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Abstract: National Oceanic and Atmospheric Administration Technical Paper-29, published in the late 1950s, remains the most com-
monly used reference for estimating extreme areal precipitation from station data in the United States. Although a number of alternative
methods have been proposed over the intervening years, a rigorous evaluation of the assumptions used in the compilation of TP-29 h
not been presented. Overall, TP-29 areal reduction factors provide a conservative means of relating station precipitation extremes to bas
average values. For watershed areas less than 1080 éevaluated areal reduction factors, are in close agreement with the TP-29 values.
For larger watersheds, which TP-29 does not address, the areal reduction factors continue to decay exponentially. The areal reductic
factors were found to be particularly sensitive to return period and season, with less extreme areal precipitation relative to the corre
sponding station precipitation at longer return periods and during the warm season. The reevaluated factors exhibit modest difference
between study areas in North Carolina and New Jersey. The influence of station density, interpolation method, and topographical rainfa
biases appears insignificant.
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Introduction

l n

a2 R
Many hydrological and meteorological applications require ARFrp.29= —¢ len , (1)
knowledge about the spatial and temporal variability of rainfall }E }2
over an area. The intensity of point precipitation is only appli- ko \n23 Ri

cable for relatively small areas<4 kn?) (Srikanthan 1995 For R

larger areas, design storms need to be converted to average areathereR; is the annual maximum areal rainfall for ygaR; is the
depths. Areal reduction facto(8RFs) have been commonly used ~annual maximum point rainfall for yegr at stationi, k is the

to obtain this correctiotie.g., U.S. Weather Bureau 195ARFs number of stations inAthe area, ands the number of years. It is
transform point rainfall depths to an equivalent rainfall depth over not a requirement th&; andR;;, or that the individuaR;;s, occur

an area. It is often assumed that the areal rainfall has the samé@n the same date. Areal rainfall, of duratignis simply an un-
probability of exceedence as that of the point rainfall. Generically, Weighted average theduration point rainfall at each station.
ARF is defined as the ratio between the average areal depth of Due to the relatively short record lengths of precipitation data

Lo ; available at the time of TP-29's compilatiofibetween 5 and
precipitation and the average point depth. ARF ranges from 0 . -
. . - 16 year$, frequency considerations could not be accurately deter-
<ARF=<1 and is a function of storm characteristics, such as

. . ; ) e mined. Given the use of averages, the ARF curves in TP-29 cor-
intensity and duration, as well as basin characteristics, such aSespond to events with return frequencies of approximately two
size, shape, and geographic locatibhsquith and Famiglietti  years. It is generally assumed that these relationships are repre-
2000. sentative of events with longer return intervals. Likewise, the

Perhaps the most common source of ARF for the United Statesarea-depth relationship is assumed independent of geographic lo-
is Technical Paper 20TP-29 (e.g., U.S. Weather Bureau 1957  cation. Thus, Leclerc and Schaali®72 express this relationship

TP-29 defines an ARF as using a single equation of the form
ARF =1 - exptat®) + expat® - cA), (2)
'Graduate Student, Department of Geology and Geophysics Yale wheret is event durationthr) and A is area(km?). The coeffi-
Univ., New Haven, CT 06520 cientsa andc as well as the exponemtare empirically fit with

’Associate Professor, Northeast Regional Climate Center, 1119 a=-1.1, c=2.59x 102 and b=0.25. TP-29 specifies ARF for
Bradfield Hall, Cornell Univ., Ithaca, NY 14853corresponding areas up to 1,100 kfrand storm durations of 1, 3, 6, and 24 h.

aUtrl:lc:)r)téE-Dr?sa::i:;siticci)i(%gganﬁlrlllt‘ialdlgecember 1, 2005. Separate discussions, Several similar methodologies for computing ARF have been
must be submitted for individual papers. To extend the closing date by suggested. In the United Kingdom, ARF is defined as the average

one month, a written request must be filed with the ASCE Managing (OVET N years ratio of the sum of the individual station rainfall
Editor. The manuscript for this paper was submitted for review and pos- totals that comprise the maximum areal rainfall in ygdo the

sible publication on April 1, 2004; approved on November 9, 2004. This SUM the annual maxima at each site for ypaNatural Environ-
paper is part of thdournal of Hydrologic Engineering Vol. 10, No. 4, ment Research CoundiNERC) 1975. The annual maxima most

July 1, 2005. ©ASCE, ISSN 1084-0699/2005/4-327-335/$25.00. often occur on different dates than that which corresponds to the
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maximum areal rainfall. Although similar to TP-29, the NERC 42N eoo/_J
method generally produces smaller ARF, with the largest differ- 500
ences for small areas and short duratic®skanthan 1996 Bell

(1976 developed another popular empirical approach that is
similar to the NERC method, but accounts for return period.
Stewart(1989 found that ARF values based on the BIB76

method were considerably lower than those given by the NERC
and TP-29 methods; ARF also decreased with increasing return *™
period.

