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A B S T R A C T  

Many measures of  similarity among fuzzy sets have been proposed in the 
literature, and some have been incorporated into linguistic approximation proce- 
dures. The motivations behind these measures are both geometric and set-theoretic. 
We briefly review 19 such measures and compare their performance in a behavioral 
experiment. For crudely categorizing pairs o f  fuzzy concepts as either "'similar" or 
"'dissimilar, "" all measures performed well. For distinguishing between degrees o f  
similarity or dissimilarity, certain measures were clearly superior and others were 
clearly inferior; for a few subjects, however, none of  the distance measures 
adequately modeled their similarity judgments. Measures that account for ordering 
on the base variable proved to be more highly correlated with subjects" actual 
similarity judgments. And, surprisingly, the best measures were ones that focus on 
only one "'slice" o f  the membership function. Such measures are easiest to compute 
and may provide insight into the way humans judge similarity among fuzzy 
concepts. 
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INTRODUCTION 

Giles [12] has described the current character of research in fuzzy reasoning 
as follows: 

A prominent feature of most of the work in fuzzy reasoning is its ad hoc 
nature . . . .  If fuzzy reasoning were simply a mathematical theory there 
would be no harm in adopting this approach; . . .  However, fuzzy 
reasoning is essentially a practical subject. Its function is to assist the 
decision-maker in a real world situation, and for this purpose the 
practical meaning of the concepts involved is of vital importance (p. 
263). 

Fuzzy set theory would benefit from becoming a behavioral science, having its 
assumptions validated and its results verified by empirical findings (Kochen 
[22]). In particular, there has been virtually no experimental work comparing the 
many measures of distance (between fuzzy sets) that have been proposed in the 
literature. The major empirical works that have appeared in the fuzzy set 
literature focus on measuring the membership function and evaluating the 
appropriateness of operations on fuzzy sets. (See, for example, Hersh and 
colleagues [15, 16]; Kochen [22]; Norwich and Turksen [26]; Oden [28, 29, 30, 
31]; Rapoport and colleagues [33]; Thole and Zimmermann [35]; Wallsten and 
colleagues [37]; Zimmer [42]; Zysno [44].) This article investigates experimen- 
tally the question of selecting an appropriate distance index for measuring 
similarity among fuzzy sets. 

Several methods have been suggested for the process of linguistic approxima- 
tion (Bonissone [3]; Eshragh and Mamdani [11]; Wenst6p [40]). Each of them 
suggests a different measure of similarity. However, there is no serious attempt 
to validate the techniques through behavioral experiments. Some authors have 
mentioned that their techniques work very well but do not provide the 
appropriate data to support their claim. For example, Bonissone [3] in his 
pattern recognition approach to linguistic approximation writes that "this new 
distance reflects very well the semantic distance among fuzzy sets . . . .  This 
distance has been applied in the implementation and has provided very good 
results"; however, no results are reported, and it is not clear what criteria are 
used to make such a statement. Similarly, no serious attempts have been made by 
Wenst6p [40] to validate details of his semantic model. Neither do Eshragh and 
Mamdani [11] behaviorally validate their approach. Although they claim that 
"the results obtained from 'LAM5' are quite encouraging and also considering 
the number of previous attempts and difficulties involved, one can say that 
'LAM5' has proved workable," once again no supporting data are supplied. 
More importantly, no attempt has been made to compare the performances of the 
various different indexes of distance that could be used in these applications. 

Overall, the lack of behavioral validation for any similarity index is disturbing 



Measures of Similarity/Fuzzy Concepts 223 

because of the crucial role (translation) that this index plays in any implementa- 
tion of fuzzy reasoning theory, and the relative ease by which any proposed 
index may be validated. Regarding the second point, any successful distance 
measure should be able to account for and predict a subject's similarity judgment 
among fuzzy concepts, based on his or her separate membership functions of 
each concept. 

