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This chapterattemptsto dismantlethe myth that modelingbargainingasan
infinite horizon bargainingprocessis too complex to merit experimentationby
providing a simplifiedapproachto thesolutionof thegamesunderlyingthis pro-
cess.In addition,averyrich menufor experimentationwith externalopportunities
andrisks is provided. A finite horizonmodelwould bemuchmorecumbersome
andartificial. Thesolutionof infinite gamesis approachedthrougha verynatural
strategic gameform built from theoriginalbargainingtree.A distinguishedsubset
of its Nashequilibriaareidentifiedfor many cases(metin practice)with subgame
perfectsolutionsof the tree. This approachexposesthefact that infinite horizon
reasoningrelieson a very weakform of backward induction,asopposedto the
completeandlengthyinductionnecessaryfor finite games.

Althoughpromising,theexperimentalwork surveyedprovidesonly weakand
equivocalsupportfor rationalbehavior. Theneedarisesfor furtherabstractionof
the bargainingprocessfor a betterfit with the phenomenainvestigated,a proce-
durerecommendedby Rubinstein(1991)in thewider context of gametheoryin
practice.

PURE BARGAINING

How is avaluableobject,jointly ownedby two parties,shared?Thisquestionepit-
omizesa fundamentalquestionof economics.It encompassestheboundednessof
a resourcethatmustbesharedif it is to beusefulat all.

Two generalapproacheshavebeenpursued.Theaxiomatic,with Nash(1950)
its mostwell-known representative, andthe procedural,bestrepresentedby Ru-
binstein(1982).Theaxiomaticmethodspecifiescertaindesideratathatabargain-
ing ruling shouldsatisfy. In the bestcase,thesearealsosufficient to specifya
solutionto theproblem.This methodrefrainsfrom promulgatinga procedureby
which thebargainingoutcomeis to beattained.Therefore,it is robust regarding
changesin thebargainingconditions.Theproceduralapproachspecifiesexactly
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how thebargainingis to takeplace.In thisway, it is lessdependentonaxiomsthat
lack unanimousendorsement.Ideally, asNashhopedfor, a bargainingprocedure
couldbefoundto justify anaxiomaticapproachto bargaining.Althoughthis idea
hasbeenpursuednothingconvincingseemsto appear.1

It wasRubinstein(1982),equippedwith thethennew conceptof thesubgame2

perfectequilibrium (SPE)rationality developedby Selten(1975),who wasable
to exploit what seemedto many to be a naturalbargainingscenario. It is this
bargainingapproachthatis exploredin thischapter.

Considera unit (thepie) jointly ownedby two peoplewho canenjoy any part
of it asdescribedby their respective continuouslyincreasingutility function ui.
Rubinsteinconsidersanatomicbuilding blockof bargaininganditeratesit asfol-
lows. Oneplayersuggestsa demandx of thepie with therestofferedto theother
player. If the latteragrees,the bargainingterminateswith the demandaccepted.
Otherwise,thediscretebargainingclock ticks oneperiodforwardandtheplayers
swaptheir rolesandstartall over again.This continuesuntil thewhite smoke of
agreementis detected.

Thisdescriptionfits perfectlyinto thestandardparadigmof gamesin extensive
form, which, afterSelten’s innovation,couldbesolvedin a morerefinedmanner
thanprovidedby theapproachendorsedby Von-Neumann,who saw suchgames
in their foldednormal(or strategic) form. Thus,insteadof looking for Nashequi-
libria, whichareguaranteedto exist, onelooksfor asubsetof theseequilibriathat
survivesafter eliminatingall thosethat fail to remainin equilibrium for at least
onesubgame.3 The principal beautyof Rubinstein’s result is that this set is not
emptyunderaverymild requirementregardingtheeffectsof time: theutility of x
consumedat time t is givenby ui

�
x� δt

i , where0 � δi � 1.4

To introduceSPEin a very transparentapproach(goodat leastfor the peri-
odic structureof bargainingwe have in mind), we considerthe fold of thegiven
bargaininggame.This is a two-personstrategic gamedefinedasfollows. Let

Xi
�
x j ����� 0 � x � 1 � u j

�
1 � x�
	 u j

�
x j � δ j � �

1�
beplayer i’s strategy setdependingon player j ’s strategy x j . Thestrategy setof
eachplayerdependsonthestrategy chosenby theother. Thusaplayer’schoiceof
strategy is restrictedby theother’schoice,with thesimpleinterpretationthatin the
extensivebargaininggamewhatoneofferstheother(1 � x), mustnot belower in
utility thantheexpectedutility from thelatter’splannedaction.Thisinterpretation
might becharacterizedasmutualindividual rationality. But it is not sufficient to
specifyany action. For example,the strategy 0 is mutually rationalwith every
strategy of the otherplayer. It is clearthat thesesetsarenonempty, closed,and
convex. Wedefineformally theutility of astrategy combination

�
x1 � x2 � to playeri

asui
�
xi � . A Nashequilibriumof thefold gameis apoint

�
x1 � x2 ��
 X1

�
x2 ��� X2

�
x1 �

suchthatfor all x 
 Xi
�
x j � wehaveui

�
x��� ui

�
xi � .

It is clearthat theNashequilibriaof thefold gamearegivenby thesolutions
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of theset
u1
�
1 � x2 ��	 δ1u1

�
x1 �

u2
�
1 � x1 ��	 δ2u2

�
x2 � �

2�
whereat leastoneof theseinequalitiesis satisfiedasan equality. It shouldbe
intuitively clear that not all Nashequilibria of the fold gameare supportedin
the extensive gameby a subgameNashequilibrium. This distinguishedset is
characterizedasthe solutionsof Eq. 2 satisfiedasequalities.Onecanview the
choiceof strategysetsassatisfyinganecessaryconditionfor subgameperfectness.

For theimmediateexperimentalapplicationsweassumethatu
�
x��� xoru

�
x���

exp
�
x� . Onecaneasilyseethatfor thefirst case

x1 � 1 � δ2

1 � δ1δ2

�
3�

andfor thesecond

x1 �
�� � 1 if δ1 � δ2� logδ2 if δ2 � δ1� � logδ1 � 1� otherwise.

�
4�

Thevalueof x2 is thencalculatedby substitution.
We refer to thefirst typeof time utility interactionasgeometricdepreciation

and to the secondas arithmetic depreciation.5 This distinction is not mutually
exclusive. It hasmoreto do with theframingof thespace-timepreferencestruc-
ture thanwith anything else. Geometricdepreciationwith risk-neutralutilities,
however, is directlycomparablewith thearithmeticcase.

Duality

Therearesituationswherethe needarisesto sharea painful or an aversive joint
object. Examplesare the joint lossesof a failed partnershipor the division of
a sharedinvestment.In suchcases,eachof the partiesattemptsto minimizehis
or her sharein the joint aversive propertythatwe call, for simplicity, deficit. In
contrast,the thing desiredwould be termedjoint surplus. It will be efficient if
the sametheorycouldbe appliedto bothcases.The following duality principle
shows that this is indeedthe case. It servesas a dictionary for the translation
of bargainingproblemsover deficit into bargainingproblemsover surplus,and
vice-versa.

Assumethat a timed loss can be measuredby the productof an increasing
nonnegative function l anda power of γ � 1. Thusthe total lossof a sharex at
time t is l

�
x� γt .6 Then

l
�
x� γt � l

�
y� γs �

5�
if f

1
l
�
1 � x��� � 1γ � t 	 1

l
�
1 � y��� � 1γ � s �

6�
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wherex � 1 � x� andy � 1 � y� . If we set 1
l � 1 � x��� � u

�
x� � , and 1

γ � δ  1, we see
thatto solveadeficit problemamountsto solvingasurplusproblemandapplying
theappropriatetransformation.Thuswe havethefollowing duality:

Theorem(The Dictionary). Everydeficit bargainingsituationD � �
l1 � γ1 � l2 � γ2 �

hasa dual surplusproblemS � �
u1 � 1

l1 � 1 �!�#" �$� � δ1 � 1
γ1
� u2 � 1� l2 � 1 �%�#" �&� � δ2 � 1

γ2
�

andvice-versa.Moreover, x is a rationalshareto party1 in D if andonly if 1 � x
is a shareto party1 in S.

Notethattheproofhasnothingtodowith thebargainingprocedurefromwhich
the particularsolution is derived. Thus, the duality principle canbe appliedto
any bargainingsolutionwheretime affectsutility in the mannerassumedby the
theorem.

Corollary. Whenl i
�
x�'� x, party1’sshareis

1 � γ1

1 � γ1γ2 ( �
7�

Theproof is immediateby invoking thedictionarywith Eq.3.
Example. For the risk-neutral(identity) lossfunctionswith γi � 10) 9, party1’s
shareis 9 ) 19.

We consideranotherspecialcase:

Corollary. Let thelossfunctionsbe l i
�
x�
� exp

�
x� . Thenparty1’scostshareis

x1 �
�� � � 0 � if γ1  γ2� 1 � log

�
γ2 � � if γ1 � γ2�

0 � 1 � log
�
γ1 �*� if γ1 � γ2.

�
8�

Proof. This follows immediatelyfrom thedictionaryandEq.4.
Example. Consideranarithmeticdepreciationbargainingon a deficit, with bar-
gainingcostsof log

�
γ1 �+� c1 � 0 ( 2 and log

�
γ2 �,� c2 � 0 ( 1. The last corollary

shows thatPlayer1’ssharein thedeficit is 0 ( 9.
Again, althoughthe duality principle dependsonly on the separabilityof the

time andspacecomponentsof the preferencestructure,the formulasderivedby
thesecorollariesdo dependon the bargainingprocedureand on the rationality
conceptprescribed— SPE.

SHARING A PIE IN PRACTICE

Several experimentswerecarriedout to testa variety of the hypothesesimplied
by the solutionof thebargainingproblem. Someemployedarithmeticdeprecia-
tion (alsoreferredto asfixedcost),somegeometricdepreciation(alsoreferredto
asdiscountrate)andsomeeven proposedalternative rejectionprocedures.This
sectionreviews theoutcomesof theseexperiments.
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Arithmetic Depreciation

The very first experimentimplementingthe Rubinsteinprocedurewith a fixed
cost(c �-� log

�
δ � ) perperiodwasconductedby Rapoport,Weg, andFelsenthal

(1990).Thisexperimentis dividedinto two studiesthatdiffer only by thelevelsof
thefixedcostsof thebargainingperiods.In eachstepof thisexperiment,aninitial
groupof studentsis subdivided randomlyinto pairsandeachpair is engagedin
a division of a pie of 30 Israeli Shekels accordingto the Rubinsteinregime. In
orderto endeachbargainingwithin reason,bargainingis allowedto continuefor
at leasteightperiodsbut no morethan13 periods.Theexactcutoff is randomly
chosenwithin this interval but subjectswerenotprivy to thisrule. Thelogisticsof
runningconcurrentbargaininggamesandsteppingthroughtheseveralgamesthat
eachmemberof thegroupof subjectsis engagedin duringa givenexperimental
sessionaregovernedby acomputerprogramrunningunderatimesharingsystem.