Other methods for ARF calculation use mathematical models
to characterize the variation of rainfall over space and time. The
Rodriguez-lturbe and Mejiél974 method is based on the spatial
correlation of point rainfall and consistently leads to lower esti-
mates of ARF than the other metho@molayo 1993; Asquith
and Famiglietti 2000 Omolayo (1993 shows ARF to be in-
versely related to the number of stations used in its computation,
as well as return period. Asquith and Famigli€¢®000 also show
that return period has a significant influence on ARF, with lower
reduction factors for longer return periods. In comparison to TP-
29, their approach results in lower ARF. Their ARF curves also
exhibit considerable between-cignd seasonalariation.

Despite a large selection of ARF methodologies, TP-29 re-
mains the the most common source of ARF in the United States
(Asquith 1999. In addition to being dated, several assumptions
used in TP-29 might be oversimplifications, based on several
more recent investigations. With over 40 years of additional pre-
cipitation data now available and a substantial increase in the
number of high quality precipitation observing stations, TP-29
ARF is reevaluated in this paper. These additional data also allow ¢,
the assumptions of independence with regard to geographic loca-
tion and return period to be assessed. The dependence of ARF on 7?";3
spatial averaging method is also investigated, as more computa- :z".so:
tionally intensive methods are now feasible. Finally, we speculate
on the future role of ARF in estimating extreme areal precipita-
tion return frequencies, given that the direct computation of ex-
treme areal precipitation return periods is possible for individual
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Fig. 1. Map of the (a) New Jersey andb) North Carolina study
) areas. Open circles represent stations within each shaded study basin.
basins. A small and large basin were used in New Jersey and are shown by
differential shading. The smaller circles are stations that were used in
the small basin only. Black squares show the locations of stations
Data outside of the basin available for spatial interpolation of precipitation
within the basin. The small black diamonds are stations that were
Daily precipitation data from the National Oceanic and Atmo- available for interpolation of precipitation in the small New Jersey
spheric AdministratiofNOAA) Cooperative Observer Network basin. Elevation contourem) and state borderéheavier lineg are
form the basis of this study. The sparse data network for shorteralso included.
(e.g., hourly duration accumulation precludes an analysis on a
finer temporal scale. The distribution of stations across the coun-
try is not uniform, with two notable areas of high station density Ocean. The NC area is located in the central Blue Ridge Moun-
located in northern New Jersey and southwest North Carolinatains and accordingly has variable topography.
(DelGreco, personal communicatiorBoth regions possess at
least one station per 32232.2 km grid, with many of the grids
having three or four stations. These two locations also exhibit
climatological and topographic differences allowing an assess- Trace daily precipitation amounts were set to zero. Accumulated
ment of these geographic differences on ARF. precipitation totals(i.e., daily precipitation observations flagged
The New JerseyNJ) study area was divided into two rectan- as an accumulation over-a24 h period were assumed missing,
gular basins. The first has a relatively small area of 3,508 km as were data values flagged as invalid in the archived data. Sta-
with a relatively high station density of five stations per tions included in the analysis were required to have records that at

Missing Data

1,000 kn? [Fig. 1(a)]. The second is a larger ar¢&8,000 kn3) least spanned the period 1949-1995, with no year completely
with a lower station density of 1 station per 1,000%fig. 1(a)] missing during this interval.
that corresponds to the North CarolifldC) basin in size and Individual missing daily observations have important implica-

station densityFig. 1(b)]. In each case, the basins do not reflect tions in the analysis of ARF. Such occurrences do not preclude the
actual watersheds, but rather define areas with maximum raincomputation of ARF, provided there is a high degree of confi-