The notion of similarity plays a fundamental role in theories of knowledge and 
behavior and has been dealt with broadly in the psychology literature (Gregson 
[14]). Overall, the theoretical analysis of similarity relations has been dominated 
by geometric models. These models represent objects as points in some 
coordinate space such that the observed dissimilarity among objects corresponds 
to the metric distance between the respective points. 

The similarity indexes used in the linguistic approximation techniques adopt 
this approach. Bonissone [3] locates each concept initially in four-dimensional 
space, where the dimensions are power, entropy, first moment, and skewness of 
the membership function. He defines the distance between two concepts as the 
regular weighted Euclidean distance between the points representing these 
concepts. Wenst6p [40] locates the concepts in a two-dimensional space. The 
two dimensions are location (center of gravity) and imprecision (fuzzy scalar 
cardinality) of the membership function. The distance between any two concepts 
in this space is the regular Euclidean distance. The same geometrical distance 
philosophy has been adopted by Eshragh and Mamdani [11] and by Kacprzyk 
[181. 

Most conclusions regarding the appropriate distance metric have been based 
on studies using judgment of similarity among stimuli that can be located a 
priori along (objectively) distinguishable dimensions (such as color, tones, 
etc.). The question of integral versus separable dimensions is crucial. Separable 
dimensions remain subjectively distinct when in combination. By contrast, 
integral dimensions combine into a subjectively nondecomposable whole. There 
is an extensive literature supporting the idea that the Euclidean metric may be 
appropriate for describing psychological distance relations among integral- 
dimensions stimuli, while something more along the lines of the city-block 
metric is appropriate for separable-dimensions stimuli (Attneave [1]). 

As noted by Tversky [36], both dimensional and metric assumptions are open 
to questions. It has been argued that dimensional representations are appropriate 
for certain stimuli (those with a priori objective dimensions), but for others, 
such as faces, countries, and personality, a list of qualitative features is 
appropriate. Hence, the assessment of similarity may be better described as a 
comparison of features rather than as a computation of metric distance between 
points. Furthermore, various studies demonstrate problems with the metric 
assumption. Tversky [36] shows that similarity may not be a symmetric relation 
(violating the symmetry axiom of a metric) and also suggests that all stimuli may 
not be equally similar to themselves (violating the minimality axiom.) 
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Therefore, similarity may be better modeled by a function that is not 
conceptually a geometric distance (such as a set-theoretic function instead). 

In this article we first review the various distance indexes suggested in the 
literature, in the general case and as adapted to fuzzy sets. Next, we present our 
experimental design. Finally, we discuss the results and implications of  the 
results for the process of  linguistic approximation. 

Geometric Distance Models  

A particular class of  distance functions that has been investigated by 
psychologists is known as the Minkowski r-metric (Beckenbach and Bellman 
[2]). This metric is a one-parameter class of  distance functions defined as 
follows: 

dr(x,  y ) =  IXl-Yil  r , r_> 1 (1) 
. =  

where x and y are two points in an n-dimensional space with components (xi, Yi) 
i = 1, 2 . . . . .  n. Let us consider some special cases that are of  particular 
interest. Clearly, the familiar Euclidean metric is the special case of  r = 2. The 
other special cases of  interest are r = 1 and r = oo. The case of  r = 1 is known 
as the "c i ty -b lock"  model. As r approaches oo, equation (1) approaches the 
"dominance metr ic"  in which the distance between stimuli x and y is 
determined by the difference between coordinates along only one dimension--  
that dimension for which the value Ixi - Yil is greatest. That is, 

doo(x, y ) = m a x  I x i - Y i l  (1.1) 

Each of  the three distance functions, r = 1, 2, and oo, are used in psychological 
theory (Hull [17], Restle [34], Lashley [23]). 

GENERALIZING THE GEOMETRIC DISTANCE MODELS TO FUZZY SUBSETS 
Let E be a set and let A and B be two fuzzy subsets of  E.  Define the following 
family of  distance measures between A and B: 

(~=1 r) l/r dr (A  ,B)  = [#A (xi) - #B(Xi)[ r >  1 (1.2) 

or, if E = R,  

and 

dr(a, B):( S+: [I-I,A(X)--II, B(X)[r dXl l/r r >  1 (1.3) 

d~ (A,  B)  = sup I/Za (x)  - #~(x)  I (1.4) 
x 
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The cases r = 1 and 2 were studied by Kaufman [20]. Kacprzyk [18] proposed 
the distance measure (dE) 2, and do, was proposed by Nowakowska [27]. Our 
empirical evaluation will consider dl, d2, (d2) 2, and d®. 

