temperature exceedences mirrors that of the
warm minimum temperature exceedences, since ex-
tremely cold temperatures occurring during early morn-
ing (late night) hours often reflect the minimum tem-
perature of two morning-to-morning (midnight-to-mid-
night) observation periods.

To compensate for these biases in exceedence count
series that experience changes in observation time, re-
gression-based adjustments were developed. As op-
posed to previous methods of compensating for obser-
vation time bias in average temperature series (e.g., Karl
et al. 1986), it was not feasible to apply the same month-
ly adjustment to data from each year. Rather, since the
adjustments rely heavily on the number of exceedences
experienced and there is considerable year-to-year var-
iability in monthly exceedences, it was necessary to
compute separate adjustments for each individual
month. Simulated daily observations representing each
observation hour were computed from hourly data at
the 12 stations listed in Table 1 for the period 1985–95
and are used as developmental data for obtaining re-
gression-based observation time adjustments.

Initially, the simulated data were grouped into ob-
servation time categories (i.e., morning, afternoon, and
midnight) based on Karl et al. (1986) and a set of six
regression equations developed for each of 12 temper-
ature extreme categories (i.e., 1st, 5th, 10th, 90th, 95th,
and 99th percentile exceedences for maximum and min-
imum temperature). In each case, the original monthly
exceedence count, the number of monthly runs, a mea-
sure of the observation time bias associated with average
temperature, and the current observation hour were con-
sidered as potential predictors of the monthly exceed-
ence count for an hour in a different observation time
category. Predictors were eliminated from the final re-
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gression equations using a backward elimination pro-
cedure based on a 5 0.10.

Monthly runs were defined as single or consecutive-
day occurrences of a temperature exceeding the extreme
threshold, separated by at least one day on which the
temperature fell below the threshold. The measure of
average temperature bias was computed based on the
empirical model given by Karl et al. (1986). This model
estimates the observation time bias associated with
monthly maximum or minimum temperatures at a sta-
tion as a function of some base bias, which is a function
of local solar month and hour (i.e., latitude, longitude,
and time zone), the mean monthly interdiurnal temper-
ature difference (absolute value of day-to-day differ-
ences in mean temperature), and a measure of the end-
of-month effect. For each individual month, the model
was run using the average interdiurnal temperature dif-
ference within the specific month, as opposed to the
static monthly means used by Karl et al. (1986). From
the output, the difference between the bias associated
with the new observation hour and that of the original
hour was computed for use as a potential predictor.

Examination of the residual plots (not shown) asso-
ciated with these regression equations indicated that the
assumption of constant variance was not valid. As this
feature could not be remedied through transformation
of the predictands, the separate regression equations
were reformulated based on specific predictand hours
as opposed to categories. Thus, adjustment of a monthly
temperature exceedence count based on any morning
(0600–0900 LT) observation hour to that of a 1700
observation schedule required a different equation than
conversion to a different (say 1800 LT) observation
hour. Initially this led to a substantial increase in the
number of regression equations required. However, bas-
ing the regressions on specific predictand hours allowed
the separate equations for the 90th, 95th, and 99th (or
1st, 5th, and 10th) percentile exceedence counts to be
combined. Thus, conversion between all but the most
uncommon observation hours could be accomplished
with four sets (warm and cold maximum and minimum
temperature) of 20 equations.

Besides the formulation of these regression equations,
it was also necessary to develop a criterion to determine
if adjustment was required in months with a zero ex-
ceedence count. For instance, when based on an after-
noon observation, it is possible for a month to have an
exceedence of a warm minimum temperature threshold,
even though no exceedences are reported based on a
morning observation threshold. This stems from the
possibility that the minimum occurring near the end of
the morning-to-morning interval will be cooler than an
extremely warm minimum occurring near the beginning
of the period. Thus, while the single warm minimum
associated with an afternoon observation interval may
stand as the lowest temperature observed in that par-
ticular 24-h period, the second, cooler temperature is
likely to represent the minimum of the morning-to-

morning period. Based on the patterns of observation
time bias shown in Fig. 4, it is not possible to increase
a zero monthly warm maximum or cold minimum tem-
perature exceedence count through a change in obser-
vation time. Thus for these variables, the regression
equations apply only to those months with nonzero ex-
ceedence counts. Conversely, a zero exceedence count
may increase when going from a morning to afternoon
observation time for warm minimum temperatures or
from an afternoon to morning observation hour for cold
maximum temperatures. For these variables, the re-
gressions were fitted and applied to all months in which
the highest (lowest) reported temperature was at most
1.18C less (greater) than the extreme threshold. Al-
though arbitrary, this 1.18C (28F) interval provided a
means of identifying months in which it was unlikely
that an observation time change would influence a zero
exceedence count.