gauge density. The NJ study area is characterized by relativelydence that the missing values do not occur on the day of true
flat, homogeneous topography in close proximity to the Atlantic annual maximum precipitation. The apparent annual maximum
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(i.e., the maximum in a year with at least one missing daily ob- tion totals and calculating areal precipitation. To address this
servation for each station-year was tested for validity by compar- problem, precipitation totals at each station were redistributed so
ing the dates of the missing values with those of the three largestthat the daily totals were consistent with a standard 08:00 local
precipitation events at the closest station. If any of these datestime observation schedule. More than 50% of the station-years
were coincident, the missing-value year was omitted from subse-corresponded to a 07:00 or 08:00 observation schedule.
guent analyses. Presumably, nearby stations experience relatively Redistribution of daily precipitation totals based on a different
extreme precipitation on coincident days of the year, particularly observation time required the use of hourly precipitation data
in the eastern United States. To be included in the analysis, stafrom nearby reporting stations. Precipitation events, defined as
tions were required to have at least 90% of their annual maximathe total precipitation occurring between consecutive at-least-two-
pass the above test. day dry periods were identified. This assured that the second and
Testing indicated that using the three largest events providedsecond-to-last days of the run were rain free, regardless of the
an appropriate trade-off between correctly flagging an apparentopservation hour at the daily reporting station. A corresponding
annual maximum, given that the true maximum was missing, and eyent total was calculated for the closest hourly station, as were
limiting the chance of incorrectly flagging the true maximum. simulated daily precipitation totals based on an 08:00 observation
Years with complete data records were identified and the ten larg-tjme (i.e., the 24 hourly values were summed to obtain a daily
est events in each year were assumed missing. When only thgotal). Multiplying the event total for the daily station by the ratio
annual maxima at neighboring sites were considered, 36% of ap-of the daily, simulated total to the event total at the hourly station
parent annual maxima were correctly identified, using this data yie|qs the redistributed precipitation amount at the daily station.
set. For three events, this percentage jumped to 76%, with a slight’  the accuracy of the observation time adjustment procedure
increase to 83% using the five highest events. However, when, 55 quantified in terms of its ability to redistribute extreme pre-
only the largest event was used, the true maximum was incor- sinitation so that the dates of the adjusted annual maxima are
rectly flagged 6% of the time, compared to corresponding per- .qincigent with the dates of the actual annual maxima. In an
centages of 21% and 39% for the three and five highest events.y, 5 ation of this procedure based on actual observation sched-

respectively. ules, 74% of the adjusted annual maxima were identified as hav-
ing occurred on the correct day at NJ sites; 63% of these values
Areal Precipitation Calculation were correctly dated at NC stations. If the redistribution proce-
dure was not used, two-thirds of the annual maxima occurred on
a different day, when comparing the occurrences from morning
and afternoon observation schedules simulated with hourly data

In TP-29, the area of an ersatz watershed containigguges is
equal to that oh circles, each with a diameter equal to the aver-

age station spacing. .Since this qpproach produces reasongblﬁom Newark, NJ and Asheville, NC. When comparing morning
areas only when stations are uniformly spaced, an aIternaUveand midnight observations more than 80% of the annual maxima

;nde;h?edd b?ﬁggeoar}ﬂtfzﬁa{ %ﬁiﬂiuﬁérgzseﬁezhm cllnu d';'géslmvgﬁsoccurred on different dates. The redistribution procedure results
opted. . . ' Yin a substantial increase in the number of correctly dated annual
valid stations as possible. Smaller subbasins were then defined in

a regular fashion by dividing the large basin into halves, thirds maxima.
9 Yy 9 9¢ ’ ’ Related to the correct identification of the dates of the annual
quarters, etc., until the basin resolution became too sfrall

X . maxima is the accuracy and bias of the adjusted extreme precipi-
stations per basjrior the density of the network tation series amounts. In all cases, the redistributed rainfall
In addition to unweighted averaging of point rainfall depths to ’ ’

calculate mean areal precipitation, Thiessen polygons, and inverse""moumS are unbiased with median differen¢eistributed-

distance weights were also used. Cells with dimensions of ap-ﬁ?ual z?‘sed t?n ?l(n%\{\;fn observatlonlschedem al tfo zerc(;.olg
proximately 4.8< 4.8 km were used for the Thiessen and inverse mecian absolule dITIerences are low ranging rom ©.5> cm
distance interpolationéReed and Maidment 1995Using the in- when all nonzero precipitation totals are considered to 0.58 cm
verse distance method, north—south and east—-west lines divide th ri:.en (l))nlyl t:lose evgnts ?Xcdfe(;d'?%; he 9t9 9th [;e:clent:le S? l:ﬁed'
area surrounding each grid point into four quadrants. Within each 'Z.a Sog eletrror IS only 4% ot the ehx trerr?_eho as. in. ’f €
quadrant, the closest station to the grid point is found and its E)niglan f so”u € errors li{f sogl/ewfah Igher, ranging from
precipitation total is weighted by the reciprocal of the square of - cm for all events to " cf12% of the extreme .amour)ts

the distance. The estimated precipitation at the grid point was N events>99.9th percentile. It appears that larger distances be-

then calculated as the sum of the four inverse distance weightedfVeen daily and hourly stations in NC as well as the more varied
amounts, normalized by the sum of the weights. Fewer Stationstppography contribute to this decrease in precipitation redistribu-
(quadrants were used if the distance to the closest station in a 10N accuracy.