In bothpartsof theexperiment,threepower relationshipsbetweentheplayers
wereconceived: S

�
c1  c2 � , W

�
c1 � c2 � , andE

�
c1 � c2 � . Theci aremembers

of � 0 ( 1 � 2 ( 5 � for thefirst studyandof � 0 ( 2 � 3 ( 0 � for thesecond.A maximalcost
within theserespectivesetsis takenfor conditionE.

Figure11.1presentsthedataasreflectedby lastperioddemandsby Player1
(first mover) in thelast iterationof eachplay.7 UnderconditionS, Player1 is ex-
pectedto demand(in thefirst period)30Shekelsin eitherof thestudiesandunder
conditionW, 2.5Shekelsin Study1 and3.0Shekelsin Study2. Thisassumesthat
the bargainingterminatesimmediately, but if not, it repeatedlystartsa new sub-
gameof typeSor typeW andbecause2.5or 3.0aresmallcomparedto 30.00we
donotexpectto find muchof adifferenceif we look at lastperioddemands.8 The
raw datais particularlyimpressiveasextremedemandsby andoffersto thestrong
playersarenot buriedin theaverages.Averages,in this case,arenot particularly
appropriatebecauseboundaryoutcomesarepredictedwhereasstatisticsbasedon
typical valuesnormally assumedeviations on either side, that is, demandsare
expectedto fall beyondtheboundary.

The secondstudy(Weg & Zwick, 1991),which followed a similar designto
the Rapoportet al.’s studiesinvestigatedthe robustnessof the rationalsolution
underan isomorphictransformationprovidedby the duality principle discussed
earlier. Specifically, it definesanapparentlydifferentarithmeticdepreciationbar-
gainingwhereabetteroutcomeis measuredby how smallit is. Thatis,abargainer
minimizeslossesinsteadof maximizesgains.Formally, thedisutility of x at time
t is measuredby x . tc wherec � 0. In a previous sectionwe have shown that
theproblemis identicalto themaximizationof shareundertheutility 1 � x � tc.
Thustheexperimentprovidesfor acomparisonbetweenplayingdualsurplusand
deficit games.Weg andZwick (1991)comparedbargainingover lossesto bar-
gainingover gainsby thesamesubjects(within subjectdesign)with piesof $15
and costsset of � 0 ( 05� 1 ( 25� . Condition E studiedby Rapoportet al. was not
investigateddueto theexpecteduninformativeoutcomesof suchacondition.Fig-
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Fig. 11.1. Lastperioddemands.

ure11.2presentstheraw datafor thesecond(andlast)iteration,wherepayoffs for
deficitbargainingarenormalizedby theduality transformation1 � x whichallows
comparisonson equalfootingwith surplusgames.

Threeconclusionscanbedrawn from theseexperiments:

1. Strongpartiesobtainin generalwhatis predictedby subgameperfectrational-
ity.

2. It is hardto tell thedifferencebetweenbargainingover lossesandbargaining
overgains.

3. WeakPlayer1s (first movers)cannotin generalimprove their lot by decree:
The gamemoveson to a subgamewherethe strongplayer usually setsthe
“price”. The outcomesareinvariantwith regardto the positionof thestrong
partyexceptthata strongsecondparty tendsto gethis or hersharelater than
expected.

What makesthe arithmeticdepreciationpreferencestructureattractive is the
clear-cutextremepredictionsit implies.Weexploresomeinterestingapplications
of thisstructureandnow turnto arelativelymorecomplex predictionderivedfrom
theRubinsteinparadigm.

Geometric Depreciation

Accordingto Eq. 3, Player1’s demandis a continuousandnonconstantfunction
of the discountingparameters.Canoneexpecthumansubjectsto attendto the
type of influencetheseparametershave on the predicted(subgameperfect)de-
mands?Equation4, which is applicableto arithmeticdevaluation,is immensely
simpleralthoughdiscontinuous.It is (two-valued)constantalmosteverywhere.
And, moreover, the domainof constancy is a union of two connectedregions.
Therefore,assumingonly rough sensitivity to parametervaluesby subjects,it
standsto reasonthat rationalbut perhapscognitively limited playerswould ad-
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Fig. 11.2. Final demandsby Player1. Seven datapoints(of playsendedprema-
turely)arenot shown.

heremore closely to subgameperfect rationality in an arithmeticdepreciating
environmentthanin a geometricone.9

Muchresearchreportson experimentswheretheidentity utility is depreciated
geometricallyover time. Weg, Rapoport,andFelsenthal(1990)attemptedto test
rationality in a purelyRubinstein,alternatingoffer bargaining.Bargainersin this
paradigmhave no otheroption but to cometo an agreementin finite time even
thoughtime is not formally limited, thoughno infinite pathsaresuperiorto any
otherpath.Thus,bargainershaveastrongincentivenot to pursuesuchpaths.

Two independentstudies,which are replicationsof eachother in every way
exceptfor thequotientvalues(discountrates),arereported.In eitherstudythepie
is 60.00Shekels. In the first studythe discountsarerelatively mild andspecify
threeconditions:

�
δ1 � δ2 � is either

�
0 ( 90� 0 ( 17� , or

�
0 ( 50� 0 ( 90� , or

�
0 ( 67� 0 ( 67� .

Thesecondstudyexperimentswith steeperrates—
�
0 ( 50� 0 ( 17� , � 0 ( 17� 0 ( 50� , or�

0 ( 17� 0 ( 17� . Table11.1shows thegeneraltrends.
Thepatternseemsto supporttheconclusionthatstrongplayers1 areonly able

to extractat besthalf pies,andweakplayers1 signaltheir intentionto compensate
for theirsteeperdevaluation.10 Notethatthesefindingsarein distinctcontradiction
to rationalitybecausethey fail to accountfor thecostof time in many ways:

1. A breakdownof monotonicity(in theright direction)with quotientvalues.For
example,if we denoteby x

�
α � β � the payoff to player1 for gameparameters�

α � β � , thenfor δ1  δ2 we musthave x
�
δ1 � δ1 � � x

�
δ2 � δ2 � . In fact, for these

casesbargainerssplit pies in half, which is approximatelycorrectonly for
extremelyhighquotients,thatis, whentime is negligible.

2. Symmetrizationof players’positions. In theory, time is valuableandthere-
fore x

�
δ1 � δ2 �87� 1 � x

�
δ2 � δ1 � , or putting it differently, in generalbargaining

is not symmetricwith respectto time. Unfortunately, this is not reflectedin
thedata.Regardlessof position,players’payoffs dependsolelyon their time
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Table 11.1
Mean First and Final Sharesto Player 1 in Studies1 and 2

Iteration δ1 � δ2 δ1 � δ2 δ1  δ2 δ1 � δ2 δ1 � δ2 δ1  δ2

Study 1

First Offers Final Offers

1 29.4 31.6 36.4 27.1 30.5 36.0
2 30.6 31.1 36.9 27.6 30.7 36.4
3 30.1 31.0 36.0 24.4 31.0 36.5

Study 2

1 29.5 33.0 42.8 22.4 31.8 40.3
2 28.6 34.3 43.3 23.2 32.5 42.1
3 19.2 36.1 46.1 23.1 34.3 43.6

devaluation.

A Preludeto Optional GameTermination

Oneof themoreinterestingapplicationsof arithmeticdepreciationbargainingis
the assessmentof the prevalenceof fairnessconsiderationsin economicsitua-
tions(Kahneman,Knetsch,& Thaler,1986).Güth,Schmittberger, andSchwarze
(1982)initiatedalongline of ultimatumstudieswhereonepersonproposesa“take
it or leaveit” offer regardingthedivisionof apie. Thus,oneplayerproposesx and
the othereitheracceptsit, in which casethe gameterminateswith the proposed
outcome,or rejectsit wherethe statusquo (normalizedto 0) is obtained. This
studyshowedthatmostproposerswouldsharethepieevenly, in apparentsupport
of fairnessconsiderations,andfurther, positiveoffersarerejectedin contradiction
to rationalbehavior. Rejectionof any partof thepie is anadmissionthatobtaining
nothing,in thisgame,is preferredto consumingapositivepartof it, which is nor-
mally untruein thecontext of individualchoice.Theproblemwith theultimatum
gameasa tool in theinvestigationof fairnessin economicsettingsis that it does
not have an appropriatecontrol game.Thus,it is not a priori clearwhetherthe
proposeris mitigatedby afearof rejectionor by aconsiderationof fairness.11 We
shall now show how the arithmeticcoststructurelendsitself to several typesof
testsof thefairnessissue.For this we needto dwell a little moreon thetheoryof
divisionproblemswith so-calledoutsideoptions.
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BASIC OUTSIDE OPTIONS

Rubinstein’s alternatingoffer paradigmis consideredasatomicor purebargain-
ing. Thereare several directionsone can take with the aim of expandingthe
atomicform. Herewe consideronesuchextension.In a latersection,we provide
a broadergeneralizationof this route.

In atomicbargaining,playersfind satisfactiononly throughanagreement.But
this is possibleonly in a fully deterministicworld. Becausebargainingproceeds
throughstepsin time, it is conceivablethat the intentionsof theplayersmaynot
befulfilled and/orsomenew opportunitiesmayarise.

We introduceanew movethatresultsin therealizationof thestatusquo.Thus
a playermay opt to quit the bargainingon receiptof any offer. Of course,the
terminationof bargainingwithout an agreementshouldleadto somepayoffs. If
bargainingis to take place,we shallimposesomerestrictionson thesepayoffs. A
naturalroughrequirementis thatthesumof thesepayoffs in pieunitsis nogreater
thanthepie. For otherwise,onepartymaynot have enoughincentive to bargain
at all.

