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ABSTRACT

A variation of a least squares regression approach to estimate missing daily maximum and minimum temperatures is
developed and evaluated, specifically for temperature extremes. The method focuses on obtaining accurate estimates
of annual exceedence counts (e.g. the number of days greater than or equal to the 90th percentile of daily maximum
temperatures), as well as counts of consecutive exceedences, while limiting the estimation error associated with each
individual value.

The performance of this method is compared with that of two existing methods developed for the entire
temperature distribution. In these existing methods, temperature estimates are based on data from neighbouring
stations using either regression or temperature departure-based approaches.

Evaluation of our approach using cold minimum and warm maximum temperatures shows that the median
percentage of correctly identified exceedence counts is 97% and the median percentage of correctly identified
consecutive exceedence counts is 98%. The other existing methods tend to underestimate both single and consecutive
exceedence counts. Using these procedures, the estimated exceedence counts are generally less than 80% of those that
actually occurred.

Despite the fact that our method is tuned to estimate exceedence counts, the estimation accuracy of individual daily
maximum or minimum temperatures is similar to that of the other estimation procedures. The median absolute error
(MAE) using all temperatures greater than or equal to the 90th percentile (T90)−1.1°C for ten climatically diverse
stations is 1.28°C for our method, while the other methods give MAEs of 1.27 and 1.17°C. In terms of median error,
however, the tendency for underprediction by the existing methods is pronounced with −0.77 and −0.61°C biases.
Our optimized method is relatively unbiased as the resulting mean error is −0.12°C. Copyright © 2001 Royal
Meteorological Society.
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1. INTRODUCTION

The ubiquitous nature of missing daily temperature observations is a problem in many climatological
applications. Researchers have relied on a variety of techniques to estimate missing daily temperature data
depending on the region, time of year, or spatial distribution of neighbouring stations. Collectively, these
methods can be organized into three basic categories: (i) within-station; (ii) between-station; and (iii)
regression-based.

Within-station methods make use of temperatures recorded on the previous and following days to
estimate a missing observation. For example, to estimate a missing maximum temperature on 1 July, the
maximum temperatures from 30 June to 2 July could be averaged (Oliver, 1973). Averages can also be
computed using more than 1 day on either side of the missing day.
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Between-station techniques use temperatures at neighbouring stations to estimate missing data values.
Kemp et al. (1983) describe such a method that is based on the assumption that the difference between
daily temperatures at adjoining stations is equal to the difference between the monthly average
temperatures at those stations. DeGaetano et al. (1995) describe another between-station approach that
is based on the assumption that temperatures at nearby stations will depart from their respective daily
normals by similar amounts.

With the regression-based approach, data from one or more neighbouring stations is used to develop
a regression equation, which is subsequently used to estimate missing temperatures. Using several
different regression techniques, Kemp et al. (1983) have shown that this type of approach tends to
produce more accurate estimates than both within-station and between-station methods. Similarly,
Eischeid et al. (1995) show that multiple regression, using the least absolute deviation (LAD) criteria, is
superior to four between-station methods for estimating missing monthly temperature averages. Although
based on monthly data, Eischeid (unpublished document) suggests that the same approach can be applied
to daily values.

In their comparisons, Eischeid et al. (1995) include the single-best estimator method which is analogous
to substituting the temperature at a nearby station for the missing value. The surrogate temperature is
obtained from the neighbouring station that exhibits the highest correlation with the missing value
station. The normal ratio method is similar, but uses a weighted average of surrounding stations. Weights
are calculated according to the correlation coefficient (r) between the daily time series from the target
(missing value) station and each neighbouring station, as well as the number of temperatures used to
compute r. The inverse distance method is a distance weighted, area average estimate. The assumption of
this method is that temperatures at the target station (Y) and neighbouring stations (Xi, where i is the ith
neighbouring station) are related according to the geographic distance between the stations. Optimal
interpolation is a spatial interpolation technique that assigns weights to the observed difference values at
the selected nearby stations. The weights depend on the spatial autocorrelations between the xi

(temperatures at station Xi) and are mathematically modelled as a function of the distance separating the
surrounding stations and station Y.

Each of these previous methods has been developed and refined to minimize the bias and mean absolute
errors associated with the overall distribution of daily maximum or minimum temperatures. Little
attention has been given to the relationship between estimation error and temperature magnitude. In fact,
the achievement of good, overall error statistics is generally at the expense of extremes. Specifically, these
methods have a strong proclivity to underestimate temperatures in the right tail of the overall distribution
and to overestimate temperatures in the left tail. With the analysis of extreme temperature series becoming
an important issue in terms of global warming detection and impact assessment (IPCC, 1996), accurate
estimates of missing extreme temperatures have correspondingly become more important.