quadrant exceeded 80 km. Regardless of interpolation method, it

should be n(_)ted that _the “true” al_real_avgrgge rainfall w_iII d_iffer Return Period Computation

from the estimate. This error, which is difficult to quantify, im-

plicitly determines the error bars for the estimated ARF values In order to explore the functional dependence of ARF on return
presented in this paper. period, several theoretical probability distributions were empiri-
cally evaluated to determine which most accurately estimated ex-
treme areal precipitation. Each of the distributions was fit to the
annual extreme series, as well as the partial duration series. For
Daily precipitation totals at Cooperative Observer Network sites point precipitation, Wilks(1993 shows that the betR-distribu-
typically represent accumulation over a 24-hr period ending either tion outperforms eight other probability distributions in represent-
during the morning(07:00-08:00, evening (16:00-19:00 or ing both observed and extrapolated extreme precipitation, in par-
midnight (24:00 (DeGaetano 2000The variation in observation  ticular when applied to the partial duration series. Since it was
time introduces inconsistencies when comparing daily precipita- unclear whether the bef-exhibits similar performance when

Adjustment for Observation Time
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applied to a series of areal precipitation extremes, this distribution 1
was compared to the Gumbel and log-Pearson type Il distribu-
tions using the methods of Wilk4993.

Overall, none of the three candidate distributions provided un-
biased extrapolations with high accuracy and low variance, a re-
sult similar to that of Wilks(1993. For partial duration series,
each distribution fit the less extreme events well. However, all
distributions underestimated the most extreme accumulations

(@)

0.95

Areal Reduction Factor
o
©
1

with the betaP and log-Pearson Ill exhibiting the least bias. o, O [
Estimates of the 50-year return period areal rainfall from 1000 D351 S,
bootstrap samples of size 25 years were also biased toward un- ARF = 1-exp(-0.84 020 "
derestimation using all three distributions, with the betelistri- 08 exp(-0.84 1°20-0.67A)
bution exhibiting the least bias and sampling variance. Since the "0 05 {1 15 2 25 3 35
betaP fit to the partial duration series displayed relatively low Area (1000 km?)
bias, high accuracy, modest variance, and consistent performance
for point and areal precipitation, it was adopted for the subsequent 1
analyses.
The general definition of TP-29 ARF, the ratio of areal precipi- 0.95

tation to average point precipitation, was retained by substituting ,g
the betaP estimatedT-year return interval areal precipitation $ 0.9
amount for the average in the numerator of EQ). Similarly in S
the denominator, the station-averaged value was replaced with the S 0.85+
average of the&k betaP T-year return period point precipitation e
amounts. w089

<

0.754 ARF = 1-exp(-0.82 2 )+

Topographic Adjustment exp(-0.82 t°2'-0.28A)
The Thiessen polygons and inverse distance weighting methods o 0 5 10 15 20
used to compute areal precipitation do not directly account for Area (1000 km?)

topography. This can be a problem at high elevations because the
network of rain gauges tends to be less dense at higher elevation&ig. 2. Two-year return period areal reduction factor-area curves
(Prudhomme and Reed 199%ince it is likely that simple inter- ~ based on TP-29 using E(®) (black solid and the reevaluated values
polation procedures do not accurately represent areal precipitationfor (&) New Jersey andb) North Carolina. The reevaluated curves
in mountainous areas, a topographical bias adjustment factor wagire fit to a model of the form of Eq2) using nonbinnedgray
developed as a means of modifying the areal precipitation valuesdashed, open boxeand binnedgray solid, closed boxgsireas. The
given by the interpolation procedures. equation for binned area is included, wher4 h andA has units of

To compute this adjustment, precipitation depths were interpo- 1,000 kn#.
lated to the grid point closest to each station, withholding that
station’s rainfall total. Both inverse distance weighting and Thies- ) o )
sen polygons were used. Adjustments for each point were ex-vest explained 30% (_Jf the "?”ab""y n the adj_ustments. Interpo-
pressed as the ratio of the observed precipitation at the Withheldlatecj extreme preuplt.atlon 1S overestimated in areas where the
station to the interpolated amount. This process was repeated fmnorth and west slope is positive.
each of the 47 annual maximum areal rainfall events. Median
adjustments at each of tHe stations were then calculated and
related to several topographical variables, representing three genRGSUItS
eral topographic features, elevation, slope and distance to the
coast. Each potential regression variable was derived from the Comparison to TP-29

National Geophysical Data Center 5-min latitude/longitude digi- g reevaluated ARF-area curves presented in subsequent figures
tal elevation mode(ETOPOS. Through an iterative least-squares 5.6 pased on “binned” area—the 65 NJ and 80 NC subbasins have
regression fitting procedure, the relationship that explained the peen divided into class intervalsr bing based on area. Since the
highest percentage of the variability in these median adjustmentsgyp_pasins were constructed by systematically partitioning the
was identified for each study area. This regression relationship|argest basin, a priori grouping of basins of similar sizes existed.
provided a means of incorporating elevation into the Thiessen andpost bins have a width<100 kn?, but some interval widths used
inverse distance interpolations used to compute ARF. for the larger NC basin are as large as 40 Kfihis procedure is