HAUSDORFF METRIC The Hausdorff metric is a generalization of the distance 
between two points in a metric space to two compact nonempty subsets of the 
space. If U and V are such compact nonempty sets of real numbers, then the 
Hausdorff distance is defined by 

q(U, V)=max  {sup inf d2(u, v), su~ inf d2(u, v)} (2) 
u E V  u E U  v E V  

where d2 is as defined in equation (1). 
In the case of real intervals A and B, the Hausdorff metric is described by 

q(A, B ) = m a x  { l a l - b , I ,  la2-b2[} (2.1) 

where A = [al, a2] and B = [bl, b2] 

GENERALIZING THE HAUSDORFF METRIC TO FUZZY SUBSETS Let F(R) be 
the set of all fuzzy numbers and fuzzy intervals of the real line (Dubois and 
Prade [6]). There is no unique metric in F(R) that extends the Hausdorff 
distance. Ralescu and Ralescu [32] propose the following generalizations: 

S 
I 

ql(A, B ) =  q(A,, B,~) dot 
ot=O 

q~,(A, B ) = s u p  q(A~,, B~,) 
~ 0  

where A,, is the ot-level set of the fuzzy set A. 

(2.2) 

(2.3) 

We propose the Hausdorff distance between the intervals with the highest 
membership grade: 

q.(A, B)= q(Al.o, Bi.o) (2.4) 

If A and B are real intervals, then 

q~(A, B)=q~(A, B)=q.(A, B)=q(A, B) 

Goetschel and Voxman [13] suggest a different generalization of the 
Hausdorff metric. Let A and B be two fuzzy numbers. (For the exact definition 
of fuzzy numbers in this context, which is slightly different from the usual 
definition, see Goetschel and Voxman [13]). Let supp A = [aA, bA] and supp B 
= laB, bB], and let a = min {aA, aB} and b = max {bA, bB}, and set 

A * = { ( x ,  Y)la<_x<_b, 0<y_</zA(x)} 

and 

B*={(x,y)la<x<_b, O<y<#s(x)} 
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Then their distance is 

Q(A, B)=q(A*,  B*) (2.5) 

DISSEMBLANCE INDEX Kaufman and Gupta [21] start with distance between 
intervals. Let A = [al, a2] and B = [bl, b2] be two real intervals contained in 
[ill,/~2], and define 

A(A, B ) =  ( l a l - b ~ l +  l a2-  b21)/2(B2- Bt) (3.1) 

GENERALIZING THE DISSEMBLANCE INDEX TO FUZZY SUBSETS Now let A 
and B be two fuzzy numbers in R. For each level ol we can consider A(A,~, B,~), 
where/~t and/32 are given by any convenient values that surround A ,  and B~ for 
all ot E [0, 1]. Kaufman and Gupta [21] now define 

S 
I 

AI(A, B)= A(A,,, B~,) dot 
i f = 0  

(3.2) 

As obvious analogies to qo. and q . ,  we add 

A~(A, B)=sup A(A., B.) (3.3) 

A,(A,  B)=A(AI.o, Bl.o) (3.4) 

Set-Theoretic Approach 

In his well-known paper entitled "Features of Similarity," Tversky [36] 
describes similarity as a feature-matching process. Similarity among objects is 
expressed as a linear combination of the measure of their common and distinct 
features. Let D = {a, b, c . . . . .  } be the domain of objects under study. 
Assume that each object in D is represented by a set of features or attributes, and 
let A, B, and C denote the set of features associated with objects a, b, and c, 
respectively. In this setting Tversky derives axiomatically the following family 
of similarity functions: 

s(a, b)=Of(A N B ) - ~ f ( A - B ) - B f ( B - A )  

for some 0, c~,/3 _> 0 
This model does not define a single similarity scale but rather a family of 

scales characterized by different values of the parameters 0, o~, and/3, and by the 
function f .  