The regression equations were evaluated using an in-
dependent set of simulated daily observations repre-
senting the relevant observation hours. Hourly data from
12 sites (Table 1) for the period 1985–95 were used for
these simulations. Figure 5 shows the results of these
evaluations for the 90th (Figs. 5a,c) and 10th (Figs.
5b,d) percentiles using boxplots. The distributions of
estimation errors are similar for both thresholds and
maximum and minimum temperatures. In all cases, es-
timates are relatively unbiased, as the median errors are
less than 60.5 days. When rounded, counts within this
range are associated with no adjustment error. However,
based on the validation data there is a slight tendency
to overadjust morning observations (when converting
to afternoon based values) and likewise underadjust af-
ternoon observations (Figs. 5a,b,c). In all but a few
cases, 75% of the monthly estimates are within 61 day
of the observed values, and 95% of the estimates fall
within 3 days of the observations. For comparison, Fig.
6 shows boxplots of the estimation errors associated
with 95th and 99th percentile maximum temperature
exceedences. In these cases the distribution of residuals
is similar to that for the 90th percentile exceedences.

In Figs. 5 and 6, each error distribution represents 12
stations, 11 yr, 12 months and, in some cases, a range
of original hours. To identify any biases related to these
parameters, Fig. 7 shows the distribution of residuals
for specific stations, years, months, and original hours.
The conversion of 90th percentile minimum temperature
exceedences from an afternoon hour to that of an 0700
LT observation time is used as a representative example.
The choice of original observation hour and year have
little effect on the distribution of adjustment errors. De-
spite the apparently large biases during winter, the dis-
tributions of adjustment errors are similar for each
month. The boxplots in Figs. 5–7 omit cases in which
adjustment was not required. In the case of warm min-
imum temperatures, this includes months in which the
highest reported temperature was more than 1.18C (28F)
below the extreme threshold. Thus, the monthly error
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FIG. 5. Boxplots of observation time bias adjustment errors for 12 independent stations for (a)
90th percentile max temperature, (b) 10th percentile max temperature, (c) 90th percentile min
temperature, and (d) 10th percentile min temperature. Whiskers denote the 95th percentile.

FIG. 6. As in Fig. 4, but for the (a) 95th and (b) 99th max temperature percentiles.

distributions for winter months are based on a very small
sample (Fig. 7).

The distributions of adjustment errors are, however,
influenced by station location. The regression equations
overadjust warm minimum temperature exceedence
counts at Phoenix, Asheville, and Omaha, while un-

deradjustment is most pronounced at Miami, Fresno,
and Mobile. With the exception of Omaha and Ashe-
ville, these verification stations are generally located in
regions were the influence of observation time bias is
minimal (DeGaetano 2000) and therefore provide a
stringent evaluation of the regressions. The error char-
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FIG. 7. As in Fig. 4, but for 90th percentile min temperature exceedences for specific (a)
stations, (b) years, (c) months, and (d) hours. (d) Observations are adjusted to that of an 0700
observation hour. The numbers in (c) are the adjustments used in forming the boxplots.

FIG. 8. As in Fig. 6, but for specific stations in the vicinity of
Omaha, Nebraska (OMA).

acteristics of Portland, Billings, and Flagstaff are more
characteristic of stations located away from the imme-
diate Gulf and Pacific coasts where the effects of ob-
servation time are more pronounced (DeGaetano 1999).

The skewed exceedence count errors for Omaha and
Asheville likely result from station-specific character-
istics. DeGaetano (2000) showed suboptimal observa-
tion time classification success at Asheville, despite fa-
vorable results for surrounding stations. Likewise, Oma-
ha lies within an area characterized by low interdiurnal
minimum temperature range, relative to that for maxi-
mum temperature (DeGaetano 1999). Over the majority
of the country the magnitude of these two ranges are
essentially equal. To further investigate whether a re-
gional bias was present in the vicinity of Omaha, ad-
justment errors at a set of four neighboring stations—
Sioux Falls, South Dakota (FSD); Sioux City, Iowa
(SUX); Kansas City, Missouri (MCI); Scottsbluff, Ne-
braska (BFF)—were analyzed (Fig. 8). Sioux City dis-
plays a comparable tendency toward overadjustment.
However, the adjustments at the other stations are either
unbiased (FSD) or exhibit a slight (MCI) or modest
(BFF) underadjustment. Although such station-specific
biases can be identified based on simulated observation
times, they could not be inferred from daily HCN ob-
servations. Therefore, the development of a set of sta-
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tion-specific (or even regional) observation time ad-
justment functions would not have been practical.

e. Inhomogeneity adjustments

Time series of temperature exceedence counts can
also be influenced by changes in instrument type and
station location. The methods of Allen and DeGaetano
(2000) were used to test and potentially adjust each
documented station relocation or instrument change for
a nonclimatic discontinuity. Prior to this screening, the
data series were standardized to a common observation
time reflecting the predominant historic observation
schedule. This facilitated the inhomogeneity tests by
maximizing the number and length of homogeneous pe-
riods at each station.