Sutton(1986)suggestedageneralizationof this idea.Considerarandomevent
E that may follow a rejectionof an offer with a given, and commonlyknown
probability, p. Suttonsuggeststwo interpretationsfor theoccurrenceof E:

V. In thevoluntaryinterpretationtherejectingplayer(i) hastheoptionto consume
anoutsidevalueof si . In this casetheotherplayerconsumesanoutsidevalue
andthebargainingterminates.If therejectingplayerchoosesnot to consume
the outsidevalue, the bargaining clock moves one unit forward and a new
demand(normallyby therejectingplayer)is considered.12

F . In the forcedinterpretation,theoccurrenceof E signifiesthenecessityto ter-
minatethebargainingwith eachplayerconsuminghisor heroutsidevaluessi .
Theclock doesnot tick.

If E doesnot occur, the bargainingclock simply ticks a unit. We refer to a
playerasanF-playeror aV-playerdependingon theinterpretationof theeventE
thatmayfollow his or herrejectionof anoffer.

Note that thenotionof outsideoptionsis orthogonalto thebargainingproce-
dureandthat,in fact,only theRubinsteinprocedurehasbeengivenexperimental
treatmentin non-cooperativebargaining.

ForcedTermination

Considertwo F-playerscharacterizedby the probability p of being terminated
with outsidestatus-quopayoff si . How shouldthey play?Weimitatetheapproach
we have takenearlierby defininganappropriatefold game.We derive subgame
perfectnessfrom thefollowing principles:

InterperiodRationality. An offer will not beacceptedif it dictateslessutility
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thanwhat oneoffersoneself.This will be translatedinto a specificopera-
tionalization,dependingon thebargainingenvironment.Equation2 is spe-
cific to pureRubinsteinbargaining.For anFF bargainingenvironment,this
is translatedto ui

�
1 � x j �9	 �

1 � p� δiui
�
xi �:. pui

�
si � for i 7� j. The right-

handterm in this inequality is the expectedprospectof a rejectionto the
rejectingplayer. This assumes,asis currentlyall too common,thatplayers
obey expectedutility. In principle, otherutility theoriescanbe graftedas
long asthey aremadeto becommonknowledge.Thuswe setthestrategy
setfor player j,

Xj
�
xi �'��� 0 � x � 1 � ui

�
1 � x�
	 �

1 � p� δiui
�
xi �;. pui

�
si � � �

9�
and the formal utility for the strategy combination

�
x1 � x2 � to player i is

ui
�
xi � .

InterpersonRationality. Again we look for the Nashequilibria for the fold
game.

To make the fold gameplayable,the strategy setsneedto be nonemptyfor
all valuesof their argument. Oneseesby inspectionof the definitionsthat this
conditiondependson the probability p andthe outsidevaluessi . We definethe
presentvalueto playeri of a promiseto sharex oneperiodlaterto be

PVi
�
x � p�'� u � 1

i

�<�
1 � p� δiui

�
x�=. pui

�
si �>� �

10�
wherefor anincreasingfunction f , f � 1 � x�:� inf � y � f � y�!	 x � .13 Wesay“promise”
becauseits fulfillment dependson the occurrenceof a randomevent E whose
probability is p. Now we assumethatsi is suchthatPVi

�
x � p�+� 1, which makes

thestrategy setsnon-empty. This is trueautomatically, for example,whensi � 1.
As above, the Nashequilibria of the fold gameare of interest. They exist

becausetheequations
1 � x2 � PV1

�
x1 � p�

1 � x1 � PV2
�
x2 � p� �

11�
areequivalentto theequation

x1 � 1 � PV2
�
1 � PV1

�
x1 � p� � p� ( �

12�
BecausethePVi mapstheunit interval continuouslyinto itself, thisequationmust
haveasolutionby elementaryconsiderations.

Now
�
x1 � x2 � is supportedby SPEif andonly if two conditionsaresatisfied:

PV1
�
1 � x2 � p�=. PV2

�
x2 �?� 1

�
13�

and
PV2

�
1 � x1 � p�=. PV1

�
x1 ��� 1 ( �

14�



11. INFINITE HORIZON 269

For example,supposeplayer1 demandsmorethenx1. Thenit is rejectedby
player2’splan,andtheutility of apromiseof 1 � x2 oneperiodlateris u1

�
PV1

�
1 �

x2 � p�<�9� u1
�
1 � PV2

�
x2 � p�>��� u1

�
x1 � (we useboth mutualconsistency (Eq. 13)

andthefactthat
�
x1 � x2 � is asolutionof Eq.11). Henceplayer1’sdeviation is not

profitablein theextensivegame!If Player2 acceptsx � x1 thenhedoesnot gain
because:u2

�
1 � x�' u1

�
1 � x2 �'� u2

�
PV2

�
x2 �>� by Eq.11.

A sufficientconditionfor Eq.13 and14 is si � xi . This follows from

Lemma (PVi). PVi
�
x � p��� max

�
si � x� (

Theproof is asimpleobservation.

Corollary. PV1
�
1 � x2 � p�%� max� s1 � 1 � x2 � � max� s1 � PV1

�
x1 � p� � � max� s1 � x1 � �

x1 � 1 � PV2
�
x2 � p� (

Thischainof inequalitiesis justifiedby appealto Eq.11andthelemmawhich
resultsin Eq.13.
Example. Here is a casewhereEq. 13 and 14 are not satisfied. Supposethe
utilities areidentities,si � 0 ( 9, p � 0 ( 9 andδi � 0 ( 1. ThenEq.11 reducesto:

1 � x2 � 0 ( 01x1 . 0 ( 81

1 � x1 � 0 ( 01x2 . 0 ( 81(
�
15�

Thenx1 � x2 � 0 ( 188119but whenplayer1 demands,say0 ( 20 � x1, it is re-
jectedandheor sheis “promised”a little-valuedfutureamountof 1 � 0 ( 188119
but its presentvalueis muchhigher(dueto the relatively high probability of re-
ceiving immediately0.9), so a deviation is profitable. Hence

�
x1 � x2 � cannotbe

subgameperfect.This is theintuition. Pluggingin thepropervaluesin Eq.13and
14 shows thattheconditionsarenot fulfilled.

Voluntary Termination

Thesamelogic we appliedto forcedterminationcanbeappliedto voluntaryter-
minationwith PVi

�
x � p��� PVV

i

�
x��� u� 1

i

�>�
1 � p� δiui

�
x�;. pmax

�
δiui

�
x� � ui

�
si �>�>� .

If we denotethedefinitionof presentvaluefor F-playerby PVF
i we seeimmedi-

ately thatPVV
i 	 PVF

i . Therefore,the intuition thatceterisparibus, beingunder
a voluntaryregimeis advantageousto beingundera forcedregimeis justifiedby
inspectingthe equationdeterminingthe partitions. In makingthis statementwe
imply thatthelogic canbeappliedto heterogenousplayers(F andV).

NotethatlemmaPVi with its immediateconsequencestill holdsandfor future
usewe alsorecordthefollowing

Theorem(VV inequalities). Supposetheplayersarerisk averseandzeroatzero
(ui areconcaveandui

�
0�'� 0). Thenfor a VV bargainingwhere

δ2u2
�
1 � s1 �?	 u2

�
s2 � �

16�
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and
δ1u1

�
1 � s2 �?	 u1

�
s1 � �

17�
we have:

s1 � 1 � δ2
�
1 � s1 ��� x1 � 1 � s2

s2 � 1 � δ1
�
1 � s2 ��� x2 � 1 � s1 (

�
18�

Notethat theconclusionimplies that
�
x1 � x2 � is supportedby anSPEstrategy

combination.
Proof. Notethat

1 � x2 	 PV1
�
x1 � p��� u� 1

1

�<�
1 � p� max

�
δ1u

�
x1 � � u1

�
s1 �<�;. pu1

�
s1 �<��	

u� 1
1

�
u1
�
s1 �>�
� s1 (

�
19�

Henceweobtainthesecondinequalityof thesecondassertionof thetheorem.
Similarly, we obtainthecorrespondinginequalityof thefirst assertion.

It follows from what we have just proved and the monotonicityof PVi with
respectto thefirst variablethatPV2

�
x2 � p�?� PV2

�
1 � s1 � p� .

Now

PV2
�
1 � s1 � p�'� u� 1

2

�>�
1 � p� max

�
δ2u2

�
1 � s1 � � u2

�
s2 �<�=. pu2

�
s2 �>���

u� 1
2

�
δ2u2

�
1 � s1 �<��� u� 1

2

�
u2
�
δ2
�
1 � s1 �>�<��� δ2

�
1 � s1 � � �

20�
which followsbecauseof risk aversionandEq.16.

Therefore,by Eq.11

x1 � 1 � PV2
�
x2 � p�?	 1 � PV2

�
1 � s1 � p�?	 1 � δ2

�
1 � s1 � ( �

21�
Note: Theconditionson theutilities requiredby thetheoremaresatisfiedfor the
identityutilities, which make thetheoremusefulin experimentalwork.

Arithmetic Depreciationwith OutsideOptions

We returnnow to the experimentalsetting. Weg andZwick (1994)andZwick
andWeg (1996)experimentedwith exponentialutilities andsideoptions. Their
generalsetupis especiallysimple. Theprobabilityof accessto anoutsidevalue
is always1 andit is voluntaryfor eachof the players.Thusoutsideoptionsare
alwayspresentwhenan offer is consideredby a recipient. Whatmakesthepre-
dictedoutcomesespeciallysimpleis thechoiceof fundamentalutilities for money
— ui

�
x��� exp

�
x� . Thesolutionfor thefixedpointsis simple.

We useEq. 11 with theproperunderstandingthatPVi
�
x � 1��� PVV

i

�
x � 1� . We

seethatEq.11 is equivalentto

x2 � 1 � max
�
x1 � c1 � s1 � �

22�
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Fig. 11.3. Arithmeticdepreciation,c1  c2.

and
x1 � 1 � max

�
x2 � c2 � s2 � � �

23�
whereci �E� log

�
δi �F	 0. It is only in the specialcaseof pi � 1 that we can

representthe utility in logarithmic form, therebythe arithmeticdepreciationof
theidentityutility by thefixedcostci . This is in facttheterminologyusedby Weg
andZwick (1994).

Thefixed-pointequationis easilyshown to be

min
�
max

�
x � c1 . c2 � s1 . c2 � � 1 � s2 �'� x ( �

24�
To make the solutionof the bargainingproblema little moreinteresting,we

assumethats1 . s2 . max
�
c1 � c2 �� 1. Thisconditionimpliesmutualconsistency

of thesolution,asrequired.Now thepredictedpayoff to Player1 is

x1

�� � 1 � s2 if c1  c2

s1 . c2 if c1 � c2�
s1 . c2 � 1 � s2� if c1 � c2.