In the NC study aregFig. 1), slopes to the east, southeast, and analogous to TP-29 rounding basins to the nearest 360 km
south account for the greatest percentage of the variability in the  For each bin, average values of ARF were used to plot reevalu-
interpolation adjustment. For inverse distance weighting, 46% of ated depth-area curves. Binning reduces the relatively large vari-
the variation in the interpolation bias is explained by the degree of ability in ARF for a given basin area. In NJ, the range of ARF for
slope to the east and south. In each case, the adjustment increasesost basin bins is 0.04, with basin areas of between 500 and
(underestimation increasesith increasing slope, a result physi- 800 kn? exhibiting the greatest variabilitiFig. 2(a)]. ARF for
cally supported by Konrad1996. In NJ, slope to the north and the NC study area is more variable, with ARF ranges of 0.08 to
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0.09 in most bingFig. 2(b)]. For a given basin bin, the variability 1
of ARF does not appear to be related to bin width. For example, (@)
ARF ranges from 0.79 to 0.91 in 10 basins with areas that differ 0.95
by no more than 33 kfn

Figure 2 compares the TP-29 ARF-area curves based on Eq.
(2) with reevaluated 2-year ARF-area vall&s). (1)] for the two
study areas. The reevaluated ARF-area curves are shown for both
unbinned and binned basins and are fit using an exponential,
least-squares model in the form of E®). This allows a direct
comparison with the results of Leclerc and Scha@d®¥ 2. Based
on the binned data, the ARF-area regression exhibit&R%anf
95% in NJ, whereas 93% of the ARF-area variability is explained
in NC. For unbinned data th? values decrease to near 70% in
both regions. Because more small basins were evaluated for both
study areas, the nonbinned regressions tend to emphasize the

0.85- K,

“ry, e - —

Areal Reduction Factor
Ve

0.8

0.75 T T T T T T

Area (1000 km 2)

smaller basins and thus the relation tends to underestimate ARF 1

for the largest basing-ig. 2). Binning gives equal weight to each — (b)

basin size interval, resulting in a regression line that better fits the ’

entire range of basin areas investigated. g 0.9 4
For both locations, TP-29 ARF decreases at a slightly faster L 085 4

rate than the reevaluated ARF for basins less than 1,060 ig. 5

2). However this deviation is modest at best, particularly consid- S 084

ering that almost 40 years of additional data have been incorpo- E 878

rated. The reevaluation shows that ARF continues to exponen- Ei '

tially decay beyond the 1,000 KniTP-29 limit, assuming its < 07+

lowest value for the largest basin in each study area. For NJ, this 065 -

translates into a reduction factor of 0.81 at 3,500 k&RF is

0.80 at 20,000 krin NC. TP-29 ARF provides a conservative 06 t+—F—T—T—T T T T T

ARF for areas larger than 1,000 Rm 0 2 4 6 81012 214 16 18 20
ARF based on inverse distance and Thiessen weights are simi- Area (1000 km *)

lar for both study areagot shown. For the NC study area, the ) )

unweighted average interpolation used in TP-29, however, gives af'9- 3- Reevaluated areal reduction factor-area curves for the
larger ARF for a given area greater than about 4,008, Krhis 2-year (black solid; 5-year (black dasher 10-year(black dotted

bias amounts to a 0.05 difference in ARF at 20,006 kor the 25-year (gray solig; 50-year (gray dashelj and 100-year(gray

large NJ study area, the difference is less than 0.01 at 20,080 km dotted return period for theta) New Jersey andb) North Carolina
study area. Areal interpolation of precipitation is based on Thiessen

weights.

Return Period comparison

Figure 3 shows NJ and NC reevaluated ARF-area curves based oRtydies(Omolaya 1993; Asquith and Famiglietti 2000; Bell 1976
Thiessen weights for 2-, 5-, 10-, 25-, 50-, and 100-year return have found an inverse relationship between ARF and return pe-
periods. The other two spatial interpolation methods yield analo- riod (for a constant area and storm durajion one-tailed test
gous results. Each curve has Bf of at least 91%. The coeffi-  [4,: ARF (T,)>ARF (T,)] is used. The null hypothesis was
cients and exponents necessary to express these curves in thsted on a bin-by-bin basis by pooling ARF,) and ARF(T,)

form of Eq.(2) are given in Table 1. There is a clear separation of (je. creating a combined sample of the and T,-year ARF3.

the ARF-area curves, with longer return periods associated with The |argest bin was excluded from the procedure since it consists
lower ARFs. For NJ, this dependence of ARF on return period is of a single basin. ARF values were then randomly selected with-

small for basin area less than approximately 25@.kmut oyt replacement from this combined sample, such that the number
becomes larger for more expansive basins. At 3,508 kime

average 100-year point precipitation needs to be reduced by

7% more than the average 2-year point precipitation Table 1. Coefficients and Exponents Necessary to Express the Areal
(ARF=0.82 versus 0.89In NC, the dependence of ARF on re- Reduction Factor Curves in Fig. 3 in the Form of E2). Each Value is
turn period is not as large. For basins smaller than 2,009 km Based on an Event Duratid®24 hr and Reflects a Basin Arég with
there is little difference in ARF with return period. For an area of Units of 1,000 kr.