Potential inhomogeneities were identified using the
HCN station history file. Based on these metadata, it
was possible to identify changes in station location,
instrument type, and instrument height (e.g., roof top
versus ground). A change in any one of these three
attributes identified a potential discontinuity that re-
quired testing. Changes associated with site charac-
teristics (e.g., nearby paving or construction) and rou-
tine weather station maintenance (e.g., shelter re-
painting or the replacement of a broken thermometer)
are not documented electronically and therefore it was
difficult to consider such changes as potential inho-
mogeneities.

For each potential discontinuity, a set of neighboring
reference stations was assembled from the pool of 1096
daily HCN stations in a fashion similar to Karl and
Williams (1987). However, due to differences between
the testing and adjustment procedures, the selection of
stations was based on minimizing the pooled standard
deviation of the difference series rather than the con-
fidence interval width associated with the t test. These
differences arise from Karl and Williams’ use of the
Student’s t-test as opposed to the adoption of a non-
standard test statistic by Allen and DeGaetano (2000).

Once a set of reference stations was selected, a com-
bined reference series was formed by weighting cor-
responding values from each series by their respective
pooled standard deviation and then summing each set
of annual exceedences. This reference exceedence count
series was used to compute a difference (reference 2
potentially inhomogeneous series), which was divided
into two periods according to the documented inho-
mogeneity. The 75th and 25th percentiles of the longer
of the two periods (T751 and T251) were then calculated.
Using these values, the proportion of years in the shorter
period that exceeded T751 (P752) was calculated, as was
the proportion of years that fell below T251 (P252) and
used to compute the test statistic

t 5 (0.25 2 P75 ) 2 (0.25 2 P25 ).s 2 2 (1)

When the two periods are similar (i.e., the metadata
change does not produce a significant discontinuity),

P752 ø 0.25. Similarly, P252 ø 0.25 and thus, ts ø 0.
If, however, the discontinuity introduces a significant
warming or cooling during the second period, then the
quartiles of the two periods will be different with ts ,
0 or ts . 0, respectively. Thus, in this two-tailed test,
the null hypothesis is defined as H0:ts 5 0. Periods of
less than 5 yr were not tested. Such periods were un-
common given the criteria for selecting stations.

Once ts was computed, the statistical significance of
the discontinuity was assessed by resampling tech-
niques. Here, the combined series (i.e., the years before
and after the discontinuity) were randomly sampled with
replacement 1000 times. For each reordering, a new ts

value was calculated creating a distribution of ts con-
sistent with the null hypothesis of no difference before
and after the discontinuity. Significant discontinuities
were associated with ts values within the lowest or high-
est 2.5% of the resampled distribution.

In its simplest form the testing procedure assumes
that the difference series before and after the disconti-
nuity are stationary. When one or both time periods have
a significant slope, the basic test incorrectly rejects H0

too frequently. Prior to application of the test, each sub-
series was tested for a significant slope (Wilks 1995).
Based on a set of HCN stations included in the tem-
perature extreme dataset, trended differences series (ei-
ther before or after the discontinuity) occurred in ap-
proximately 17% of the cases. In these cases, a more
complex testing procedure was implemented.

When only one of the difference series segments
was nonstationary, it was detrended, based on the re-
siduals obtained from a linear least squares fit of the
original time-dependent series prior to the application
of the test procedure. After fitting this regression, the
95% confidence interval for the slope and intercept
were computed (Draper and Smith 1981). The lines
representing the bounds of this interval were pro-
jected to the year of the discontinuity and the inter-
sections used to translate the original residual series
into two new series. This allowed the nonstationary
series to be described by two stationary series at the
upper and lower limits of the 95% confidence interval
about the original regression.