Regression-based methods tend to underestimate warm extreme temperatures and to overestimate cold
extremes (i.e. estimates are warmer than observed) because of the disproportion of moderate temperatures
compared with more extreme observations. Many more moderate temperatures will go into the
development of the regression equation, in effect maximizing its ability to predict these temperatures,
while sacrificing its ability to estimate the more extreme values.

Similarly, between-station methods are also apt to underestimate warm extreme temperatures because
of this disproportionality. Given the distribution of daily temperatures, there is a higher probability that
xi will be less extreme than the corresponding temperature at station Y. For example, assume that y is
very extreme (e.g. �99th percentile). Although xi will also be extreme, it is more likely that xi will be
lower (rather than higher) than y.

Of course, within-station methods underpredict warm extreme temperatures as well. Clearly averaging
temperatures from successive days precludes an estimate that is greater than the temperatures of the
non-missing days.

This paper describes a variation of a least squares regression approach to estimate extreme daily
maximum and minimum temperature observations. The method focuses on obtaining accurate estimates
of annual exceedence counts (e.g. the number of days�T90 of daily maximum temperatures), while
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sacrificing only a small degree of accuracy in the estimation of the individual daily temperatures. The
method also focuses on maximizing the accuracy of the estimated number of consecutive exceedence
counts, such as the number of 2-, 3- or 4-day runs�T90 of maximum temperatures per year.

2. EXISTING ESTIMATION METHODS

Estimation procedures representing the regression-based and between-station approaches are used as a
basis for comparison in this paper. Eischeid et al. (1995) describe a multiple regression approach using
LAD. DeGaetano et al. (1995) use a modified version of Steurer’s (1985) standard departure method. A
brief description of these methods is given in the following subsections.

2.1. Multiple regression, least absolute de�iations criteria

Eischeid et al. (1995) use LAD to estimate monthly mean temperatures. In addition, Eischeid
(unpublished document) suggests that the same approach can be applied to daily values. Thus, we have
adopted the LAD technique to estimate daily maximum or minimum extreme temperatures. Temperatures
from one or more neighbouring stations are used as predictors in a regression equation that is used to
predict missing temperatures for station Y. Neighbouring stations are selected according to their
geographic distance from the target station (station Y) and ranked by their correlation coefficient, r. The
neighbouring stations with the largest r�0.35 are used in the estimation procedure. Between one and four
stations are included in the regression. Separate correlation coefficients are calculated for individual
months, as are the regression coefficients. This takes into account the fact that one station may be better
suited to estimate a missing day in July, whereas a different station may be more appropriate in
December.

Multiple regression using the least absolute deviations criteria is a robust version of the general linear
least squares estimation. The principal advantage of LAD is its resistance to outliers. Regression
coefficients are estimated so as to minimize the sum of the absolute deviations of y from the values
predicted by the model. Mathematically, this is represented by:

� �� xijbj−yj
�
, (1)

where x, i=1, 2, . . . , m and j=1, 2, . . . , n denote a set of n temperatures at m surrounding stations. y,
j=1, 2, . . . , n denote the corresponding observations at station Y and b is the regression coefficient.

Eischeid et al. (1995) estimate monthly mean temperatures using 3467 stations from the Global
Historical Climate Network (GHCN) (Vose et al., 1992) and use these estimates as a means of quality
control. The procedure uses the five aforementioned interpolation methods to estimate each monthly time
series. Comparisons among the techniques are based on the correlation coefficient between the true
monthly time series at station Y and each of the estimated monthly time series. The method with the
largest r is chosen as the best estimator, with LAD the best estimator for the majority of the records.
Estimates were found to be relatively unbiased, with mean errors of 0.002 and 0.000°C for January and
July, respectively. The standard deviation of mean error for these months was 0.869 and 0.697°C,
respectively.

Conventional regression-based procedures, like LAD, have a propensity to underestimate warm
extreme temperatures because the abundance of less extreme temperatures biases the regression toward
these values. Cold extreme temperatures are overestimated (i.e. estimates are warmer than observed) for
an analogous reason. The computation of separate regressions for each month in Eischeid et al.’s (1995)
procedure fails to compensate for this shortcoming. Furthermore, compared with least squares regression,
LAD regression is less sensitive to outliers. Often, these outliers are similar to the extreme temperatures
that require estimation.
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2.2. DeGaetano’s temperature departure procedure

DeGaetano et al. (1995) use a between-station method that assumes that on any given day, nearby
stations with similar observation times will experience temperatures that deviate from their daily normal
by a similar amount.