3,500 knt, the difference between the 2- and 100-year ARF is New Jersey North Carolina
less than 2%, compared to the 7% difference in NJ. For the maxi-

mum basin are#20,000 knd), the difference across the range of Return interval a b c a b c
return periods is nearly 10%. 2-year -099 025 175 -079 019 0.33

To assess the statistical significance of return period on the 5-year

. . . . -0.97 0.24 1.85 -0.75 0.18 0.28
ARF-area relationship, a permutation test was u¥gitks, 1995.

o . . 10-year -0.94 0.24 1.96 -0.73 0.18 0.26
A test statistic was defined as the difference between ARF for two y
. ; . - 25-year -091 023 185 -069 017 0.24
different return period$T, and T, with T,<T,) for a specific 50 089 022 192 -067 047 023
basin bin. The null hypothesi$i,) that ARF does not depend on -year ' ' : ' ' :
return period implies that this difference is zero. Since other ARF 100-Year —087 022 194 -064 017 022
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Fig. 4. Reevaluated areal reduction factor area curves comparing the large New Jersey stutilaekeaquareswith North Carolina(gray,
circles based on areal precipitation calculated using Theissen weights f@atBeyear andb) 100-year return periods and unweighted averages
for the (c) 2-year andd) 100-year return periods. Basin bins that are significant at the 10% level are indicated by solid symbols.

of basins comprising the histogram bins was preserved. For ex-assumption of geographically invariant ARF relations may be in
ample, 14 NJ basins comprise the 326—36% kim. Therefore, error. The geographical variation of ARFs was tested for statisti-
the set of pooled ARF values for this bin contained 28 elements, cal significance using a procedure analogous to that used to test
14 for T, and another 14 foll,. These 28 values were then ran- the dependence of ARF on return period. Instead of pooling a
domly assigned to two 14-value groups. This procedure was thenyin_gpecific ARF for two different return periods from a single
re_zpeated l,(_)O(_) times, yielding a null distribution of 1,000 artifi- study area, ARFs for the same return period for corresponding
cial test statistics. bins in NJ and NC were pooled. However, because no prior

Since subbasins were defined by partitioning the largest basin, .
S ; oo : knowledge exists to suggest ARF for one study area was larger
each smaller basin is contained within a larger basin and therefore .
or smallej than that for the other study area, a two-tailed test

the hierarchy of basins is not independent. As the same stations( . .
represent the subbasins, there may be an underestimation of th&as used. Although NC has six more subbasins than the large NJ

variability of ARF between the different basin area bins. The study area, the bin widths used to describe the basins are identi-

resampling test does not account for this dependence, which po<al- The resampling procedure accounted for this difference in

tentially increases the collectiacross all area binghance of a basin number.

Type | error. Thus, the results of the resampling procedure should  Figure 4 shows ARF-area curves comparing the large NJ basin

be viewed with this caveat in mind. with the NC basin for the 2- and 100-year return periods using
For the NJ study area, 70% of the bin-specific 2-year return Thiessen weights and unweighted averages. Based on Thiessen

period ARFs are significantljee=0.09 different when compared  weights, ARF for the NC basins generally exceeds that for NJ

to those for 100-, 50-, and 25-year return periods. As the differ- [Fig. 4(b)]. Four of these differences are significaat=0.05

ence in return period decreases, few pairs show significant ARFpa5ed on the 100-year return period. The maximum difference

differences. For example, there is no sign.ificant diffgrence be- petween the two study areas is associated with small basins
tween the 50- and 100-year ARF values. This resampling test was¢, . o 100-year return period, where ARF=0.88 in NC and
also run on the NC study area. Only eight differences were found ARF=0.80 in NJ for an area of 1,700 Rnirhis relationship re-

to be statistically significant, which is consistent with the nar- versesNJ ARF>NC ARF) for larger basins, when the 2-year and

rower spread of the ARF-area curves in Fig. 3. These were con- . B
fined to the 13,577—13,615 Knbin and tended to be associated other less extreme return periods are considgFegl 4a)]. How-
ever, none of these bin-specific ARF differences is statistically

with the 2-year return period. Co
significant.

Based on unweighted averagésgs. 4c and d], NC ARF
also exceeds that for NJ for all return peridéscept the 2-year
The differences in return period and interpolation method sensi- values shown in Fig. 4)] and basin sizes. The two locations
tivity between the two regions suggest that the original TP-29 differ the most at longer return periods, where ARF in NC is up to

Dependence on Geographic Location
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adequate spatial coverage of the largest basin. For NC, the high-,
moderate-, and low-density networks consisted of 33, 20, and 10
Cooperative Network stations, respectively.