If or =/3  = 1 and 0 = 0, then -s(a,  b) = f ( A  - B) + f ( B  - A), which is 
the dissimilarity between sets proposed by Restle [34]. 



Measures of Similarity/Fuzzy Concepts 227 

Another matching function of interest is the ratio model 

f ( A  N B) 
s(a, b ) = f (  A N B ) + o t f ( A - B ) + / 3 f ( B - A )  or,/3>_0 

where similarity is normalized so that s lies between 0 and 1. Assuming tha t f i s  
feature additive (i.e., f ( A  O B) = f (A)  + f(B) for A N B = 0), then the 
foregoing model generalizes several set-theoretic models of similarity proposed 
in the literature. If a = /3 = 1, s(a, b) reduces to f ( A  N B) / f (A  13 B) 
(Gregson [14]). If ~x = /3 = ½, then s(a, b) = 2f(A N B) / ( f (A)  + f(B)) 
(Eisler and Ekman [9]). If cx = 1 and/3 = O, s(a, b) = f ( A  N B) / f (A)  Bush 
and Mosteller [4]). Typically the f function is taken to be the cardinality 
function. 

GENERALIZING THE SET-THEORETIC APPROACH TO FUZZY SUBSETS 
Several authors have proposed similarity indexes for fuzzy sets that can be 
viewed as generalizations of the classical set-theoretic similarity functions 
(Dubois and Prade [7]). These generalizations rely heavily on the definitions of 
cardinality and difference in fuzzy set theory. Definitions of the cardinality of 
fuzzy subsets have been proposed by several authors. A systematic investigation 
of this notion was performed by Dubois and Prade [8]. For generalizing the set- 
theoretic approach to a similarity index among fuzzy subsets, the scalar 
cardinality measure will be adopted in the sequel. The scalar cardinality (power) 
of a fuzzy subset A of U is defined as (DeLuca and Termini [5]) 

IAI = 2~ t~A(U) 
u E U  

When Support (A) is not finite, we define the power of A to be 

S 
+ o o  

IAI = t*A(X) dx 

Defining the following operations between fuzzy subsets, 

Yx E U, #AnB(x)=min [/~A(X), /~B(X)] 

VX E U, I~AuB(X)=max [/./,A(X), /£B(X)] 

VX E U, #ADB(x)=max [min (#A(X), 1--#B(X)), min (1--/~a(X), #B(X))] 

A [] B is the fuzzysubset of elements that approximately belong to A and not 
to B, or conversely. 

The following indexes have been proposed in the literature (Dubois and Prade 
[7]) as dissimilarity measures between fuzzy subsets: 

SI(A, B ) =  1 - [ A  N B I / I A  LIB I (4.1) 
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is analogous to Gregson's [34] proposal for classical sets, and 

S2(A, B ) =  IA DBI (4.2) 

is analogous to Restle's proposal [34] for classical sets. Also, 

$3 (A, B) = sup #A Ds(x) (4.3) 
x E U  

and finally a disconsistency index ("degree of separation," Enta [10]); 

S4(A, B) = 1 - sup #An B(X) (4.4) 
x E U  

A PATTERN RECOGNITION APPROACH In this approach (Bonissone [3]), the 
efficiency of the linguistic approximation process is of major importance. The 
process is composed of two stages. In the first stage the set of possible labels is 
narrowed down by using a crude measure of distance that (it is hoped) performs 
well on fuzzy sets that are far apart from each other. The idea is to represent 
each fuzzy set by a limited number of features so that the distance computation is 
simplified. Bonissone [3] chooses four features. The first is the power of the set 
(area under the curve), and the second is a measure of the fuzziness of the set 
(nonprobabilistic entropy) defined by De Luca and Termini [5] as 

entropy (A) = S(~A (x)) dx 

where S(y) = - f in (y )  - (1 - y) in (1 - y) 
The third feature is the first moment (center of gravity of the membership 

function) and is defined by 

FMO(A)=( I~:X#A(X)dx ) /power (A)  