Briefly, standard departures, Zi are calculated for each daily temperature according to:

Zi=
xi− x̄i

Si

, (2)

where i is any nearby station and x is this station’s corresponding daily temperature. x̄i is estimated as the
smoothed daily temperature normal following a procedure developed by Epstein (1991). In Epstein’s
procedure, the daily climatology of maximum or minimum temperatures is estimated by the sum of
harmonic components based on the 12 monthly means. Si is estimated as the monthly standard deviation.
A daily average standard departure Zavg is computed using

Zavg= (1/N)�� Zi, (3)

where N is the number of stations that have valid daily temperatures. Estimates of missing values are
calculated using the equation:

yj=ZavgSj+ ȳj, (4)

where j is the station to be estimated.
To test the validity of their approach, DeGaetano et al. (1995) estimated non-missing daily

temperatures at 12 sites in the northeastern US. In general, 75% of the estimates for daily maximum and
minimum temperature were within 1.7°C of the actual value. Median absolute errors (MAEs) for
minimum temperatures tended to be greater than those associated with maximum temperatures. MAEs
for minimum temperatures were approximately 1.0°C, whereas those for maximum temperatures were
near 0.5°C.

Methods using temperature departures tend to underestimate warm extreme temperatures for reasons
similar to those of regression-based approaches. Examining Equation (4) for maximum temperatures, ȳj

will be less than the actual temperature (yj) because an extreme is being estimated. This is not a problem
if the Zavg on a particular day is similar to the corresponding standard departure (Z) at station Y.
However, xi will most likely fall below their corresponding threshold temperature, resulting in a relatively
low Zavg compared with Z.

The reason for the relatively low Zavg is twofold, one an artifact of the method and the other a product
of the nature of extreme temperatures. When estimating extreme temperatures at station Y, only
y�T90−1.1°C are estimated. This allows temperatures that are actually �T90 to be overestimated and
counted as exceedences, balancing the potential underestimation of temperatures that are actually �T90.
Thus, y is restricted to be above a threshold. Neighbouring stations, however, do not have this same
restriction and they could very well be cooler on a day when y is extreme. As DeGaetano et al. (1995)
point out, this could occur when a cold front passes through station Y’s neighbouring stations, but has
not yet passed through station Y. On such a day, y could be quite extreme, whereas xi will be considerably
cooler. The reverse, however, will never occur because y is restricted to be above a threshold. Thus, the
method screens y such that it is extreme, without a corresponding screening for xi.

Since there are many more moderately extreme temperatures than very extreme temperatures, the
probability is greater that an extreme y will be paired with a less extreme xi. This is illustrated in Figure
1, which contains histograms of differences between the standard departures for Decatur, IL (Z) and the
average neighbouring station standard departure (Zavg). For all days�30.6°C, Figure 1(a) shows that
approximately 70% of the time, Z is larger than Zavg. For the most extreme days, Figure 1(d) shows that
this is still true as Z is larger than Zavg almost 80% of the time. Thus, because there is a greater probability
for xi to be less extreme than y, Zavg will often times be less than Z, resulting in the underprediction of
extreme y. This occurs regardless of the station density used to compute Zavg.

Copyright © 2001 Royal Meteorological Society Int. J. Climatol. 21: 1305–1319 (2001)
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Figure 1. Histograms of Z−Zavg based on daily maximum temperature (T) at Decatur, IL, for cases where (a) T�30.6°C, (b)
30.6°C�T�32.2°C, (c) 32.2°C�T�34.4°C and (d) T�34.4°C

3. METHODOLOGY

Our methodology is similar to that of Eischeid et al. (1995) in that we use neighbouring stations to form
a regression equation. Because our desire is to obtain accurate estimates of extreme temperatures and
annual exceedence counts, we have incorporated numerous modifications to this base procedure. As will
be discussed in more detail below, pairing each xi with the corresponding daily maximum or minimum y
results in a regression that is biased toward the less extreme temperatures. This occurs since many more
observations are associated with less extreme temperatures, while only a few observations characterize the
most extreme values. To alleviate this problem, a binning procedure is implemented that produces a
relatively unbiased regression equation regardless of the magnitude of temperature, but one that is
frequently still unable to accurately classify a day as exceeding (or not exceeding) a given threshold.