�
25�

Figure11.3showsthegraphicsolution.A simplewayto conceivethis resultis
givenby this rule: Everybargainerclaimshisor heroutsideoptionandbargains
over what’s left (without outsideoptions). This rule hasa significantheuristic
value. It fact, it correspondsto individual rationality, which is well known in the
theoryof gamesin characteristicfunctionform. Everysolutionconceptsuggested
for thatdomainsatisfiesthis requirement.

The main purposeof usingexponentialutilities with fixed discountrates(or
whatamountto thesamething, identity utilities with fixedcostsof depreciation)
is to presentfairnessconsiderationsin a differentlight. It is particularlysuitable
for experimentationbecauseaswe haveseen,thebargainingsceneis very simple
andmustbeunderstoodthatway, giventhe“good” behavior underthenonoutside
optionregime(Rapoportet al., 1990;Weg & Zwick, 1991).
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Althoughthestandardeconomicmethodemploystheultimatumgamethatwas
popularizedby Güth(seeGüth& Tietz,1990),Weg andZwick (1994)optedfor an
alternative. Recallthatanultimatumis a singleperiodgameandthereforeusing
thestandardtemporalaccountingwherethepresentis neverdiscounted,discounts
areirrelevantandbargainingis reducedto a singleoffer thatPlayer2 is entitled
to eitheracceptor reject. In the lattercase,thegameendswith somepredefined
statusquo. Normally the ultimatumis normalizedto have outsideoptionsequal
to zero. It is obvious that rationaloffers shouldamountto nothing(assuminga
continuouspie). What Güth et al. (1982)found is that mostoffers settleon the
midpoint of the pie. Their interpretationis thatPlayer1 normally shows a taste
for fairness.This interpretationwasgivenadditionalsupportby Kahnemanet al.
(1986) who, for that purpose,inventedthe dictator game,an ultimatum where
Player2 is relegatedto merelyan observer. But naturally, the fairnessinterpre-
tation attributedto Player1 wascontestedwith the alternative, which attributes
asymmetricfairnesscomponentto Player2’s utility. This is postulatedto beevi-
dentto Player1 who is asgreedyascanbeandmerelyoptimizespayoffs by re-
ducingtherisk thata smalloffer might berejected.Supportersof this alternative
hypothesisexplain Kahneman,Knetsch,& Thaler’s (1986)generousdictatorsas
merelydesirousof theexperimenter’sgoodwill, andthereforeimply thatdictator
experimentsarelikely to produceartifactualresults.14

Weg andZwick (1994)consideredarithmeticdepreciationa complementary
if not betterarenato test for fairness.Considerfirst the analogto the standard
dictatorgivenby a bargaininggamewithout outsideoptionsandwherec1  c2.
Thepredictedpayoff allocatesthewholepie to Player1 in thefirst period. Thus
theoutcomeis thesameaspredictedfor thedictatorgame(aswell astheultima-
tumgame),but withoutallowing for earlytermination.Player1 is theomnipotent
playerwhocan,if heor shesochooses,deviatefrom therationaldictumandoffer
symmetricallocations.Next, considertheanalogto theultimatumgame.Herewe
take thearithmeticdepreciationagainbut with theprovisionof outsideoptionsof
zero to eachof the players. Again the predictedallocationis the sameasin the
dictatoranalog,exceptthatnow Player2 hasthesameoptionasPlayer2 in theul-
timatumgame— refuseasmalloffer by optingoutto obtainevenasmallerpayoff
of zero. BecausePlayer1 in thedictatoranalogwasfoundto bea highly greedy
player, unaffectedby his or herappearanceto theexperimenters(Rapoportet al.,
1990;Weg & Zwick, 1991),any mitigationof demandsin theultimatumanalogs
is attributedto thefearthatPlayer2 will acton a threatof quitting. Thisexpected
behavior wasin facttestedby Weg andZwick (1994).Figure11.4is aconceptual
schemaof thevariousgamesandtheir interrelationships.

This experimentis concernedwith thedivision of piesof $20.00,with a cost
setof � 0 ( 1 � 2 ( 00� . Somebargaininggamesallow for optingout with zeropayoffs
andsomedo not. Although the bargainingis conceivedasunlimited in time, in
practice,a gameis terminatedif the negotiation reachesthe fourteenthperiod,
which in factoccurredonly twice in 216plays. The experimenthasa 2 � 2 � 3
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x1 � 1

control!

analog analog?

Fig. 11.4. Schematicrelationshipsamonggamesin thesearchfor fairness.

factorialstructureconsistingof gametype(with or without outsideoption),costs
pattern(c1  c2 or c1 � c2), anditeration(whetherthefirst moverholdsthis role
for thefirst, second,or third time). The last two factorsareof thewithin-subject
type,whichmeansthatduringasinglesession,subjectsplayonly oneof thegame
types.For ourpurposeshere,our maininterestlieswith theconditionc1  c2.

Figure11.5presentsthefrequency distribution of the lastoffersto thestrong
player(theonewith thesmallercost)in thefirst andthird (last)iterationby game
type (with accessto null outsideoptionsandwithout). Somesummarystatistics
for thisexperimentareshown in Table11.2.

Althoughthecost-basedweaker playerseldomexercisestheoptionto opt out
(3 times out of 108 games),the mereavailability of this option is sufficient to
deterthecost-basedstrongplayerfrom highdemands.Thus,themainhypothesis
that sharingin competitive environmentsis lessaffectedby fairnessconsidera-
tions thanby the threatof lost opportunitiesis supported,but the extremegreed
shown by Rapoportet al. (1990)andWeg andZwick (1991)failedto materialize
in this experiment.A possibleexplanationfor this discrepancy is suggestedlater.
Nonetheless,theprincipalcontribution of this setupis in providing aneconomic
testbedto thehypothesis.In particular, any behavior in a dictatorsetupis inher-
ently confounded.It is analogousto a boxingmatchwith onecontestantfighting
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with his armstieddown. 15

Geometric DepreciationWith OutsideOptions

Several studieswere conductedundera richer format than the original Rubin-
stein’sparadigmwith severalintentionsin mind. SomelikeBinmore,Shaked,and
Sutton(1989)andBinmore,Morgan,Shaked,andSutton(1991)weremotivated
perhapsto demonstratethe sensitivity of subjectsto the structureof bargaining.
Bargainingoutcomesin thesestudiesdependon the precisespecificationof the
availablemoves.Thus,Nash’s (1950)bargainingsolution,which is derivedfrom
axioms,wouldnotbeapplicablepredictorfor thebargainingproceduresemployed
in thesestudies.

On the other hand, Zwick, Rapoport,& Howard’s (1992) experimentwas
guidedby the formal similarity betweendiscountingandthe probability of con-
tinuationof the bargaining. And finally, Weg, Zwick, andRapoport(1996)and
KahnandMurnighan(1993)exploredtheapplicabilityof rationalbargainingwith
outsideoptionsundersomewhatlessfocal predictions.In fact,their games,espe-
cially KahnandMurnighan’s,mightbedescribedasgamesin areasonablygeneral
position. Nonetheless,aswe shall see,they all carrya significantheuristicasto
therelativepowerof theplayers,andthusprovidecluesto reasonablebehavior.
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Table 11.2
Upper Quartiles of First and Final Offers to the StrongPlayer (Proportions)

Iteration CostsPattern GameType First Period Final Period

1 c1  c2 No Quit 0.80 0.70
Quit 0.70 0.62

c1 � c2 No Quit 0.60 0.70
Quit 0.60 0.61

2 c1  c2 No Quit 0.80 0.75
Quit 0.70 0.67

c1 � c2 No Quit 0.70 0.70
Quit 0.60 0.65

3 c1  c2 No Quit 0.90 0.90
Quit 0.70 0.70

c1 � c2 No Quit 0.75 0.80
Quit 0.60 0.70

Note.pie20,ci 
I� 0 ( 1 � 2 ( 0 �
Deal Me Out (DMO). Binmoreet al. (1989)setout to show that the conven-
tional wisdomof evenly sharingthe leftover afteraccountingfor outsideoptions
(obtainedif bargainingfails to reachan agreement)is not alwaysa reliablepre-
dictorof behavior. For this they exploit theVV bargainingprocedurewith s1 � 0,
s2 �-� 0 � 2/7 � 4/7 � with identitiesasutilities. Note that the conditionsfor theorem
VV inequalitiesare satisfiedin this caseand thereforesolutionsfor Eq. 11 are
subgameperfect.They hold regardlessof probabilitiesanddiscountingquotients!

Conventionalwisdomwould leadus to predict that player1’s sharewill be
1J s1 � s2

2 . This is reasonable,perhaps,if onedoesnot specifythenegotiationpro-
cedure.But applyingEq.11we seethattheNashequationis reducedto

x2 � 1 � max
�
δ1x1 � s1 � �

26�
and

x1 � 1 � max
�
δ2x2 � s2 � ( �

27�
Hence,by substitutionswe needto solve thefixedpointsfor

1 � max
�
δ2
�
1 � max

�
δ1x � s1 �>� � s2 � ( �

28�
Simplificationshows thatweneedto solve

min
�
max

�
1 � δ2 . δ2δ1x � 1 � δ2

�
1 � s1 �>� � 1 � s2 ��� x ( �

29�
We assumethatδi

�
1 � sj ��	 si . Fromthis weconcludethatbargainingwould

continueasusualif andonly if
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Fig. 11.6. Extremecaseof VV solution.

1 � δ2
�
1 � s1 �?� 1 � δ2

1 � δ1δ2
� 1 � s2 (SeeFig. 11.6)( �

30�
Consequently, player2 doesnotbargainif bargainingresultsin anoffer of less

thens2 andplayer1 demands1 � δ2
�
1 � s1 � if bargainingresultsin asmallerpay-

off. Bargainingheremeansthatplayersactasif outsideoptionsarenot available
(or they arezero). Otherwise,outsideoptionsare too small to make an effect.
Note thatwe have met this situationin a differentguise:arithmeticdepreciation
with outsideoptions.