The test now proceeded in a manner analogous to the
stationary case. First, using the stationary series after
the discontinuity, the proportion of years exceeding
(falling below) the 75th (25th) percentile of the upper
detrended residual series were computed and used to
calculate ts upper. The statistical significance of ts upper was
assessed based on 1000 bootstraps of the combined re-
sidual and after-the-discontinuity series. As opposed to
the no-slope case, a one-tailed test was used, since it
was only necessary to detect those cases in which the
series after the discontinuity was significantly higher
(i.e., ts upper , 0) than the residual series. If this test failed
to reject the null hypothesis (H0:ts upper 5 0), then a
second test was conducted using the lower residual se-
ries. Here, the proportion of years exceeding (falling
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below) the 75th (25th) percentiles of the lower residual
series were used to compute and statistically evaluate
ts lower. Again, a one-tailed test was used to identify cases
in which the series after the discontinuity was signifi-
cantly lower than the residual series. Rejection of H0 in
both cases indicated a significant discontinuity.

An analogous detrending and testing procedure was
used when a significant slope was present both before
and after the discontinuity. In this case, four detrended
series were computed and the original test used to com-
pare the two relevant pairs of detrended series. The ap-
plication of this test was limited to 2% of discontinuities
tested.

In a very small percentage of cases (0.4%), the dif-
ference series tests could not be conducted, due to either
an inadequate number of neighboring stations or a rel-
atively large pooled standard deviation. Stations were
not considered as neighbors if they had fewer than five
homogeneous (i.e., no documented discontinuities)
years in common with the periods before or after the
discontinuity being tested, missing data precluded the
computation of an annual exceedence count in the over-
lapping periods, or they were more than 800 km from
the site being evaluated. In this case the discontinuity
tests were conducted using the exceedence count series
at the station with the potential discontinuity. Allen and
DeGaetano (2000) refer to this as a single-station test.
Although such a test is clearly less powerful than those
based on the difference series, Allen and DeGaetano
(2000) showed that it was capable of detecting some
discontinuities. More importantly, for the single-station
test, the probability of falsely rejecting the null hy-
pothesis of no difference between the subseries was
comparable to that based the difference series, provided
nonstationary series were detrended prior to the test.

In cases were these tests indicated a significant in-
homogeneity, an adjustment factor consistent with the
results of the test was formulated. As opposed to var-
iables such as mean temperature, the application of a
fixed adjustment (or percent adjustment) to all years
after the discontinuity is not applicable to extremes.
Rather, for extreme exceedences, a more prudent ap-
proach involves a variable adjustment for each year.
Here, each annual adjustment is based upon the ob-
served number of exceedences of slightly warmer and/
or cooler threshold temperatures. In essence, adjust-
ments for extreme occurrences involve a change in the
threshold temperature rather than a static change in an-
nual extreme counts.

As an example, assume that the relocation of a station,
at which days $908F are considered ‘‘extreme,’’ intro-
duces a 48F warming to the subsequent record of daily
temperatures. Such a change would precipitate an in-
crease in days $908F, since days on which the temper-
ature would have previously (before the move) only
reached 868F are now likely to meet the $908F thresh-
old. In such a case, adjustment would involve selecting
a new higher threshold such that the number of ex-

ceedences of this new limit is comparable to that as-
sociated with the original 908F value.

The new threshold was determined through an array
of tests in which the series following the discontinuity
was based on sequentially higher or lower threshold val-
ues. Progressively higher thresholds were indicated when
the inhomogeneity was followed by an increase in warm
exceedences or a decrease in cold exceedences. Based
on the above example, assume that the 48F warming re-
sulted in the rejection of H0 when the series before and
after the move were based on a 908F threshold. Since
such a warming would lead to an increase in days $908F,
the series after the break was recomputed based on days
$918F and the test reapplied using days $908F prior to
the move and the $918F series after the break. Assuming
the null hypothesis was again rejected, the test would be
repeated using counts of days $928F after the break. This
process of increasing the threshold temperature and re-
testing proceeded until H0 was accepted and then con-
tinued until the number of exceedences following the
break was either significantly less than that based on the
original 908F threshold or H0 was accepted for 10 con-
secutive iterations. This suite of tests generally produced
a string of one or more threshold values for which no
discontinuity was indicated. The median of those thresh-
olds that resulted in acceptance of the null hypothesis
was chosen as the adjustment. If the set of tests failed
to give a threshold for which H0 was accepted the ex-
ceedences were adjusted based on the average of the
thresholds that changed the sign of ts.