Cross-validation trials were used to select a set of neighbouring stations that minimize the mean
absolute error associated with this binned regression. Each station-specific regression equation was then
optimized to more accurately classify days as exceeding a given threshold, at some cost to accurately
estimating the day’s actual temperature. Using these optimized regressions, cross-validation trials were
again conducted to select a subset of those stations that minimized the MAE. This final set of
neighbouring stations is best able to accurately predict the number of annual extreme exceedences, while
limiting the estimation error associated with each individual value.

3.1. Initial station selection

Some methods, such as Steurer’s (1985), rely on station selection using broad and somewhat arbitrary
climate or political boundaries. Others, such as Eischeid et al.’s (1995), use the nearest available station(s)
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to reconstruct missing temperatures. We adopt this latter method to maximize the probability that all
stations experience the same synoptic conditions on any given day. DeGaetano et al. (1995) have shown
that using a distance criterion versus climate boundaries significantly reduces the overall range of errors.

Each station selected as a potential predictor must also have an observation time category identical to
that of the station to be estimated. Using the daily US Historical Climatology Network (USHCN)
(Easterling et al., 1999) and its associated station history file, the daily temperature series at all stations
were divided into periods that are free of observation category changes (as well as station relocations).
Observation hours were grouped into categories based on Karl and Williams (1987), with 01:00–11:00 h
local time (LT) defined as morning observations; 12:00–20:00 h LT as afternoon; and 21:00–24:00 h LT
as midnight. Missing or unknown observation times were determined based on the inferred observation
times given by DeGaetano (2000). Furthermore, actual observation times not supported by the inferred
observation times were changed to reflect the inferred observation class when the disagreement persisted
for more than 3 consecutive years and the average interdiurnal temperature difference exceeded 2.0°C.

Some final restrictions on the selection of neighbouring stations involve making sure there is adequate
extreme data in common between a potential predictor station and station Y. A minimum of 100
temperature values�T90−1.1°C must be shared by the neighbour and station Y.

Temperatures 1.1°C�T90 are included to enable the possibility of overestimating a temperature slightly
less than T90, offsetting the underprediction of temperatures a few degrees greater than T90. Furthermore,
to guarantee that neighbouring stations truly reflect station Y’s most extreme temperatures, each nearby
station must have at least one non-missing temperature passing quality control screening on a day when
y is ‘extreme’. Extreme can be defined in a number of ways. The 95th percentile (T95) is probably too
lenient since y�T95 comprise a good portion of the temperatures we wish to accurately estimate.
Furthermore, use of the 99th percentile (T99) is too stringent because of the possibility of eliminating
nearby stations which otherwise are highly correlated with extreme y. Since cross-validation will be used
as the primary measure of the ability of a neighbouring station to predict y, it would be premature to
eliminate too many potential predictors. By defining ‘extreme’ as 75% of the range between T90 and the
highest observed y, potential predictor stations represent the most extreme y without prematurely
eliminating too many neighbouring sites. Thus, this definition was adopted.

3.2. Single least squared regression de�elopment

To estimate missing daily extreme temperatures, data from the closest 15 neighbouring stations that
satisfy the above criteria serve as an initial pool of predictors. Given the station density of the USHCN,
selecting �15 stations represents an unrealistically large distance between the predictor and station Y.

The disparity between the number of temperatures near T90 for warm temperatures (or 10th percentile
for cold temperatures) and occurrences of extreme temperatures is illustrated in Figure 2, which shows a
scatter plot of warm extreme temperatures (�31.7°C) for Fairhope, AL (Y) and the corresponding
temperatures at a neighbouring station, Covington, LA (Xi). The frequency of occurrence for each
temperature pair is labelled. Clearly, there is an abundance of temperatures near T90 and a paucity of
values at higher thresholds. The influence of this discrepancy on the regression is also shown in Figure 2,
as the black regression line passes well below the cloud of points representing the most extreme
temperatures.

The regression’s error based on all of the data points is satisfactory at 0.67 and 0.01°C for the mean
absolute error and mean error, respectively. Examining the error for different extreme thresholds,
however, reveals that the performance of the regression is clearly biased. Days when y�T90 have a
positive mean error of 0.44°C, while y�T95 have a bias of −0.46°C. Every y�T99 is underpredicted
(Figure 2).