By choosinga commondiscountquotientof 0.9 and p � 1, Binmore et al.
(1989)madetheexpectedbargainingoutcome(withoutoutsideoptions)be0 ( 526 �

1
1J 0 K 9 L 0 ( 5. They provide experimentalevidencethat for thetwo smallervalues
of s2, thereis a noticeableconcentrationof offers at aboutthis point, whereas
whens2 is largerthanhalf, theconcentrationis shiftedto about3/7 (seeFig. 11.7).
This is exactly what is expectedwhenthebargainingprocedure,which proceeds
in a very well-specifiedmanner, is taken into consideration.Note that the con-
ventionalNashsolutionis predictedto resultin significantincreasesin payoff to
Player2 (for the nonnull outsideoptions),which is not the empiricalcase. We
comebackto this explanationlater.

ForcedTermination. In anattemptto partiallyreplicateWeg etal. (1990)with-
out the possibledrawback of finite implementationof an infinite game,Zwick
etal. (1992)substitutedprobabilitiesof termination(or ratherof continuation)for
discountquotients.TheirdesigncanbeviewedasanFF bargainingwith no time
devaluationbut with probability p � 0 ands1 � s2 � 0. Thus, the problemof
terminationis built into thedesign.UsingEq.11 we seethat

1 � xi � �
1 � p� x j ( �

31�
By settingδ � 1 � p weseethatin thebargainingproblemwith forcedtermination
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Fig. 11.7. First perioddemandby player1. A N marksrationaldemand.

theprobabilityof continuationcanformally beseenasthediscountquotient,and
thereforerationalbehavior is predictedby thesameformulasasgivenby thecor-
respondingdiscountversion(Eq.3). Zwick etal. (1992)experimentedwith these
valuesof p: 5) 6, 1) 3, and1) 10 and$30pies.Their resultsarepresentedin Fig. 11.8
andcanbesimplysummarizedby adictum:equalsplit (plusacorrectionfavoring
the first mover). They follow a similar patternfound in Weg et al. (1990). Note
that for high valuesof p we have an approximateultimatum,and in this light,
fairnessconsiderationsmight be in force. We discusspossibleinterpretationsof
this deviation later.

Split the Differ ence(STD) vs. DMO — Procedural Implementation. Bin-
moreet al. (1991)canbe viewed asan extensionof both Binmoreet al. (1989)
andZwick et al. (1992). First recall that DMO canbe statedas“allocateyour
opponenta sideoption unlesshe or shecando betterby bargaining.” Binmore
etal. (1989)showedthatthebargainingpartcanbegivenaprecisemeaning,asin
Rubinsteinbargainingwith having alwaysaccessibleoutsideoptionsthatarenot
taken.But theoutsideoptionideais moreversatile.

Note that with the Rubinstein’s bargaining paradigm,playerscan be made
symmetriconly at the limit point, when time is irrelevant. (Of course,at that
point therationaloutcomeof theequalsplit fails to beunique.)Now, thenext step
is to askwhetheronecanobtainby bargaining(in the limit) anequalsplit, after
statusquovalues(s1 ands2) arepaid; that is, Playeri is paid

1J si � sj
2 . We recall

thatformally wecantakediscountsto beinterpretedasprobabilityof continuation
with si � 0. Therefore,whenpi O 0 theplayerssharethepieequally. Zwick etal.
(1992)experimentedwith this framework exceptthattheir probabilitiesarenever
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Fig. 11.8. First perioddemandduringlast.A N marksrationalpartition.

closeenoughto zero. This intuition leadsto the predictionthat,quite generally,
rationalpayoffs for a nonzerooutsideoptiongameunderanFF regimearesplit
thedifference,whenp is smallenough.This is shown moreformally in thenext
two paragraphs.

Assumethats1 . s2  1, δi � 1,andutilities areidentities.Accordingto Eq.11

x2 � 1 � �>�
1 � p� x1 . ps1 � �

32�
and

x1 � 1 � �<�
1 � p� x2 . ps2 � ( �

33�
Therefore

x1 � p
�
1 � s2 �=. �

1 � p� ps1

1 � �
1 � p� � 1 � p� ( �

34�
Multiplying theaboveby 1 � � 1P p�� 1P p� for p 7� 0 we see

x1 � 1 . s1
�
1 � p�:� s2

2 � p ( �
35�

Taking the limit p O 0 we obtainSTD payoffs: eachplayergetsan outside
option plushalf the remaininginterval. Thus,STD asconventionalwisdomcan
be approximatedby proceduralbargaining. Note thatxi 	 si for a small enough
p. Thusaccordingto thecorollaryto lemmaPVi , thesolutionto Eq.11 is in fact
supportedby SPE.
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Table 11.3
The Designof Binmoreet. al (1991)Study

High — s2 � 0 ( 64 Low — s2 � 0 ( 36
δ p δ p

VV 0 ( 9 1 VV 0 ( 9 1
FF 1 0 ( 1 FF 1 0 ( 1

Doesit work in practice?An affirmativeansweris theessentialclaim of Bin-
more,Morgan,Shaked,& Sutton’s (1991)research.They arrangefor theplay of
four typesof games,all sharinga commonimpatiencecoefficient (discountquo-
tients interpretedasrisk valuesor vice versa),which areclassifiedasshown in
Table11.3(outsidevaluesarenormalizedto unit pies).

Theoutsideoption to Player1, s1, is negligible andsetto 0.04for all games.
Piesare£5 sterlingapiece. As commonwith equalparametergames,piesand
outsideoptionsshrinkover timewhenever impatienceis a discountquotient.The
main findingscanbe detectedin Fig. 11.9. Referringto Player2’s high outside
optioncondition,Binmoreet al. (1991)wrote:

It is not surprisingthat50 : 50 doesnot do well whenplayer2 canget64%
withouttheconsentof hispartner, but it is instructivethatS-T-D predictsvery
much betterthanD-M-O in forcedbreakdown games,while D-M-O predicts
betterthanS-T-D in optionalbreakdown games.(p. 304;italicsadded)

Unfortunately, this beautiful result is not replicatedso well whenPlayer2’s
outsideoptionis low.16 NotealsothatSTD,whenoutsideoptionsarezero,is also
equalsplit. Zwick et al. (1992) showed that equalsplits are typical regardless
of theprobabilityof accessto theoutsideoption.17 Thus,thefinding of splitting
differencesin the limiting caseof FF gamesmight reflecta generaltendency to
ignoretheeffectsof time. ThefactthatDMO is notseenin FF gamesis obviously
dueto theverymeaningof voluntaryexit (which is notavailable),andthefactthat
theforcedprobabilityof exiting is behaviorally irrelevant! But theoretically, STD
dependson low probabilitiesandBinmore,Morgan,Shaked,& Sutton’s (1991)
satisfactionover theirsubjects’goodbehavior is perhapsnotcompletelyjustified.

OutsideOptions — Middle RangeCases. Two otherstudiesfollowedthepath
pioneeredby Binmoreandhisassociatesin thestudiesjust reported.

The researchby Weg et al. (1996) is a direct descendantof Binmore et al.
(1991). It comparesplayingVV gamesto playingFF gameswhereprobabilities
of accessto outsideoptionsare not boundaryvalues— p 
Q� 0 ( 2 � 0 ( 8 � . These
eventsarerealizedby thespinof anactualwheelof fortuneshown to thebargain-
ers.It allows,therefore,thetestingof theprevalenceof STDwherethenormative
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Fig. 11.9. Finaldemandsfor Player1. A N marksrationaldemand.

point of view forbids it. Subjectspaticipatedin both typesof gamesin the the
samesession.The paradigmis a shrinkingpie whereall piesstartwith a rela-
tively large sumof $30.00. Becausethe shrinking rate is uniformly set to 0.9,
gamesmightextendslightly but meaningfullylongerin timewithoutdealingwith
negligible pies.Only Player1 hasa nonzerooutsideoption— oneof � 3 � 12� 24�
in dollars.18 Probablitiesandoutsideoptionvaluesdo not vary within anexperi-
mentalsession.

Figure11.10presentsthefrequency distribution of first perioddemandby the
mainparametersof theexperiment.Thefactthat,for themoreinterestingparam-
eters,averagesplitsdo not supporttheoreticalpredictionsis perhapsunderstand-
able. The bestonecansayaboutthe resultsis that first perioddemandsare in
generalmonotonicwith the rationaldemands.Also, generalqualitative predic-
tions that players2 in FF gamesareworseoff thantheir counterpartsin VV is
borneout. But again,rationaloutcomesarealmostneverattainedandactualmean
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Fig. 11.11.A treediagramof bargainingterminationrules.

behavior is veryconservative. Theeffectsof time(or probabilitiesof termination)
areunderestimated.

Mixed Options. The researchby Kahn and Murnighan(1993) presentedan
experimentwith mixed featuresof voluntaryandforced terminationin a single
game. In order to provide an appropriateframework for this experiment,we
presentageneralframework thatencompassesall bargainingprocedureswe have
discussedsofarunderasingleparadigm.In fact,therearetwo such(inconsistent)
extensionsthathappento coincidein thespecialcaseof KahnandMurnighan.

Extension A. Whena player receivesan offer it may be acceptedor rejected.
In the former case,the gameendsasusual. Otherwise,the gamecontinuesas
follows. Therearetwo stochasticallyindependenteventsP andQ. If P occurs,
thegameterminatesimmediatelywith eachplayerconsuminganoutsideoption.
Otherwise,if Q occursthen the player may announcethe immediatetermina-
tion of bargainingwith eachof the playersconsumingan outsideoption or opt
to counterproposein the next bargainingperiod. If Q fails to occur, the player
counterproposesin thenext period.

Therearetwo extremecasesthatwehavealreadytreated.AssumethatP is the
impossibleevent. Then,obviously, we have a voluntaryoptiondependingon the
occurrenceof Q. If Q is the impossibleevent thenwe have a forcedtermination
dependingon theoccurrenceof Q. Figure11.11depictsthesituationwith labels
attachedto theterminalnodesdescribingtheutility of reachingthesenodes.

Considernow thestandardRubinsteinbargainingtree.To eachrejectionbranch
oneattachesthetreediagramto obtainthebargainingtreefor ageneralbargaining
gamewith outsideoptions.