A final consideration for the adjustment procedure
relates to the order in which adjustments are made in
series experiencing more than one discontinuity. Al-
though previous homogenized data sets have adopted a
reverse chronological approach (i.e., the most recent
portion of the record is left unadjusted), in the HCN-
XT the longest homogeneous period was left unadjust-
ed. This approach minimized the quantity of data that
was subject to adjustment, while maximizing the ability
of the test procedure to detect small discontinuities. Al-
len and DeGaetano (2000) showed the difference series
test was able to detect a higher percentage of artificial
discontinuities as the length of one of the homogeneous
periods increased. Unlike mean temperatures, where an
adjustment would need to be added to current obser-
vations, the use of the longest period as a base for ho-
mogenization merely means that a different extreme
threshold is considered for current data. Such time-de-
pendent threshold changes would result regardless of
which subseries was initially homogenized. Once the
long base period was identified, adjustments proceeded
chronologically with the decision to adjust earlier or
more recent periods again based on series length. Once
adjusted, sequential series were combined to evaluate
and potentially adjust later (or earlier) segments of the
series. While this approach is fairly straightforward
when the overall data record is represented by difference
series, at some stations the early portion of the record
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must be adjusted using a single-station test. Here, the
periods that required use of the single-station test and
those for which the difference series test could be ap-
plied were treated separately. Three distinct periods—
one requiring the single-station test, another based on
the difference series approach, and a third intervening
period—were generally present in these cases. If a dif-
ference series of five or more years could be formed
within the intervening period, then an adjustment was
computed based on these years and applied to each year
within the intervening period. Otherwise, the adjustment
applied to the intervening period was based on the sin-
gle-station approach. The two final homogeneous pe-
riods that resulted (one standardized with the single-
station test, the other using a difference series) were
tested using the single-station approach. If an adjust-
ment was indicated, it was applied to the single-station
series, regardless of length.

In all cases inhomogeneity adjustments were devel-
oped only for the 90th and 10th percentile exceedence
series. These adjustments where then applied to the
more extreme thresholds. For instance, if the 90th per-
centile threshold required a 28F adjustment, the 95th
and 99th percentile thresholds were also increased by
28F. This was particularly necessary for the 99th (and
1st) percentile series, since the existence of years with
no exceedences compromised the reliability of the in-
homogeneity test. While separate adjustments could
have been developed for the 95th (and 5th) percentile
series, analyses showed that values based on the higher
thresholds were comparable (i.e., within 618F) to those
derived separately in over 90% of the cases. Thus for
simplicity, a single adjustment for all thresholds was
adopted. This is also physically realistic, as it is unlikely
that a change in station characteristics would cause a
different response in temperatures separated by on av-
erage 38F.

f. Computation of adjusted exceedence series

The net result of the inhomogeneity adjustment pro-
cedure was a set of extreme thresholds that varied with
time as the station experienced relocations or instru-
mentation changes. Therefore, the original series, which
was based on a constant threshold, was recomputed to
account for the inhomogeneities. During years in which
the discontinuity occurred, the extreme (warm) thresh-
old for the subsequent year was used when the docu-
mented change occurred prior to July. Otherwise, the
threshold for the preceding year was used. An analogous
procedure was used for the cold extremes.

Once the new series based on the time-dependent
thresholds was assembled, it was also necessary to re-
compute the observation time adjustments. This was
required since the regression-based observation time ad-
justments are based on the monthly exceedence counts.
These counts were likely to have changed when the new
thresholds were considered. As before, the observation

time of each series was standardized to that which was
most prevalent during the station’s history. The HCN
station history file was generally used to determine ob-
servation time changes. However, a supplemental in-
ferred observation time dataset (DeGaetano 2000) was
used in cases where the HCN metadata were missing or
when the inferred and documented observation times
differed for more than three consecutive years. Adjust-
ments during months with different documented or in-
ferred observation times were computed using the re-
gression-based procedure described above. However,
predictors were based on the new time-dependent ex-
treme thresholds rather than the constant base period
value.

g. Urban classification

While previous investigators have developed methods
to adjust for urban influences in high quality temperature
databases (i.e., Karl et al. 1988), the degree of urban-
ization of each HCN-XT station is simply identified.
This approach is intended to increase the utility of the
dataset beyond global change research to applications
concerning urban-induced changes in temperature ex-
treme occurrences that have impacts on such areas as
human health and energy demand.

Data from the Defense Meteorological Satellite Pro-
gram Operational Linescan System (OLS) were used to
characterize the degree of urbanization associated with
each station included in the database. Owen et al. (1998)
developed a method to objectively define climate sta-
tions as urban, suburban, or rural using OLS data. These
data represent the frequency that lights were detected
within a 1-km grid cell relative to the number of cloud-
free grid observations during 1994 and 1995 (Elvidge
et al. 1997). Each grid was classified based on two
thresholds. The urban threshold was suggested by Im-
hoff et al. (1997a) and Imhoff et al. (1997b), while Owen
et al. (1998) established the rural threshold.