The deficiency of this approach is further illustrated by examining the ratio of the number of estimated
days greater than or equal to (less than or equal to for cold temperatures) the extreme threshold (Ex) to
the actual number of days greater than or equal to this extreme threshold (Ax):

pctx= [(Ex/Ax)�100], (5)
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Figure 2. Scatter plot and regression of extreme warm maximum temperatures for Fairhope, AL (Y) versus Covington, LA (Xi) for
all points (black circles and solid line); the median temperature at Covington (grey squares and line); and the median temperature

at Covington plus an optimization factor of 0.37°C (black triangles and dotted line)

where x is the specified threshold. For days�T90, pct90 equals 98%. However, at the more extreme
percentiles, the regression performs poorly. pct95 is only 26.6% and pct99 equals 0%. This means that none
of the actual days�T99 at Fairhope are estimated as surpassing this 35°C threshold.

To avoid this unequal weighting, a binning procedure is employed. For each predictand temperature
(y), the neighbouring station’s median temperature (xi) is computed. These temperature pairs (grey
squares in Figure 2) then form the basis of a regression that gives equal weight to all observed
temperatures greater than or equal to the threshold.

In Figure 2, the modified regression (solid grey) for Fairhope, AL, is shown. As can be seen from the
error statistics (as well as visually), the regression is no longer biased toward the relatively cooler
temperatures. For y�T90, the mean error is 0.01°C and pct90 remains unchanged at 98%. There is a
considerable improvement, however, in the regression estimates for days when y�T95 and T99. The mean
error has been reduced to −0.08 and 0.16°C, respectively. Unfortunately, pct95 and pct99 are now over
predicted, increasing to 128 and 165%, respectively. This is a problem that will be addressed by using an
optimization procedure. Nonetheless, compared with the regression based on all of the extreme data,
using the median neighbouring temperature produces a more unbiased regression.

3.3. Cross-�alidation of initial stations

After calculating the binned regression for a neighbouring station, the ability of the regression to
estimate extreme y is evaluated using cross-validation.

The cross-validation errors were divided into three groups depending on the value of the nth withheld
y. When estimating a warm temperature extreme, errors corresponding to y�92nd percentile (T92) form
group 1; errors for T92�y�97th percentile (T97) define group 2; and errors for y�T97 are included in
group 3. The average errors of each of these three groups are then calculated and a single mean absolute
error and mean error are calculated. By keeping track of errors in this manner, the abundance of
temperatures near the threshold do not bias the error statistics towards the less extreme thresholds.

After using this procedure on all initial stations, the stations are ranked according to their mean
absolute error. Stations with a mean error�0.28°C or �0.28°C (�0.5°F) are discarded because they
tend to give biased estimates for station Y and accuracy to the 0.56°C (1°F) is desirable to assure
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satisfactory exceedence counts. In cases where the 0.28°C restriction omits all neighbouring stations, the
restriction is relaxed in multiples of 0.06°C until at least one neighbouring station satisfies the criterion.

The median estimate given by the two stations with the lowest mean absolute error is used to obtain
a new estimate for all non-missing extreme days at station Y. A new mean absolute error is then
computed based on these estimates and this new MAE is compared with the MAE of the single best
station. If the error is lower, the third best neighbouring station is incorporated into the procedure and
new error statistics are calculated. Station are added to the procedure, one at a time, until the addition
of another station increases the mean absolute error of the smaller set of stations.

3.4. Optimization of final stations

Although the above set of stations minimizes the MAE, these stations may still not be optimal for
classifying a missing day as exceeding (or not exceeding) an extreme temperature threshold. In particular,
most stations tend to overestimate the percentage of days exceeding T99 (or T01). One reason for this
problem relates to the greater quantity of temperatures near the less extreme temperatures versus the
relative paucity of the more extreme temperatures (see Figure 2). Thus, for warm temperatures, the
probability that the unbiased (in terms of mean absolute error) regression equation overestimates days
that are actually less than the threshold is higher than the chance of underestimating days that are greater
than the temperature extreme. For example, consider the calculation of pct95 using an unbiased regression
equation with an MAE of 1.1°C. Assuming T95 at this station is 35°C, on average temperatures in the
range of 33.9–36.1°C will be estimated as 35°C, given the formulation of the binned regression. In reality,
however, there are many more days with temperatures between 33.9 and 35°C than there are between 35
and 36.1°C, and thus the chance of overestimating the extreme is greater. For warm temperatures, this
leads to large values of pct95 and especially pct99; for cold temperatures, this leads to large values of pct05