The ARF-area relationships for these three gauge density net-
works is shown in Fig. 5. Areal precipitation was computed based
on unweighted averages given that this interpolation method
maximized the geographical differences. In both regions the dif-
ference between ARF is small. In NJ, ARF was also computed
omitting rainfall associated with Hurricane Floy8eptember 16,
1999. Floyd produced widespread extreme rainfall, and it was
assumed that this might have influenced the comparison of ARF
based on different station densities. Although the omission of
. , Floyd lowered ARF, the reduction in ARF was similar between
0 5 10 15 20 the three network densities. It appears that density of observations

Area (1000 km?) (within the evaluated rangeloes not have a substantial effect of
the ARF-area relationship.

Areal Reduction Factor
o
™
]

Seasonal Variation of Areal Reduction Factor

The seasonal variations in ARF in both eastern U.S. regions were
substantial, with warm season ARF decaying at a quicker rate
than the cold season ARfFig. 6). Here, the warm season is
defined from April to September, and the cold season from Octo-
ber to March. These definitions generally segregate the primary
precipitation formation mechanisms in each region. In NC, warm
season precipitation occurs primarily on the mesoscale and is
characterized by convective instability, with orographic influences
playing a limited role in heavy rainfallKonrad 1996, 1997
07 T T T Conversely, cold season precipitation tends to be dominated by
frontal overrunning, synoptic-scale systems and orographic uplift
(Konrad 1996. The seasonal pattern of rainfall is similar in NJ
(Landin and Bosart 1985; Scott and Shulman 1979

An exception to this categorization is tropical systems, as the
conventional Atlantic hurricane season spans these two groups of
months. Moreover, most hurricanes are classified as warm season
events, despite their propensity to produce widespread areas of
heavy rainfall. Nonetheless, the small number of tropical events
precludes the formation of a third ARF season. Including tropical
storms with other warm season events will presumably moderate
10% larger for all areas. More than 80% of the bin-specific ARF any differences in ARF between the seasons.
differences are statistically significant for the 100-year return

Areal Reduction Factor

Area (1000 km?)

Fig. 5. Two-year return period reevaluated areal reduction factor-area
curves based on unweighted averages for l@etted, medium
(solid) and high(dashegl rain gauge densities for basins (@ New
Jersey andb) North Carolina.

period.

It should be noted at this point that the regression-based topo- 1
graphic adjustments had little effect on the ARF curves in either
region. The maximum difference between adjusted and unad- _09%
justed reduction factors in both NJ and NC was approximately £
1%. Although substantial topographic adjustments were indicated i 08 |
for individual grids within the basins, over all grids, the net ad- _S_ '
justment was approximately zero. é o

80
Influence of Station Density ;g“ 06 4 0
To allow a comparison of ARF based on differences in station
density, precipitation data for a recent 5-year pe(ib896—2000 0.5 T T T
0 3 10 15 20

were used to compute short-return-period ARF curves. Using this
abbreviated period of record permitted a higher station density to Area (1000 km 2)

be examined, than was previously used. Stations were selected as

in the original data set. In the NJ basin, a high density network of Fig. 6.. Areal reduction factor curves cpmparing warm season areal
43 stations was used, 38 from the Cooperative Observer Networkreduction factoARF) (black, squareswith cold season ARKdark
and 5 part of the New Jersey Home NetwORJHN). NJHN data gray, C|rcle$_for th_e 50-ye_qr return perlo_d using Thiessen we_lgh_t_s in
were acquired via the Internet at http:/climate.rutgers.edu/ North Carolina. Bln-speglflc seaspnal dllfferences that are significant
stateclim/. The moderate and low density NJ networks consistedt the 10% level are indicated with solid symbols. The annual ARF
of 22 and 11 stations, respectively, which subjectively maintained CUTVe is also includedight gray, crosses
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To quantify the statistical significance of seasonal differences Table 2. Comparison of the 1996-2000 Areal Extreme Precipitation
in ARF, a resamp”ng procedure was again invoked. A one-tailed (cm Calculated Based on the Reevaluated Areal Reduction Factor
test is used given the seasonal influences described by Asquitl‘pur"_es in Fig. 3 and the Direct Fit of a BeRabistribution to the Annual
and Famiglietti(2000. For NC, at least 50% of the bin intervals Maximum Areally Interpolated Gauge Data. Results are Shown for an

LS . . . 18,000 kn? Basin in Each Study Area.
show significant seasonal differences in ARF for each of the six
return periods. As expected cold season ARF tends to be higher Return period
and decays with area at a slower rate than that for the warm

season ARF. Stronger results are observed in NJ, where at least 2-year 5-year 10-year
70% of the bin-specific seasonal differences are significant. Inter- Direct Direct Direct
polation method has little influence on the seasonal differences. Area Fig. 5 betaP Fig.5 betaP Fig.5 betaP