An analysis of local (3 km 3 3 km) and regional (21
km 3 21 km) samples of 1-km grid cells around each
station was used to determine whether the station was
classified as urban, suburban, or rural. This determi-
nation was based on decision logic outlined by Gallo
et al. (1999). Stations with any urban grid cells within
the local sample were immediately classified as urban.
Rural sites contained no urban grids in the local sample
and fewer than 25% grid cells classified as urban or
suburban in the regional sample. Likewise, suburban
stations were associated with no urban grids in the local
sample and regional samples containing between 25%
and 50% urban or suburban grids. A larger percentage
of urban or suburban grids in the regional sample was
characteristic of an urban site.

This type of satellite-based urbanization classification
is not included in the HCN metadata. In this dataset,
urbanization adjustments to the temperature means are
based on population (Karl et al. 1990). Thus, the ur-
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FIG. 9. Locations of rural (l), suburban (C), and urban (∗) HCN-
XT stations.

banization categories included with the HCN-XT data
provide supplemental information for studies using the
HCN.

The number of stations within each urbanization cat-
egory was similar. Using this procedure, 136 stations
were classified as urban, 126 as suburban, and 99 as
rural. The spatial distribution of these station types is
shown in Fig. 9.

3. Dataset evaluation and applications

Twelve distinct data files comprise the HCN-XT. These
correspond to station homogenization and extreme oc-
currence data files for each of the four threshold cate-
gories (warm and cold extremes for daily maximum and
minimum temperatures). The datasets are available online
(http://www.nrcc.cornell.edu/hcnpXT.html). Information
regarding the formats of the data files is also included
on the Web site.

a. Illustrative examples

Based on the comments of an anonymous reviewer,
examples of homogenized exceedence series at four
sites are presented to give users a qualitative measure
of the homogeneity of the series. In each case the ad-
justed and unadjusted exceedence counts are also pre-
sented as differences from the corresponding counts ob-
served at a reference series of neighboring stations. The
reference series were constructed in a manner akin to
Easterling and Peterson (1995). The stations chosen for
illustration were perceived to be difficult to homogenize
(by the reviewer) based on the number of nonclimatic
changes, climate, and geographic location.

Crater Lake, Oregon, is an isolated high elevation
(1976 m) station. The neighboring stations that were
available for the homogenization process represented
much lower elevations (,230 m). A station move in

1984 was judged to introduce a discontinuity into the
cold maximum temperature extreme series. Adjust-
ment required the extreme threshold be raised by 18F.
This increased the adjusted series in the later years
producing a visually (and statistically) homogeneous
series (Fig. 10a). Crater Lake also experienced several
observation time changes through its record. For these
cases, exceedence counts based on an afternoon hour
were standardized to an 0800 LT observation. This
resulted in slight increases in cold extreme exceed-
ences.

Newberry, Michigan, is also isolated based on its lo-
cation in the Upper Peninsula. Neighboring stations in-
cluded in the reference series were located more than
400 km from Newberry. Warm minimum temperatures
are used in this illustration, with a station move in 1984
introducing a 1.58F decrease in the extreme threshold.
Another move in 1992 brought the threshold back to
the pre-1984 level. Newberry also experienced four
changes in observation time, switching from an after-
noon hour to midnight throughout its history. Despite
these changes, only minor adjustments were necessary
(Fig. 10b).

At a more southern location, Fairhope, Alabama, ex-
perienced several shifts in observation time throughout
its record. In the 1950s, observations were taken at mid-
night. This schedule switched to the afternoon in 1960
and then to a morning hour in 1977. The station also
relocated in 1987, but this change did not require ad-
justment of the extreme warm maximum temperature
threshold. Only the period during which observations
were taken during the afternoon required adjustment.
Visual inspection of the Fairhope exceedence series sug-
gest a possible discontinuity prior to 1955, as the annual
counts appear relatively high (Fig. 10c). No documented
station changes could be identified during the mid-
1950s. However, the period from 1952 to 1955 was
characterized by a prolonged drought in Alabama. Pre-
sumably, these conditions are related to the high number
of temperature extremes during this period based on the
preliminary analysis conducted in the next subsection.