In this mannerwe have unified the existing bargainingschemesinto a cube
whosedimensionsareF, V, andD. A point in the cubeanda point in the unit
interval19 is a choiceof parametersp, q, δ, ands, respectively, which with the
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additionof a utility u definesa bargainingplayer. A choiceof two suchquintets,
Pi � �

δi � pi � qi � si � ui � , andanorderbetweenthemdefinesa bargaininggame(See
Fig. 11.12),denotedby thesignature

�
P1 � P2 � . This unificationfacilitatesa com-

parisonof playsof bargaininggamescharacterized,perhaps,by slightly different
parameters.This is so becausethe gamesgeneratedin this way map continu-
ously into thepredictedpayoffs to Player1.20 In this mannerwe seethat theFF
gamesandVV gamesarenot separateentities,ascouldhave beenassumed,but
rathermembersof a larger family of hybrid gamescharacterizedby eventsthat
arepeculiarto eachof thebargainers.

To solve this typeof gamewe needour standardtechniquein which we have
to defineonly theappropriatepresentvaluefunctions.But thesearesimpleexten-
sionsto thevoluntaryandforcedterminationparadigms:

PVP̂Q
i

�
x � pi � qi �'� PVi

�
x � pi � qi �
� u � 1

i

�>�
1 � pi � � 1 � qi � x.�

1 � pi � qi max
�
ui
�
x� � u � si �>�=. pui

�
si �>� �

36�
thatarecontinuouswhenui are. Again we fold theextensive gameandfocuson
its Nashequilibria thatsatisfyEq.11. Now theconditionsin Eq.13 and14 look
asfollows:

PV1
�
1 � x2 � p2 � q2 �=. PV2

�
x2 � p2 � q2 ��� 1

�
37�

and
PV2

�
1 � x1 � p1 � q1 �=. PV1

�
x1 � p1 � q1 ��� 1

�
38�

for any solution
�
x1 � x2 � of Eq. 11. And we notethe indices. Playeri would not

demandmore thanxi , the solution of Eq. 11, if andonly if Eq. 37 andEq. 38
are satisfiedand the expectationfrom a “promise” of

�
1 � x j � dependson j ’s

probabilities!LemmaPV aswell asits corollarystill holdsin this extendedcase.
Thus,whenxi 	 si for a solution

�
x1 � x2 � of Eq. 11, the lattermustbe supported

by SPE.
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Extension B. Thereis no reasonto arrangethe eventsP andQ in this order.
Their reversalresultsin a gamblewith, in general,differentexpectedutility. One
casein which thetwo schemescoincideis thecasewheretheeventQ is thesure
event.

For then

PV
�
x � p � 1��� u� 1 � max

�>�
1 � p� δu

�
x�=. piu

�
s� � u � s�>�<� �

39�
underscheme-A,and

PV
�
x � p � q�'� u � 1 � q � max

�
u
�
s� � � 1 � p� δu

�
x�<�=. pu

�
s�>�_.�

1 � q� �<� 1 � p� δu
�
x�=. pu

�
s�>�<� �

40�
underscheme-B.A substitutionfor q � 1 in thelattergivestheresult.

Very interestingcasesariseby thechoiceof extremevaluesfor someparame-
tersandamongthoseis thecasewhereqi � 1 and0  pi  1, whichwasexplored
by Kahn andMurnighan(1993). The only asymmetryallowed amongthe play-
ersis reflectedby theoutsideoptionsratio theexperimenterschoose— ∞, which
meansthatonly oneplayerhasa nonzerooutsideoption. In a sense,their exper-
iment is oneof several naturalcontinuationsof the otherexperimentsreported.
Thenovelty lies in themixing of voluntaryoutsideoptionsweightedby a certain
risk (highor low) of forcedtermination.

Kahn and Murnighan(1993) optedfor gamesof scheme-Bsemanticswith
commonterminationprobability p, commonvoluntaryexit probabilityq � 1, and
a commondiscountquotientδ. Oneplayerhaszerooutsideoptionandtheother
mayopt for 0.1 or 0.9 of thepie in any givengame.Theseoptionsareavailable
(in two differentgames)in bothordersto Player1 and2, respectively. Thegames
areimplementedby theshrinkingpie methodandinformationexchangebetween
playersis by humanmessengers.Randomeventsarerealizedby coin tossingor
chip drawing. All gamepiesare$10at thestartof thenegotiation.In additionto
theseparameters,othergameparametersareall elementsfrom theproductof these
sets:F �`� 0 ( 05� 0 ( 5 � for probabilitiesof forcedterminations,andD �`� 1 � 0 ( 8 � for
discountquotients.

Two last remarksregardingthe designarein order. First, whenPlayer1 has
a nonzerooutsideoption,heor shemay leave thebargainingbeforeevengiving
anoffer. Second,becausethezerooutsideoptionis not normatively effective,the
experimentershaveoptedto expressit by not allowing any voluntaryoptingto its
owner. Thismakestheframingof bargainingabit morenatural.21 In thelanguage
of this research,theprobabilityq couldin factbeany value.

Table 11.422 presentsthe subgameperfectpredictionand meanfirst period
offers for thevariouscombinationcellsof theexperiment.Admittedly, the table
is complex. But a glanceat Fig. 11.13revealsalmostall the readermay need
to know. It plots the meanfirst-perioddemandon the predictedSPEdemand.
Note that subgameperfectnessis rare,andthat subjectsoverdemandwhenSPE



11. INFINITE HORIZON 285

Table 11.4
Mean First Period Demand(Slanted)and SPE(Upright)

q � 0 q � 1

p δ s Rich Poor Rich Poor

0.05 1 0.1 0 ( 6500 0.6500 0.5600 0.6200
0 ( 5615 0.4615 0.5615 0.4615

0.9 0 ( 8500 0.6200 0.9200 0.2500
0 ( 9513 0.0513 0.9513 0.0513

0.8 0.1 0 ( 5700 0.5500 0.5700 0.6300
0 ( 5772 0.5563 0.5772 0.5563

0.9 0 ( 5700 0.5100 0.8400 0.2500
0 ( 6491 0.4616 0.9240 0.1000

0.5 1 0.1 0 ( 5300 0.6300 0.5600 0.6400
0 ( 7000 0.6000 0.7000 0.6000

0.9 0 ( 8100 0.4800 0.9300 0.3000
0 ( 9667 0.0667 0.9667 0.0667

0.8 0.1 0 ( 5900 0.5900 0.6200 0.6100
0 ( 7381 0.6548 0.7381 0.6548

0.9 0 ( 8500 0.4900 0.9100 0.2900
0 ( 9286 0.1786 0.9600 0.1000

Note. SPE’s are significant to at leastthreedigits (the minimum necessaryto
distinguishbetweenthecells)andobservedmeansareroundedto two digits. The
rich playeris theonewith s � 0. Columnsclassifyfirst movers.

indicatessmallvalues,underdemandonhighSPEvalues,andareinsensitivein the
middlerange.23 It is alsomisleadingto quotethePearsoncorrelationcoefficientof
0.86here.With therangeof predictedvaluesasit is, very approximatebehavior
is sufficient to inducethis artifact.

Abstract Vs. Potential Outside Options. “To acceptor not to accept”is the
fundamentalquestionfor oneof thepartiesat any givenperiodand,of course,by
implication, “what an is acceptabledemand”to the other. Naturally, it depends
on theavailablealternatives.But whatarethey? In Rubinstein’s formulation,the
singleoptionis to initialize thebargainingat thenext period.Theoutsideoptions
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addcertainotheralternativesto thelist. Thesealternativesshouldbelookedat as
encapsulationsof certainsituationsthatareexpectedto netapresentutility.

We have seensomemoreor lessreasonablebargainingbehavior whensuch
outsideoptionsarepresent(Binmoreetal.,1989,1991;Kahn& Murnighan,1993;
Weg et al., 1996). Zwick, Rapoport,andWeg (1996)testedthehypothesisorigi-
nally madein Weg etal. (1996)that“correct” behavior doesnotnecessarilyreflect
the centrality of SPErationality in players’ considerations,but is ratherdue to
marginalcuesprovidedin thesestudies,which in turn narrow theacceptableout-
comessignificantly. For example,considerKahn & Murnighan’s (1993)games
whereoneplayer’soutsideoptionnets90%of thepie. Any demand,undermany
experimentalconditions,cannotbetoo far from therationaldemand.

For anotherexample,considerthebargainingproblemwith signature
�
P1 � P2 �
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whereP1 � �
1 � 0 ( 1 � 0 � 0 ( 64� 1� andP2 � �

1 � 0 ( 1 � 0 � 0 � 1� investigatedby Binmore
et al. (1991). This is anFF gamewith 0.64outsideoptionto Player2 anda rel-
atively smallprobabilityof thegameterminatingafterany givenrejection.Thus,
thecostof rejectionto thereceiving party is rathersmall. Therefore,theplayers
aremadealmostsymmetricwith respectto theremainingpieafterPlayer2 is im-
mediatelypaidtheoutsideoption.Therefore,STD is expected.Of course,for the
normativetheoryto resultin auniqueprediction,someuncertaintywith respectto
continuationis necessaryandthishappensto coincidewith theideathatin caseof
insufficient reason,onetendsto arguefor theequalizingof treatments.However,
whenonestaysaway from the limit cases,eitherbecausethe discountquotients
aresteepor becausethe probability of terminationis high, bargainingis greatly
affectedby time.

Weknow fromZwick etal. (1992),Wegetal. (1990),andKahnandMurnighan
(1993) that peopleare highly conservative and lack an appreciationfor these
effects. Weg et al. (1996) conjecturedthat when outsideoptionsare given in
their unencapsulatedform, for example,asoutsidebargainingoptions,their ef-
fectswould bewashedaway. To testthis hypothesis,Zwick et al. (1996)consid-
ereda gameΛ definedrecursively asΛ � �

P1 � P2 � whereP1 � �
δ � 0 � 1 � Λ � 1� and

P2 � �
δ � 0 � 1 � 0 � 1� .24 Thatis, althoughPlayer2 hasavoluntaryoutsideoptionval-

uedat0, Player1 is entitledto optout to playabargaininggameof thesametype
with anotherplayer. Thesemanticsgivento this gameareasfollows. Thereare
threeplayers,onesellerandtwo buyers.Thesellersellsa productvaluedby the
sellerat$0andto eachof thebuyersat$10.Thesellingpriceandpricesaving are
discountedby δ for everyparticipant.Thebargainingstartswith theselleroffering
apriceto abuyerof choice.Thebuyermayacceptandthebargainingterminates,
opt out andreceive nothingwhile the sellerstartsthe samegamewith the other
buyer(thebargainingclockdoestick), or rejecttheoffer in orderto makeacoun-
teroffer to the seller in the next period. The sellerthencanacceptimmediately,
opt to restartthebargainingwith theotherbuyerat thenext periodby makinghim
or herapriceoffer, or rejectandmakeacounteroffer to thesamebuyerin thenext
period.