and pct01.
To compensate for this problem, the regression equations are optimized by substituting percentiles

other than the median in their development. This changes the slope and intercept of the regression such
that estimates for the less extreme temperatures are kept fairly constant, while estimates of the more
extreme temperatures are adjusted downward for warm temperature estimation, or upward for cold
temperature estimation. This is illustrated by the dotted line in Figure 2, which shows that for each
Fairhope temperature (y)�T97 (33.9°C), the corresponding median temperature at Covington (xi) has
been increased (shifted to the right) by 0.37°C. All of the other temperature pairs remain unchanged. The
resulting regression equation has a less steep slope and higher intercept than the initial (grey) regression.
This new optimized regression is better able to classify a temperature as exceeding a given extreme
threshold.

The 0.37°C increment was arrived at through the optimization of the percentage of days correctly
identified as exceeding the 90th, 95th and 99th percentiles. Mathematically,

(pct90+pct95+pct99)/3 (6)

is optimized. Optimization begins with an unrealistically high adjustment of 3.3°C (Table I). To pivot the
regression, the adjustment is added to each of the neighbouring station’s median temperatures when
y�T97. Equation (6) is then recalculated and the adjustment re-evaluated (by halving or doubling),
depending on whether Equation (6) yields an average greater or less than 100%. If Equation (6) is
�100%, the current regression tends to overestimate the number of extreme days, so a larger increment
is warranted. If, however, Equation (6) is �100%, the current regression tends to underestimate the
number of extreme days, so a smaller increment is necessary. The value of the final increment is the one
that produces a regression equation that minimizes the difference between Equation (6) and 100%. Table
I illustrates this optimization procedure. The initial value (without optimization) of Equation (6) is quite
large at 133%, most of this attributed to the very high values of pct95 (138%) and pct99 (164%). The
regression is pivoted about T97 by adding 3.3°C to each of the neighbouring station’s median temperature
values when the corresponding temperature at Fairhope is �T97, or 33.9°C. As expected, this is an
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Table I. Illustration of the adjustment procedure used to pivot the regression based on
the percent of correctly identified exceedences (pct90, pct95, pct99) and the average

percent (Equation (6)) of correctly identified exceedences

Iteration Adjustment (°C) pct90 (%) pct95 (%) pct99 (%) Average (%)

1 0.00 98 138 164 133
2 3.33 76 26 10 37
3 1.67 85 120 130 112
4 2.50 85 115 85 95
5 2.08 95 115 120 110
6 2.29 95 115 105 105
7 2.24 95 112 100 102
8 2.18 95 112 85 97
9 2.23 95 112 105 104

10 2.22 95 105 98 99

over-adjustment with pct95 falling to 26% and pct99 to 10%. The initial adjustment is halved to 1.67°C and
is added to each of neighbouring station’s temperatures when y�33.9°C. This overcompensates for the
initial 3.3°C adjustment as pct95 and pct99 once again exceed 100%. The intermediate value of 2.5°C is
used for the next iteration. Continuing in this manner, pct99 falls between 90 and 110% with an increment
of 2.29°C. pct95, however, does not fall between 90 and 110%, so we continue to optimize at finer
increments until this occurs. After four additional iterations, the regression is finally optimized when
Equation (6) assumes a value of 99.3%.

Our choice of T97 was based upon a set of trials using larger and smaller percentiles. Various percentiles
between the 95th and 99th were examined. The percentage of correctly classified days exceeding the 90th,
95th and 99th percentiles for the different approaches are shown in Figure 3. Using the T99 as a pivot
point to optimize pct99 within 10% of 100% (approach 1) results in relatively unbiased values of pct90,
pct95 and pct99, but shows moderately large spreads. pct95 is skewed upwards with a median of 104% and
upper decile near 120%. Similarly, pct99 has a relatively large spread that is skewed downwards. Here a
median of 95% and a lower decile of 78% result. Unfortunately, continuing to pivot the regression about
the 99th percentile in an attempt to bring down pct95 fails to produce the desired result. In fact, pct99 often
becomes more biased before pct95 is improved.

Intuitively, choosing a lower pivot threshold, such as T95, and optimizing pct95 (instead of pct99) within
10% error limit (approach 2) seems feasible. Although this improves the distribution of pct95 somewhat,
the improvement is at the expense of pct99 which now, although unbiased, exhibits a high spread (Figure
3). pct90 also becomes skewed toward underestimation.