Eureka, California, was used as a final example for
two reasons. According to the HCN station history file,
Eureka is free of relocations and instrument changes.
Thus, homogeneity adjustments were not applied to the
data series. Furthermore, since observation time has
been constant for all but the first two years of the 49-
yr record, there is little reason to doubt the homogeneity
of this site. The station also potentially presents a chal-
lenge to the homogenization based on its coastal loca-
tion and pronounced maritime climate. Visual exami-
nation of the difference series reveals a rather striking
discontinuity in the record beginning in 1982, despite
the apparent homogeneity of the station based on the
HCN metadata (Fig. 10d). Further evaluation of the Eu-
reka station history using metadata provided online by
the Western Regional Climate Center (http://
www.wrcc.dri.edu/inventory/sodca.html) showed that
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FIG. 10. Examples of homogenized exceedence count series (uppermost series) and adjusted (solid) and unadjusted
(dotted) difference series for (a) cold max temperatures at Crater Lake, Oregon; (b) warm min temperatures at Newberry,
Michigan; (c) warm max temperatures at Fairhope, Alabama; and (d) warm max temperatures at Eureka, California.

the station was indeed relocated during 1982. Account-
ing for this change eliminated the discontinuity that was
apparent in the unadjusted data (Fig. 10d).

This example highlights an important caveat. The data
series adjustments are based only on documented station

location or instrument changes. Undocumented changes
may introduce nonclimatic discontinuities into the data.
The detection and adjustment for such inhomogeneities
is beyond the capabilities of the adjustment procedures
developed and applied in this work.
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b. Applications

The original and homogenized temperature extreme
time series from the HCN-XT stations were subjected
to two analyses to quantify the effects of homogeni-
zation. In the first case, temperature exceedence trends
over the period 1950–96 were evaluated. This analysis
followed the methods of Karl and Williams (1987). A
more thorough discussion of this evaluation and its re-
sults are given in DeGaetano and Allen (2002). Of in-
terest here are those cases where homogenization of the
series resulted in a change in the direction of the trend.
On average, over 16% of the series experienced such a
trend reversal. Similar percentages were noted for each
of the exceedence types (i.e., warm maximum, cold min-
imum, etc.). Over other time periods more than 20% of
the series experienced trend reversals upon homogeni-
zation.

Figure 11 shows four cases in which the trends of
the adjusted and unadjusted trends were opposite, and
both significantly (a # 0.10) different from zero. For
warm maximum temperatures exceeding the 90th per-
centile, the unadjusted trend at Tallahassee, Florida, is
significantly positive (a 5 0.01). Following adjustment
for discontinuities in 1960 and 1986, the trend in ex-
tremely warm maximum temperatures reverses (Fig.
11a), while significance at the a 5 0.01 level is retained.
The change in the warm maximum temperature ex-
ceedence trends at Chasm Falls, New York (Fig. 11b),
is affected by moves in 1964 and 1985. Chasm Falls
also experiences several observation time changes. The
net effect of these adjustments over the 1950–96 period
is a positive trend (a 5 0.10) as opposed to a decreasing
trend (a 5 0.05). In Figs. 11c and 11d, negative trends
(a 5 0.05) in warm minimum temperature exceedences
at Minden, Nebraska, and Geary, Oklahoma, become
positive (a 5 0.10 and 0.05, respectively) following
adjustment. Relocations in 1960, 1970, and 1981 pre-
cipitated the adjustments at Geary, while the disconti-
nuity at Minden occurred in 1988. A single observation
time change occurred in 1968 at Minden, while several
changes in observation schedule were documented at
Geary.

The effect of homogenization becomes less pro-
nounced when the station-specific time series are av-
eraged into regional or national composite trends. In
such cases, the net effect of homogenization depends
on several factors including the number of stations that
comprise the composite and the existence of systematic
data biases such as the adoption of new instrumentation
at the majority of sites or a network wide shift in the
preferred observation schedule. Nonetheless, the effect
of homogenization is not entirely negligible when such
composites are considered. For instance, averaged over
stations in the central (958–1108W longitude) United
States, the unadjusted warm maximum temperature ex-
treme exceedence series (1960–96) decreases by 0.07
exceedences per squared year. Upon homogenization,

this series increases by 0.03 exceedences per squared
year. When averaged over all continental United States
HCN-XT stations, a similar change in slope (0.07 ex-
ceedence per squared years) results from homogeniza-
tion.

The HCN-XT can also be used to relate the inter-
annual variations in extreme occurrence to other me-
teorological conditions. For instance, warm maximum
temperature exceedences are negatively correlated with
Palmer drought severity index (PDSI). Using all HCN-
XT stations, the correlation between the annual number
of exceedences of the 90th percentile and JJA average
PDSI of the corresponding climate division is 20.46.
Similar correlation is found for exceedences of the 95th
and 99th percentiles. However, when warm minimum
temperature exceedences are considered, the correlation
drops to 20.16.