And finally, skewness, the fourth feature, is defined as 

skew (A)= I~: (x-FMO (A))31XA(X) dx 

Bonissone [3] defines the distance between two fuzzy sets as the Euclidean 
distance between the vectors (Power (A), Entropy (A), FMO (A), Skew (A)) 
and (Power (B), Entropy (B), FMO (B), Skew (B)). In what follows we will 
denote this distance by VI(A, B). After narrowing down the set of possible 
labels, the second stage starts, in which a modified Bhattacharyya distance is 
computed. This distance should discriminate well between sets that are close to 
each other. The Bhattacharyya distance is defined as (Kailath [19]) 
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where the membership functions have been normalized, that is, 

/z* (x) = #A (x)/Power (A) 

and similarly for #B. 
Wenst6p [40] adopts a similar approach. He represents each fuzzy set as the 

two-vector (Power (A), FMO (A)). The distance between two fuzzy sets is 
defined to be the regular Euclidean distance between the two corresponding 
vectors. We will denote this distance by V2(A, B). 

Correlation Index 

Murthy, Pal, and Majumder [24] define a correlation-like index that reflects 
the similarity in behavior of two fuzzy sets. The measure is actually a 
standardized squared Euclidean distance between two fuzzy sets as defined by 
d2. Let 

and define 

XA= fS~ (2pA(X)-- I)2 dx 

4 
CORR (A, B)= I-(xA~_XI~) (d2)2 

In what follows we will use the index p(A, B) = 1 - CORR (,4, B). 

(6) 

METHOD 

Subjects 

Fifteen native speakers of English were recruited by placing notices in 
graduate students' mailboxes in the business school and the departments of 
anthropology, economics, history, psychology, and sociology at the University 
of North Carolina at Chapel Hill. We assumed that they would represent a 
population of people who think seriously about communicating "degrees of 
uncertainty" and who generally do so with nonnumerical phrases. The general 
nature of the study was described, and subjects were promised $25 for three 
sessions of approximately an hour and a half each. 

General Procedure 

Subjects were run for a practice session and then two data sessions. The 
experiment was controlled by an IBM PC with the stimuli presented on a color 
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monitor, and responses were made using a joystick. During the data session, 
subjects worked through four types of trials: linguistic probability scaling trials, 
similarity judgment trials, and two types of trials involved integrating two 
probability terms connected by "and" and "or". (These two types of trials are 
discussed in Wallsten and co-workers [39] and will not be commented on here.) 

LINGUISTIC PROBABILITY SCALING TRIALS The objective of these trials was 
to establish the subject's membership function for various linguistic probability 
phrases. A linguistic probability phrase is a value of the linguistic variable 
"probability" (Zadeh [41]). In this study we adopted the direct magnitude 
estimation technique (for instance, Norwich and Turksen [25, 26], Rapoport and 
colleagues [33]). 

In these trials, probabilities were represented as relative areas on a radially 
divided two-colored spinner (see Figure 1). On each trial a spinner and a 
linguistic probability word (such as "doubtful") appeared on the screen. The 
subject was asked to indicate how "close" the probability word is to the actual 
probability represented by the dark area of the spinner. The subject's response 
was given by placing the cursor along the horizontal axis (see Figure 1). 

Six probability phrases were employed, three representing lower probabilities 
and three representing higher probabilities: doubtful, slight chance, 
improbable, likely, good chance, and fairly certain. In the direct estimation 
task, each phrase was presented with 11 spinner probabilities: 0.02, 0.12, 0.21, 
0.31, 0.40, 0.50, 0.60, 0.69, 0.79, 0.88, and 0.98. 

Doubtful 

I I 
Net et ell Alm.l utol g 

¢1o,~e close 

Figure 1. Direct Estimation Trim 
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Subjects judged each combination of phrase and probability number twice, 
once in each session. 