Our final approach uses T97 as an intermediate pivot point and optimizes pct99 to within a 10% error
limit and then continues optimizing pct95 at finer increments until it, too, falls within 10% or pct99 falls
outside its 10% error limit (approach 3). Using T97, the median of pct90 has decreased slightly from 98%
using approach 1 to 97%. However, the spread of pct95 is now more symmetrical and the median has
improved from 104% using approach 1 to 100%. Furthermore, pct99 has also improved. The median has
increased to 96% from 95% (approach 1) and the spread has decreased as well.

This final, optimized regression is no longer the best (in terms of minimizing the squared errors) for all
temperatures�T90−1.1°C. This is true because we have changed the slope and intercept of the original
binned (and least squares) regression (which used all data�T90−1.1°C). In most cases, this will
introduce a slight negative bias in the final error statistics because we are intentionally underestimating the
more extreme temperatures. This offsets the fact that the abundance of temperatures less than the extreme
threshold results in more temperatures being incorrectly classified as exceeding this threshold than vice
versa. Thus, the final regression is able to more accurately classify a day as exceeding (or not exceeding)
a given threshold, in particular the more extreme thresholds.
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Figure 3. Box plots of pct90, pct95 and pct99 using warm maximum temperatures at 20 climatically diverse stations and pivoting the
regression at T99 (approach 1), T95 (approach 2) and T97 (approach 3)

After optimizing each of the final neighbouring stations separately, the two that produced the lowest
mean absolute error prior to optimization are combined as they were before, but the optimized regression
equations are used and the result of Equation (6) is evaluated. This process is repeated for the remaining
final stations, each time recalculating Equation (6). The final predictor stations used to estimate a given
day are those that bring Equation (6) closest to 100%. When more than one predictor station is used, the
median predicted temperature is used as the final estimate for a given day.

The optimization routine works in a similar manner for cold extreme temperatures. The only differences
include substituting pct10, pct05 and pct01 into Equation (6) and subtracting the increment from station Y’s
median temperature when y�3rd (instead of the 97th) percentile.

4. RESULTS AND COMPARISONS WITH OTHER METHODS

To assess the accuracy of our method, extreme temperatures were estimated for non-missing days at ten
climatically diverse stations across the US. Comparisons are made with the methods of DeGaetano et al.
(1995) and Eischeid et al. (1995). In all cases, these comparisons were based on total exceedences
accumulated over homogenous subperiods at each station.

Figure 4(a) is a plot of A90 versus E90 for warm maximum temperatures. The results clearly show that
both of the previous methods tend to underestimate extreme temperatures, as most points fall below the
line x=y. Our optimized regression method, on the other hand, produces unbiased results with most
points falling on, or near, the 1:1 line. The median of pct90 for our method is 97%, compared with 79 and
74% for the other methods.

Similarly, Figure 4(b) and (c) shows further deterioration of both the non-optimized methods for
temperatures�T95 and T99, respectively. These previous methods severely underpredict these
temperatures at nearly every station, with the median of pct99 equal to 54% for both. The optimized
method, however, is nearly unbiased with the median of pct99 equal to 96%.

Figure 5 illustrates the performance of the three methods using runs of extreme temperatures; namely
the number of consecutive days�T90. Figure 5(a) shows that the prior methods tend to underestimate the
number of two-day runs�T90, with median pct90 values of 81 and 76%, respectively. The optimized
method produces unbiased results, with most of the values falling on or near the line x=y and giving a
median pct90 of 98%. Figure 5(b) and (c) shows that this underestimation continues for 3 and 4
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Figure 4. Scatter plots of actual versus estimated (a) T90, (b) T95 and (c) T99 exceedences for maximum temperatures using the
methods of Eischeid et al. (boxes); DeGaetano et al. (black crosses) and our optimized method (black circles)

consecutive days�T90, with median values ranging from 74 to 83%, while the optimized median values
are both 97%.

The estimation of cold minimum temperatures (Figures 6 and 7) produces similar results. The existing
procedures underestimate both single and consecutive exceedence counts of the 10th, 5th and 1st
percentiles. The optimized method, on the other hand, produces much better results. The median value for
pct10 is 97%; 105% for pct05; and 95% for pct01. The corresponding values for Eischeid et al.’s (1995)
method are 85, 83 and 79%. For the method of DeGaetano et al. (1995), the percentages are 82, 85 and
76%.