What shouldreasonablebargainersdo? Of course,the outsideoptionsare
irrelevant! For the buyersan outsideoption is certainlya nongainingadvantage
andthereforemightaswell beignored.And thesellermustbeindifferentbetween
either of the buyersand thereforeexpectsto obtain the sameas when playing
againsta single buyer. Therefore,reasonablepeopleare not impressedby the
enrichedsituation.Thepriceis setby thelogic of a2-personRubinsteinparadigm
— 1

1J δ to thesellerandtherestto oneof thebuyers.25

But thedatatell a different,nonethelessfamiliar story (recall Weg & Zwick,
1994). We do not cover the full designof Zwick et al. (1996)here. They com-
paredstandardRubinstein’s bargainingto bargainingunderthe bargainingrule
definedby Λ with two between-subjectdiscountquotients: 1/6 and 2/3. The ob-
servedfirst periodpriceswhenthesellerhastheoption to switchbuyersaresig-
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nificantlyhigherthanwhenheor shedoesnot,contraryto normativeexpectations
(Fig. 11.14). Further, demandsin the 1-buyer gamearenot predictedby ratio-
nal behavior (note the distinctly modestdemandsfor δ � 1/6). This aspectis a
replicationof Weg, Rapoport,& Felsenthal’s (1990)results.

DISCUSSION

Ourconclusionsarerathersimple,althoughyetverytentative: Peoplearereason-
ablewithin their cognitive limitationsandmoralconstraints.This doesnot mean
thatthey behaverationallyaccordingto pointspecifications.No oneexpectsthem
to. Rather, peoplerespondto changingbargainingconditions,in general,in the
right directions.This is clear, for example,by recallingthat:
i. Voluntarily terminatedPlayer2 is in generalmore powerful thana forcibly

terminatedPlayer2 with the sametime and utility preferences(Weg et al.,
1996).

ii. Underwell-chosenparameters,DMO is observedundervoluntarytermination
andSTD underforcedtermination(Binmoreet al., 1989,1991). We alsoob-
serve the limitation of thoserules (Kahn & Murnighan,1993). The mental
accountingfor this is thesameasfor thepreviousitem.

iii. Arithmetic depreciationis, sometimes,understoodand actedon very accu-
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rately(Rapoportet al., 1990;Weg & Zwick, 1991).
But theserulesareeasilyfoiled by well-chosenredherrings.Thus,ultimatum-

like gamesituationsattenuatedemands(Weg & Zwick, 1994)andimplementing
outsideoptionsasactualbargainingbolstersthem(Zwick et al., 1996). In both
cases,someseeminglystrategic optionstake centerstagein humanbargaining
behavior.

And finally, thereis a cuewhoseeffectscanincreaseor diminishstrategic ac-
curacy dependingonwell-specifiedcircumstancesasfollows. Nothing,of course,
changesin thepreferencestructureof aRubinsteinbargaininggamewhentime is
takeninto accountfrom theveryfirst period.26 Thisrulewasadoptedby Rapoport
et al. (1990)andWeg andZwick (1991),but thecustomaryrule wasfollowedby
Weg andZwick (1994)in anarithmeticdepreciationbargaininggame.More ex-
tremedemandswerefoundwith the immediatedepreciationrule. It appearsthat
the advantageof the strongplayer(particularlywhenmoving first) is moreeas-
ily seenwhenthe effectsof delaysin cominginto an agreementareimmediate.
On the other hand,Weg et al. (1990) showed that this immediatedepreciation
hasquite a differenteffect when implementedgeometrically. Subjectsseemto
solve theequationx1δ1 � �

1 � x1 � δ2 andthusappropriatethepie in proportionto
their counterpart’sdiscountquotient.This impliesthatwhendiscountsareequal,
equalsplit prevails regardlessof time effects. We concludefurther that the idyl-
lic prescriptiongivenby the DMO rule is behaviorally borneout only whenthe
discountquotientsarehigh (when rationalandbehavioral focal predictionsare
approximatelythesame),andcanbetotally fallaciousotherwise.We just have to
considerequalbut steeptimeeffects.In thiscase,whenPlayer2’soutsideoptions
arehigh but lessthanhalf, he or shemay still obtainhalf the pie unjustifiably.
This is becausetheRubinsteinbargainingpartition,which predictsa low shareto
player2, is invariablymissed.The neglect of strategic advantageon the part of
subjectsalsocanbeseenwhenit is derivedfrom risk (Kahn& Murnighan,1993;
Zwick et al., 1992). But in thesecases,the argumentis slightly weaker dueto
unaccounted(by experimenters)effectsof risk nonneutrality.

Whatstorycanwewhip up(for thedatais ratherscarce)from thesesuccesses
andfailuresof rationality? Bargainingis a groupproblem-solvingactivity with
well-specifiedrulesof communicationandmessagecontent.And, like any other
problemsolving,it relieson meaningfulandreliableclues.Out of thecluespeo-
ple createthe story andeven set the goals(suchaswealth,wealthmitigatedby
fairness)that they want to achieve. Of course,bargainersarenot clonesof each
other, andthereforethescenariosthey build independentlyof eachotherarenot
necessarilycompatible,althoughthey oftenare.

Bargaining Time

Theessenceof thetheoreticalsuccessof thenoncooperativeapproachto bargain-
ing restsnotonutility, linearor not,but onthediminishingusefulnessof any gain
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over time.27 This is clearintuitively, andcanbeseenby two unknownswhenthe
discountquotientsare1,andthereforeprovidesnocluefor adequateaction.When
time of agreementmakesa difference,playersneedto realizewhat an adequate
proposalis.

In thecaseof afinite horizon,it is verytemptingto try to reachit. This leadsto
thefollowingcalculation,whichis shown only for thesimplestcase:thediscounts
are the sameandthe utilities are identities. The properdemandfor a gameof
order0 (which endsaftera singledemand)is a0 � 1, andtheproperdemandfor
a gameof ordern is an � 1 � δan � 1. Theproblemboils down to the solutionof
this recursive definition. Reachingfor the horizonmeansbackward induction.28

Everyoneknowswhata0 is, unlessperhapsfairnessis at issue.But, very quickly,
therecursive stepgoesout of behavioral tune(Neelin,Sonnenschein,& Spiegel,
1988;Ochs& Roth, 1989). In fact, this approach,which may seemattractive,
is very cumbersomeandseemscognitively intractablefor subjects.Learningis
expectedto be difficult (in fact, a never-endingproblem)becauseof its linear
dependenceongameorder.

The infinite horizon casehastwo immediatebenefits. First, becausethere
is no definiteend to the bargaining, the fairnessissuederived from last mover
advantage,as is known from ultimatum plays, vanishes. This can be seenby
imitating theproceduretakenin Endnote28. Assumingthat0 � a0 � b � 1, the
payoff to player1 for a gameof ordern is ∑0 c i d n � 1

� � δ � i . b
� � δ � n. Taking the

limit asn O ∞ shows that fairnessconsiderationsdueto endgameeffect do not
appearto beanissue.

Second,the infinite horizoninvitesa differentapproach,29 which oftenworks
but caneasilybemadeto fail. If thepresentis notdiscounted,thereis astrongin-
centive to ignoredifferentialeffectsof bargainingdelays.If no delaysarewanted
andtheinfinite regressis unpalatable,whatseemsmorelikely thananequalshare?
This is the commoncase,exceptfor a small commissiontakenby the bargainer
who is theproposer. It mustbe notedthat this is the behavior of näıve subjects,
who, aftera few practiceplays,aremadeto play a few gamesfor real. We have
no knowledgeatall of whattheeffectof saturatedbehavior is.

Whatif thepie is depreciatedimmediatelyandperhapsevenatdifferentrates?
Again,subjectsareguidedby manageabletools. If theframeis discountquotients,
thenequalnetshareseemsappealing.But eventhis solutionmay tax communi-
cation channels. It relies on both playersrealizing the reasonfor suchan odd
offer, especiallywhena strongplayer is to receive it.30 Failure to coordinatein
this manneris thereasonfor theprevalenceof thefocal equalsplit.

Thearithmeticframehasadifferenteffectin thiscase.Recallthattherescaling
of the exponentialutility structurealsoprovidesfor a differentandmuchmore
meaningfulconsequenceof delay in that utility may be reflectedin actualloss,
penetratingoutthepielimits. For thisreason,perhaps,many subjectstendto settle
on extremedemandsveryquickly, but only whenlosstakesits toll immediately.
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OutsideOptions

The introductionof outsideoptionshasresultedin someof thebestsupportthat
subgameperfectnesshasreceived in the areaof bargainingundergeometricde-
preciation.This might seemsurprisinggiven thecounterrationalbehavior under
purebargaining.Nonetheless,we giveour interpretation— aninterpretationthat
underscoresthe needto understandthe precisemechanismsgoverningpure bar-
gaining.

The relative successin playing outsideoption gameslies in the clearunder-
standingof theimmediateimpactof theaccessto thoseoptions.

It is cognitively trivial to realize(becauseit lies at the very coreof what an
outsideoption is andis thusunderstoodat the instructionallevel) that the larger
theoutsideoptiononehasaccessto, thelargerthepieceof thepie it is reasonable
to expectunderany givenconditions.In asense,theintroductionof animmediate
outsideoptionbringsthegamecloseto a singleperiodgame.

Whenaplayeris in a forcedterminationstate(F), thehighertheprobabilityof
terminationthecloserthepayoff to theoutsideoption. This maynot bethecase
if theoutsideoptionis low enoughto raisefairnessrestraints.

Whena playerhasthe option to terminatethe gamevoluntarily, the outside
optionprovidesa certainprotectionagainsttheotherwiseinferior bargainingpo-
sition. Obviously, thelargertheprobabilityof access,thebetterthisprotection.