SIMILARITY JUDGMENT TRIALS In these trials two probability phrases were 
printed on the screen. The subject then moved the cursor on a horizontal axis to 
indicate how similar the phrases were to each other. The cursor could be moved 
from not at all similar to absolutely similar. Each subject judged the similarity 
between all possible pairs (15) (excluding a phrase and itself) twice in each 
session. 

MEMBERSHIP FUNCTION EVALUATION We adopted the view that an 
individual's membership function for a given fuzzy concept is not purely 
deterministic. Rather, the value of the membership function at a point is itself a 
random variable (Norwich and Turksen [25], Zwick [43]). Hence, in the 
linguistic probability scaling trials, the subject's placement of the cursor yielded 
a realization of this random variable. On the basis of previous research (Wallsten 
and colleagues [37]; Rapoport and colleagues [33]), we concluded that a cubic 
polynomial can accurately represent the expected value of the membership 
function for a probability phrase. Note that a cubic polynomial resembles the 
" S "  and " H "  functions that have been proposed in the literature in this context 
(Eshragh and Mamdani [11]). A cubic polynomial was fit to the 22 points 
representing each phrase within a subject, using the least squares technique. 
Each equation was then normalized to attain the value 1 on the interval [0, 1]. In 
defining the membership functions, any value less than zero was redefined to 
equal 0, and similarly any value greater than 1 was redefined to equal 1. These 
adjustments were generally quite minor. Examples of the membership functions 
for the six phrases for one subject are shown in Figure 2. All membership 
functions for all subjects were either nondecreasing, nonincreasing, or single 
peaked. 

RESULTS AND DISCUSSION 

For each subject and each pair of words, all 19 distance measures were 
calculated. (At times it was necessary to discretize one axis, using a 100-point 
grid, in order to calculate a distance measure.) To evaluate the performance of a 
particular distance measure, we compared its computed values to the " t rue"  
distance ratings as given directly by the subject in the similarity judgment trials. 
This evaluation was done on two levels. First, we asked if the distance measure 
correctly categorized a "similar" pair of words by returning a "small"  
distance, and if it correctly categorized a "dissimilar" pair of words by 
returning a " large"  distance. This crude evaluation was in practice independent 
of the subject-specific " t rue"  distance rating, because the subjects generally 
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agreed that the pairs Pl = (doubtful, improbable), P2 ---- (doubtful, slight 
chance), P3 = (improbable, slight chance), P4 = (fairly certain, good chance), 
P5 -- (fairly certain, likely), and 17 6 = (likely, good chance) are each composed 
of two "similar" words. Likewise, the subjects generally agreed that the pairs 
ql = (doubtful, fairly certain), q2 = (doubtful, good chance), q3 = (doubtful, 
likely), q4 = (improbable, fairly certain), q5 = (improbable, good chance), q6 
= (improbable, likely), q7 = (slight chance, fairly certain), q8 = (slight 
chance, good chance), and q9 -- (slight chance, likely) are each composed of 
two "dissimilar" words. For this task of dichotomous categorization, essentially 
all the distance measures were successful across all subjects (see Figure 3, for 
example). This is testimony to the intuitive base upon which each distance 
definition rests. They are designed to indicate gross differences between 
membership functions, if and only if such differences actually exist. The 
practical implication is simply that if linguistic approximation or concept 
clustering is to be carried out in two stages, then any of these distance measures 
may be used for the first stage. 

The second level of our evaluation asked whether the distance measure 
reflects the correct degree of similarity within "similar" pairs of words, and 
whether the distance measure reflects the correct degree of dissimilarity within 
"dissimilar" pairs of words. In answering this more subtle question, intersub- 
ject variability must be acknowledged. Each subject has his or her own 
membership functions for the words in pair Pi.  These two membership functions 
are "similar" in the gross sense, but the similarity between them is different 
from the similarity between the subject's membership functions for the words in 
pair pj. The degree of similarity within each pair is given, for that subject, by his 
or her " t rue"  distance rating. If the distance measure works well in the context 
of fuzzy sets, it should yield distances for pairs Pi and p j  that "agree" with the 
corresponding " t rue"  distance ratings given by the subject. 