There are a few points in Figure 6(b) that indicate overestimation (�10% error) of pct05. For cold
minimum temperatures, this means that the regression had a tendency to underestimate a given day,
resulting in the prediction of more cold extreme temperatures than were actually observed. These points
correspond to data from Presque Isle, ME, and values near the beginning of the 20th century for
Greensboro, AL. In these cases, the neighbouring stations were limited and unable to be satisfactorily
optimized, which resulted in the relatively high errors.
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Figure 5. Scatter plots of actual versus estimated occurrences of (a) 2-, (b) 3- and (c) 4-day runs of maximum temperatures
exceeding T90 using the methods of Eischeid et al. (boxes), DeGaetano et al. (black crosses) and our optimized method (black circles)

In general, cold minimum temperatures are the most difficult to estimate because of the strong effect
of microclimatic variations between neighbouring stations. For example, if nearby stations are located in
a small valley while station Y is situated outside the depression, radiational cooling and cold air drainage
will significantly effect cold minimum xi. Furthermore, because the range of temperatures between the 5th
and 1st percentiles (T05 and T01, respectively) is greater than the corresponding T95–T99 range for warm
maximum temperatures, there tends to be more days with temperatures a few degrees greater than T05 and
less days with temperatures a few degrees less than T05. This results in an increased probability (compared
with warm extremes) to overestimate the number of days�T05.

Despite the fact that the binned least squares regression methodology has been tuned to estimate
exceedence counts, individual temperature extremes are estimated with accuracy very similar to that of the
other estimation procedures. This is illustrated in Figure 8, which contains box plots of mean errors for
the three methods using ten climatologically diverse stations. The MAE using all
temperatures�T90−1.1°C (Figure 8(b)) is 1.28°C for our method, 1.27°C for DeGaetano et al. (1995)
and 1.17°C for Eischeid et al. (1995). These previous methods, however, are biased toward
underestimation as the mean error (Figure 8(a)) for the method of DeGaetano et al. (1995) is −0.77 and
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Figure 6. As in Figure 4 but for non-exceedences of (a) T10, (b) T05 and (c) T01 for minimum temperatures

−0.61°C for Eischeid et al.’s (1995) method. The optimized method is less biased with a mean error of
−0.12°C.

As the temperature to be estimated becomes more extreme (i.e. �T99), the day-to-day accuracy of our
method is higher than DeGaetano et al.’s (1995) method and approximately equal to the method of
Eischeid et al. (1995). This is shown in Figure 8(d), where the MAE for the optimized method is 1.19°C,
1.33°C for DeGaetano et al. (1995) and 1.17°C for Eischeid et al. (1995). For the very extreme
temperatures, the binned least squares methodology is once again not as biased as the other two methods.
Figure 8(c) shows that the mean error for our method is −0.54°C, −1.17°C for DeGaetano et al. (1995)
and −0.89°C for Eischeid et al. (1995).

5. SUMMARY

A binned least squares regression approach has been developed to estimate missing extreme maximum or
minimum temperatures. The method focuses on obtaining accurate estimates of exceedence and
consecutive exceedence counts by using a binning and optimization procedure. The method is equally
valid for maximum or minimum temperatures and high (e.g. T90) or low (e.g. T10) extremes.
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Figure 7. As in Figure 5 but for (a) 2-, (b) 3- and (c) 4-day runs of minimum temperatures not exceeding T10

Compared with more conventional data estimation routines, our method significantly improves
estimates of single and consecutive extreme exceedence counts. Evaluation of our approach using cold
minimum and warm maximum temperatures showed that the median percentage of correctly identified
exceedence counts was 97% and the median percentage of correctly identified consecutive exceedence
counts was 98%. The other existing methods tended to underestimate both exceedence and consecutive
exceedence counts. Using these procedures, estimated single and consecutive exceedence counts were
generally less than 80% of those that actually occurred.

Despite the fact that the binned least squared method has been tuned to estimate exceedence counts, the
estimation accuracy of an individual daily maximum or minimum temperature is similar to that of the
other estimation procedures. The MAE using all temperatures�T90−1.1°C for 10 climatically diverse
stations was 1.28°C for our method, while the other methods gave MAEs of 1.27 and 1.17°C. In terms
of median error, however, the tendency for underprediction by the existing methods was pronounced with
−0.77 and −0.61°C biases. Our optimization method was relatively unbiased as the resulting mean error
was −0.12°C.
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Figure 8. Box plots of (a) mean error and (b) mean absolute error for all days�T90−1.1°C and (c) mean error and (d) mean
absolute error for all days�T99 at 10 climatologically diverse stations using our optimized method, DeGaetano et al. and Eischeid

et al.
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