Figure 12 compares annual exceedence count (95th
percentile) boxplots for years having average JJA PDSI
values #22.0 with those of the remaining years. Strat-
ification of the extreme exceedence counts is based on
both the adjusted and nonadjusted 1930–96 time series.
At each station, the exceedence distributions are skewed
toward higher values during the drought years. Adjust-
ment increases the drought versus nondrought differ-
ences at two stations (Selma and Dufur), but lessens the
skew at the other sites. Figure 13 shows the adjusted
and unadjusted series at Dufur and El Dorado. Adjust-
ment of the Dufur record is relatively extensive giving
rise to changes in both the drought and nondrought dis-
tributions. At El Dorado, the adjustments are more sub-
tle and confined to the 1930s and 1940s. Nonetheless,
the adjustments reduce the median exceedence counts
during the drought years by 5 days and cause a reduction
in the spread of the nondrought boxplot.

A more thorough analysis of the relationship between
drought and temperature extreme occurrence is beyond
the scope of this study. However, a cursory look at a
larger network of stations quantitatively supported the
adjustments. The most pronounced differences between
PDSI distributions during high and not-high exceedence
count years was apparent in the Southeast and Midwest.
Only minor differences were evident in the Northeast
and West.

4. Summary

The development of a 361-station homogenized daily
temperature extreme dataset is discussed. The dataset
lists occurrences of maximum and minimum tempera-
tures that exceed the 90th or 10th percentiles of the daily
temperature distribution for a subset of the daily U.S.
HCN stations. The extreme series that comprise the da-
taset have been serially completed and adjusted for non-
climatic inhomogeneities using methods that have been
specifically designed for temperature extreme data. The
data estimation routine eliminates the underestimation
of extreme temperature exceedence counts that is char-
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FIG. 11. Adjusted (solid) and unadjusted (dotted) exceedence count time series for (a) Tallahassee, Florida; (b) Chasm Falls, New York;
(c) Minden, Nebraska; and (d) Geary, Oklahoma showing a reversal in slope for the two series (both slopes significant at a 5 0.10): (a),
(b) warm max and (c), (d) warm max/min temperature exceedences.

acteristic of existing techniques. Although the detection
of inhomogeneities in the temperature extreme exceed-
ence series is based on existing methods for mean tem-
perature, adjustment of the series involves iterative ad-
justment of the extreme threshold rather than a trans-
lation of the series. The adjusted counts better reflect

the natural interannual variations in extreme occurrence,
since little if any adjustment is applied during years in
which temperatures rarely approach the unadjusted ex-
treme threshold. Conversely, a relatively large adjust-
ment may be indicated in years that frequently approach
the original threshold. Such year-to-year variability
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FIG. 12. Boxplots of annual 95th percentile max temperature ex-
ceedences during drought (shaded) and nondrought years (unshaded).
The distributions are shown for the unadjusted (thick gray) and ad-
justed (thin black) data series.

FIG. 13. Adjusted (solid) and unadjusted (dotted) 95th percentile
max temperature exceedence series for (a) Dufur, Oregon, and (b) El
Dorado, Kansas.

would be lost using a static adjustment. Similarly, ob-
servation time adjustments are also a function of the
number of unadjusted extreme thresholds exceedences.

The dataset also includes a set of files that document
the adjustment history of the series. This allows users
to identify the original homogeneous (based on meta-
data) periods that drove the adjustment procedure and
perhaps select stations based on the stringency of the
parameters (e.g., record length or number of neighbor-
ing stations) used to homogenize the data record. A
measure of median cross-validation estimation error is
also given for each homogeneous subseries. A separate
station metadata file is not included as this information
is available as part of the HCN. However, the stations
are identified by their coordinates and categorized as
urban, rural, or suburban based on satellite data.

It is expected that this dataset can provide a bench-
mark for studies examining temporal trends in any num-
ber of extreme temperature-related parameters. These
could include counts of single-day threshold exceed-
ences, exceedence runs, etc. An example of such an
analysis using both the adjusted and unadjusted data
series shows that across the HCN between 15% and 20%
of the time series experience a change in slope following
adjustment. The data could also be used to derive tem-
perature extreme degree-day statistics (Sen et al. 1998).
However, the analysis of this variable would require that
a separate time of observation adjustment be developed.

The dataset also provides a foundation for studies
concerned with the interannual variability of tempera-
ture extreme occurrence. Such studies could have im-
plications in areas ranging from climate impact analysis
to seasonal climate forecasting. A change in the distri-
bution of exceedence counts during drought and non-

drought conditions based on the adjusted and unadjusted
data is also shown.
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