To quantify the amount of agreement between a particular distance measure 
and the " t rue"  distance, we computed the correlation between these two 
quantities over all pairs {Pi: 1 <_ i <_ 6} for a given subject (see Figure 3). 
Thus, our criterion for agreement was linear association. The same consider- 
ations applied to the "dissimilar" pairs. Here we computed the correlation 
between the particular distance measure and the " t rue"  distance over all pairs 
{qi" 1 <_ i <_ 9} for a given subject. By analyzing t h e p i ' s  and qi's separately, 
we allowed for the possibility that a particular distance measure may be quite 
accurate in modeling fine variations in similarity (i.e., small distances) but quite 
inaccurate in modeling fine variation among pairs that are each composed of two 
"dissimilar" words. Furthermore, in practical applications one may need to find 
only a distance measure that is sensitive to the degree of similarity in pairs of 
"similar" words (as in linguistic approximation). The separate analyses also 
give a distance measure the opportunity to be linearly related to " t rue"  distance 
with two (locally) different slopes (see Figure 3). 
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For each distance measure, its prcorrelations for the 15 subjects were 
summarized by a line plot. The 19 line plots (one for each measure) appear in 
Figure 4. Analogous line plots of the qi-correlations appear in Figure 5. It is 
desirable for a measure to have high mean and median correlation, to have small 
dispersion among its corelations (i.e., interquartile range), and to be free of 
extremely low (i.e., negative) correlations. 

Several trends are clear from these displays. 
1. There is a great deal more variability between the performances of the 

various distance measures on "dissimilar" pairs (Figure 5) than on 
"similar" pairs (Figure 4): the means, medians, and interquartile ranges 
are much more homogeneous in Figure 4 than in Figure 5. (Note that 
statistical fluctuation would actually work in the opposite direction: the 
correlations for the "dissimilar" pairs are calculated from nine data 
points, while those for "similar" pairs are calculated from six data 
points.) This immediately suggests that more caution must be exercised 
when selecting a distance measure to distinguish between varying degrees 
of dissimilarity. 

2. On the "dissimilar" pairs (Figure 5), those measures which perform the 
worst (d2, (d2) 2, dl, d~., $2, $3, p) are measures that ignore the ordering on 
the x-axis (the base variable axis). Conversely, those measures which 
perform the best (q,,, q . ,  A®, A.) are measures that do account for the 
distances on the x-axis by looking at c~-level sets. This distinction is quite 
logical. When measuring the distance between words that are essentially 
"dissimilar" (i.e., have nearly disjoint supports), it is the x-axis that 
carries all the information regarding the degree of dissimilarity between 
the membership functions. Distance measures that ignore the x-ordering 
have the advantage of being unambiguously defined even for membership 
functions over abstract (unordered) spaces, but such measures have the 
disadvantage of being insensitive to varying degrees of dissimilarity (for 
instance, as in pairs qi). In the "similar" pairs (Figure 4), the membership 
functions within a pair (pi) have nearly identical supports. Hence the x- 
distance is not critical, and we find both types of distance measures doing 
well--those which look at t~-level sets (notably q . ,  A**, A.), and those 
which ignore the ordering on x (notably $4). 

3. Among those measures accounting for x-ordering (ql, q~,, q . ,  A1, A®, 
A. ,  Q), ql and Q are especially susceptible to having extremely poor 
correlation with " t rue"  similarity ratings. This occurs for both qi- 
correlations and prcorrelations. Note that Q is conceptually different from 
the other six such measures, possibly accounting for the difference in 
performance. 

4. Measure $2 is arguably the worst both for "similar" pairs and for 
"dissimilar" pairs. 

5. Measures Sl and $4 are clearly the best in terms of qrcorrelations, among 
those measures which ignore the x-ordering. Their superiority in the 
"dissimilar" setting is noteworthy because, again, x-distance is relevant in 
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this setting. Furthermore, measure $4 performs reasonably well (among all 
measures) in the "similar" setting also. 