Wethink thatthis typeof simplededuction,whichfollowsdirectlyfrom thein-
structions,drivestheresultsobtainedin bargainingexperimentswith sideoptions.
This will betrueto a largedegreeregardlessof theprecisebargainingprocedure.
But thereis moreto thebargainingthatcanbederivedonly from thespecificna-
tureof thediscountedalternatingprocedure.For example,considerthenatureof
theprotectionprovidedby thevoluntaryposition. In orderfor this to becompat-
ible with rationalbehavior, it is requiredthat theplayersarebargainingrational.
For example,underpurebargainingwith discounts

�
δ1 � δ2 �?� �

0 ( 7 � 0 ( 9� , Player2
is offeredabout73% of the pie throughbargaining. If thevoluntaryoutsideop-
tion is 20%,heor sherejectsanythingsmallerthanthisvalue(73%)becauseof the
bargainingadvantage.However, if theequalshareruleprevails,thenevena50–50
split is reasonableandevenattractive. In fact, this behavior seemspretty likely,
albeitirrational.Considernow thesameparametersexceptthatthegameis made
into a singleperiodgamewith Player2 having anoutsideoptionof 50%. In this
case,thesubgameperfectdemandis 50%,whichdealsPlayer2 out. Theseexam-
plesserve to show thatestimatingtheusefulnessof anoutsideoptiondependson
theunderlyingprevailing bargainingrationality. DMO behavior is thusfortuitous.
Its beautyreliesmoreon its mathematicalelegancethanon its behavioral reality.

Final Remarks

In theabstractto hispaperontheinterpretationof gametheory, Rubinstein(1991)
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wrote:

It is arguedthata goodmodelin gametheoryhasto berealisticin thesense
that it providesa modelfor theperceptionof real life socialphenomena.It
shouldincorporateadescriptionof therelevantfactorsinvolved,asperceived
by the decisionmakers. Theseneednot necessarilyrepresentthe physical
rulesof theworld. It is not meantto beisomorphicwith respectto “reality”
but ratherwith respectto our perceptionof regularphenomenain reality. (p.
909)

In experimentaleconomics,we often createthe “realities” to be tested. It
seemsthatour subjectsinsiston telling a storydifferentfrom SPE.Do they per-
ceiveadifferentrealitythanintended?As wehavealreadypointedout,onestepin
theabstractionprocessin theareaof bargainingwastakenby Rubinstein(1982)
himself in his research.The essentialstepwas the freeingof bargainingmod-
els from an irrelevant restriction— the finite horizon. Nonetheless,an inherent
asymmetrybetweentheplayersderivedfrom the discreteand orderedprocedure
is still left — a vestigeof technicalrequirements.Thesemight be overcomeby
consideringthediscountquotient— δ, ascumulativeover infinitely smallsubin-
tervals of the unit of time. This is anothermethodof abstraction,althoughit is
not in the formal rule of the game. In that case,the payoff to player1 in pure
bargainingbecomes

lim
xe 0

1 � δx
2

1 � �
δ1δ2 � x � logδ2

logδ1 . logδ2 ( �
44�

It follows that theorderin thealternatingprocedurelosesits significance,for the
partition is independentof it. Similarly, onemayoperateon Eq. 35 in the same
manner31 andobtaintheSTDrule,regardlessof theprobabilityof accessperunit
of time. In this way, onemay arguefor the Zwick et al. (1992)resultsof equal
split whentheprobabilityof accessis far from 0.

Themaindifficulty, of course,is thatthelimit processhasnoimplementation.32

How wouldsubjectsbeforcedto considersmallerintervalsof time if theiractions
areunitizedby the experimenter?Onemay think of the limit processtaking the
role of anaxiom. But thenwe fall backto squareone,startedwith theNashax-
iomatic method. We are inclined to believe that anotherstepin the processof
abstractionstartingwith Rubinsteinis needed.As wehaveheuristicallyindicated,
aproceduralsymmetrizationof playersis requiredto achievepredictionsthatbet-
teraccommodatesubjects’behavior.
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ENDNOTES

1. Harsanyi (1977), for exampleshows that a certainZeuthen’s processfor bargaining
doesleadto Nash’s bargainingsolution. But it seemsthat the requiredprocedureis
quitecumbersomefor practicalapplication.Nashprovidedhis own suggestion,which
restson a technicalselectioncriterion amongthe many Nashequilibria of a certain
demandgame.

2. For ourneeds,a subgameis to a gameasa subtreeis to a tree.
3. Thereareat leasttwo generalproblemsin applyingNashequilibria to our case.First,

the Nashequilibrium lackspredictive value. Therearesimply too many of them. In
factevery partition is supportedby a Nashstrategy. Second,it ignoresthedepththat
is inherentin a treestructure,which is relatedto thefirst problem.Thefactthatacting
outastrategy in a treegameunfoldsover time is responsiblefor eliminatingincredible
moves.

4. Considera generalrepresentationof preferenceover space-timegiven by the utility
U C x 4 t D , which is continuous,increasingin thefirst variableanddecreasingin thesec-
ond. AssumethatU C x 4 t D A U C x 4 sD / k C t A sD for k G 0. ThenU C x 4 t D / U C x 4 0D @ kt.
Thusthe preferencerelationis representedby u C xD δt whereu C xD / exp C U C x 4 0DfD and
δ / exp C k D . The assumptionspermittingthis representationareacceptableto us and
thereforewe limit our discussionto thebargainingprocedureandits impacton behav-
ior.

5. This is becausethelogarithmictransformationthatallows for a simplelinearrepresen-
tationof utilities over time,becauseexp C xD δs g exp C yD δt is equivalentto x A cs g y A ct
wherec /`A log C δ D . Although the original representationis useful for a morecom-
pacttheoreticaltreatment,the logarithmicrepresentationis particularlyconvenientfor
experimentation.

6. Similar to theway compoundedinterestis treated.
7. ConditionE is not reportedheredueto thefairly consistentequalsplit behavior found.
8. But quitegenerally, unboundedhorizonbargaininggamesareisomorphicto infinitely

many of their subgames.Raw dataof last offers show convergentbehavior thatquite
oftenrevealshow closelysubjectsplay theoriginalgame.

9. We do not expect,however, thatall fixed-costpredictionswould beverified. Note,for
example,that the expectedsharesarecontingentonly on the ordinal relationshipbe-
tweendelaycostsratherthanon actualquantitative levels. Rapoportet al. (1990)and
Weg andZwick (1991)experimentedwith highly separableparametricvalues. This
is understandablegiven that an initial test of a theory tendsto be doneunderrather
“promising” conditions.However, Zwick andChen(1997)demonstratedthatcostval-
uesdo indeedaffectagreementsin a significantway.

10.Theexperimentdiscountsfrom theveryfirst period!
11.This is not exactly thecase.Onecomparisonwasindeedproposed:thedictatorgame

(Kahnemanet al., 1986),which is discussedlater.
12.Exactly whenthe clock ticks makesa differencecomputationally, but conceptuallyit

haslittle significance.
13.Thefunction f h 1is everywheredefinedandnon-decreasing.Notethat f canin general

obtaininfinite values,but it is irrelevant in our application.It is continuousif it is not
infinite (regardlessof whetherf is).

14.For an ardentattemptto differentiatefairnessfrom greed,andthusto disprove Kah-
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neman,Knetsch,& Thaler’s (1986)conclusions,seeHoffman,McCabe,Shachat,and
Smith (1994)who by carefulexperimentationarguedfor selfishdictators.A later at-
temptby Hoffman,McCabe,andSmith (1996)to replicatetheir earlierresultsunder
improvedexperimentalcontrolhasnotbeencompletelysuccessful.

15.Another, perhapsmore successful,control gameto the classicalultimatum, may be
foundin BoltonandZwick (1995)wheresingleperiodbargainingissuggested.Player1
may choosebetweena 50/50split and,without risk, a moreextremepartition. A re-
jectionby Player2 doesnot affect Player1’s share.Themaindifferencebetweenthis
gameandthedictatoranalogis thatPlayer2’s acquiescenceis not requiredto imple-
mentPlayer1’s desire.Thiscouldbedesirable,dependingon one’s pointof view.

16.Binmore,Morgan,Shaked,& Sutton’s (1991)attemptto clarify this point throughthe
removal of attractive focal pointsby changingthedenominationof thepie is lessthan
a completesuccess.

17.RecallthatSTD is expectedonly at thelimit.
18.Having Player1 possessthemeaningfuloutsideoptionmakesthegamesmorecomplex

thanBinmoreet al. (1989)andBinmoreet al. (1991)dueto the needto accountfor
Player1’sopportunitiesbeingdevaluedoneperiodafterthecommencementof play.

19.We separatethedimensionsin this way for thelackof visible four dimensionalboxes.
20.For simplicity, this portrayalassumesidentityutilities, denotedby 1.
21.Binmoreetal. (1989)optedfor asimilar framingwhenaplayerhasavoluntaryoutside

optionof zero.Thatthis simplificationmaybebehaviorally unwarrantedwasnotedby
Weg andZwick (1994).

22.The authorsare thankful to LawrenceKahn andKeith Murnighanfor furnishing the
datafor this table.

23.By looking at the table one seesthat split-the-differencefails for extremepredicted
allocations.For q / 1, very weakbargainersignoretherealitiesaltogether.

24.For this specialcasewe shallassumethatoutsideoptionsareconsumeda periodlater
thantheusualconvention.

25.In reality, neitherbuyerhasanoptionto leave thebargaining.In this way, theapparent
disparitybetweenthebuyersandtheselleris madelarger.

26.Thus,theutility of x at time t is u C xD δt i 1 for t / 0 4 1 4*3*3*3 , insteadof theusual,u C xD δt .
27.Thestationarityrequirementis reviewing Equation2, whichis reducedto asingleequa-

tion with moretechnical.
28.Anotherway is thepaperandpencilapproach.Let

φ C xD / ∑
n j 0

anxn C 41D
beapowerserieswith coefficients,an, beingthepayoffs to Player1 in St̊ahlbargaining
gamesof ordern and

ψ C xD / ∑
n j 0

xn 3 C 42D
Thenwe seethat C ψ C xD A δφ C xD*D x @ 1 / φ C xD andtherefore

φ C xD / xψ C xD @ 1
1 @ δx

/ ψ C xD
1 @ δx

3 C 43D
It follows thatan / ∑n j i j 0 CfA δ D i .
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29.Entertainingdelaysjust inducesgamesof thesametype,andthe“horizon” remainsas
far awayasit normallyis.

30.Therefore,this rule is oftenadoptedby weakproposers.
31.Thatis, by considering

1 @ C 1 A pD xs1 A s2

2 A ω C p 4 xD C 45D
asx k 0 wherethefunctionω C p 4 xD k 0 asx k 0.

32.Limit processis a commonmannerof definitionin certainareasof mathematics.Take,
for example,theconceptof area.But this is preciselywhatit is: a definition,which is
notappropriatein thecasewe arediscussing.
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