These seasonal differences raise two important issues. First, inN
. : _ ew Jersey
areas outside the eastern United States, these seasonal differenc
can translate to geographic ARF differences. The contrast be-
tween mesoscale summer and synoptic scale winter precipitation
mechanisms in the East may be analogous to predominaiti-
out regard to seasdrsynoptic-scale precipitation mechanisms in

regions like the Pacific Northwest and convective precipitation (4) Spatial interpolations based on Thiessen weights or inverse

7.2 7.1 9.5 10.8 11.8 14.8
ﬁl%rth Carolina 6.0 6.1 6.8 6.9 7.5 7.7

mechanisms in the southern Plains or Florida. distance weighted averages intuitively appear to be better

Second, although virtually all uses of design storm datarelyon  ajternatives to the simple unweighted averages used in TP-
an annual probabilityAsquith 1999, there are some applications 29, given better agreement between these methods. Nonethe-
in which the seasonal dependence of ARF could be exploited. For less, this similarity does not assure the accuracy of the inter-
example, if winter and early spring reservoir management is pri- polated areal estimates.

in operation protocols may be prudent. Conversely, during the  effect on ARF within the range of station densities tested
summer and early fall maximizing the available water supply (one to four stations per 1,800 Km
might warrant the use a lower warm season ARF value. Although the concept of ARFs provides a simple and conve-
nient way of estimating-year areal precipitation extremes based
on station data, it could be argued that today’s fast and affordable
Summary and Conclusions computer power facilitates the direct calculation of fheear
areal precipitation extremes for specific basins. In fact, the com-
Despite a considerable increase in the amount of data availableputation of these extremes was required to calculate the ARF
(both in terms of number of years and spatial station density values presented in this study. Whereas this direct approach may
reevaluated ARF values were in general agreement with thosebe warranted for specific basins, nationally the lack of data sets
published in TP-29 for watershed areas less than 1,000 kar with the necessary spatial and temporal resolution precludes the
larger watersheds, 2-year return period ARF continues to decaywidespread direct computatiofi-year areal precipitation ex-
exponentially, reaching values of 0.80 at 20,00C kmthe North tremes for arbitrary basins. ARFs continue to provide guidance
Carolina study area and 0.88 at 3,500%im the northern NJ for catchments with insufficient spatial rain gauge density or in-

basin. adequate historical precipitation data, allow for spatial smoothing
Despite this similarity, subsequent analyses revealed severalof sampling variations, and facilitate the development of national
important conclusions: or regional engineering design guidelines. Furthermore, the com-

(1) There is a statistically significant variation in ARF with re- putation of areal precipitation extremes for individual basins re-
turn period, with higher return periods associated with lower quires the arduous task of identifying and adjusting for inhomo-
ARF values. This agrees with the results of several other geneities in the precipitation record. Provided these
studies(Bell 1976; Omolaya 1993; Asquith and Famiglietti discontinuities are addressed in the computation of ARF, subse-
2000 that evaluated ARFs computed using methods different quent application of the factors is generally resilient to these non-
from TP-29. climatic factors.

(2) Warm seasorfApril-SeptemberARF decays at a faster rate Using data for the period 1996—-2000, Table 2 compares areal
than cold seasofOctober—MarchARF. This is attributed to precipitation extremes computed directly with those based on the
the season-dependent precipitation generating mechanismseevaluated ARF curves presented in this study. As the ARF
and the associated spatial variability of rainfall. curves are based on data from an earlier pe(ib@49-1995,

(3) Only modest differences in ARF are noted between study using this limited data record provides an independent data
areas in North Carolina and NJ. This qualitatively agrees sample for comparing the two methodologies at a similar set of
with TP-29 (U.S. Weather Bureau 1957and Omolayo stations.

(1993, who concludes that the U.S. one-day ARF can be In both regions, the precipitation extremes are similar, with
satisfactorily transposed to Australian capital cities for areas larger differences associated with longer return peridable 2.
between 200 and 500 KmDifferences in the variability of For the 2-year return period the ARF-based extreme is 0.1 cm less
ARF for a given region(with respect to the interpolation than that based on the direct estimate in both NC and NJ. This
method used and return perjoare noted. Based on the sea- difference increases to 0.2 cm for the 10-year return period in
sonal analysis, there are indications that larger geographicNC, with a larger 3.0 cm difference noted for NJ. This is prima-
differences in ARF may exist between regions with different rily because the limited 5-year data record is influenced by Hur-
primary precipitation mechanisms. A more rigorous evalua- ricane Floyd. Nonetheless, this short subset of years suggests that
tion of regional differences could detect specific regional the ARF methodology provides a simple means of estimating
ARF values. areal precipitation extremes.
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