6. Quite surprisingly, all the measures with consistently good performance 
($4, q~., q . ,  A~., A.)  share the following property: they concentrate their 
attention on a single value rather than performing some sort of averaging 
or integration. In the case of $4, attention focuses on the particular x-value 
where the membership function of A CI B is largest; in q~. and A~, 
attention focuses on the c~-level set where the x-distance is largest; in q .  
and A. ,  attention focuses on the x-di,~tance at the highest membership 
grade. Such measures are generally considered unstable (hence suspect) in 
many mathematical analyses. Yet here is strong empirical evidence that 
subjects actually behave this way: reduction of complicated membership 
functions to a single "slice" may be the intuitively natural way for human 
beings to combine and process fuzzy concepts. 

7. The consistently good performance of q .  and A. has significant practical 
implications. These measures are trivial to compute, relative to other 
distance measures, and have substantial intuitive appeal. 

8. Distance measure R was proposed as a refinement of V~, where the latter is 
used in the first stage of linguistic approximation and the former is used in 
the second stage (Bonissone [3]). However, the empirical results show no 
systematic evidence of R being superior in the "similar" word setting 
(Figure 4) or of 1"1 being superior in the "dissimilar" word setting (Figure 
5). 

9. For a given subject, the relative rank of his or her correlation (within a line 
plot) tends to be consistent over all distance measures. (This fact is 
revealed by examining the individual subjects' correlations within each 
line plot.) For example, the qi-correlation of subject 6 is the highest or 
second highest correlation within each of 18 line plots in Figure 5. At the 
low end, subjects 15 and 2 are responsible for 17 of the "minimum" qi- 
correlations in Figure 5. An analogous situation exists in Figure 4, but 
interestingly, the particular subjects whose qi-correlations are consistently 
the lowest (say) are not  the same particular subjects whose pi-correlations 
are consistently the lowest. 

RECOMMENDATIONS 

If one wants to select a distance measure that performs well in the long run on 
a broad spectrum of subjects, the aggregated data of our study may be used as a 
guide. Measures $4, q . ,  A~., and A. consistently distinguished themselves with 
good performance. 

If, however, the objective is to accurately model the behavior of a specific 
individual (for instance, in the linguistic approximation phase of an expert 
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system program), then the following problem must be acknowledged. For each 
distance measure there existed some subject for whom that distance measure 
performed quite poorly (note the "minimum" values on Figures 4 and 5). 
Moreover, there were some subjects with consistently low (negative) correla- 
tions, indicating that for them, none of the distance measures adequately models 
their thought processes in judging degrees of similarity (or dissimilarity). (This 
in no way detracts from the ability of all distance measures to successfully make 
gross categorizations of word pairs as "similar" or "dissimilar" for all 
subjects.) In contrast, for those subjects having consistently high (near 1.0) 
correlations, there is evidently a certain robustness with respect to the choice of 
a distance measure. In practice, then, it would be ideal to evaluate the 
performances of the various distance measures on the individual of interest. This 
could be accomplished by carrying out an experiment analogous to ours, but on 
the specific individual and in the relevant context. (It is possible that the relative 
performances of the distance measures could vary from one context to another, 
even for a fixed individual.) 

Having done this, one can determine which distance measure is the best for 
the situation at hand. If the individual attains consistently high correlations, then 
it does not matter which distance measure is used (perhaps computational 
convenience should then indicate the choice). If the individual shows much 
variability in his or her correlations, then of course the distance measure with the 
highest correlation should be chosen. If the individual produces consistently 
negative correlations, then this itself is an extremely important finding: it may be 
quite difficult to quantify and mathematically model the mental process of 
similarity judgment for such an individual. 

In many cases the fuzzy concepts are unambiguously defined over a one- 
dimensional space (such as in our study of probability words). When this is not 
the case, then, in using those distance measures which do account for the 
ordering on the base-variable axes, it is imperative that the fuzzy concepts be 
correctly located in a space of the appropriate dimensionality. 
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