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This chapterattemptsto dismantlethe myth that modelingbamainingasan
infinite horizon bargaining processs too complex to merit experimentatiorby
providing a simplified approachto the solutionof the gamesunderlyingthis pro-
cess.In addition,averyrich menufor experimentatiorwith externalopportunities
andrisksis provided. A finite horizonmodelwould be muchmorecumbersome
andartificial. The solutionof infinite gameds approachethroughavery natural
stratgyic gameform built from theoriginalbamgainingtree. A distinguishedubset
of its Nashequilibriaareidentifiedfor mary casegmetin practice)with subgame
perfectsolutionsof the tree. This approachexposeshe factthatinfinite horizon
reasoningelieson a very weakform of backward induction, as opposedo the
completeandlengthyinductionnecessarjor finite games.

Although promising,the experimentawork surveyed providesonly weakand
equivocalsupportfor rationalbehaior. The needarisesfor furtherabstractiorof
the bamgainingprocesdor a betterfit with the phenomenénvestigateda proce-
durerecommendedhy Rubinstein(1991)in the wider context of gametheoryin
practice.

PURE BARGAINING

How is avaluableobject,jointly ownedby two parties shared 7T his questiorepit-
omizesafundamentatjuestionof economicslt encompasseteboundednessf
aresourcghatmustbe sharedf it is to beusefulatall.

Two generalpproachebave beenpursued.The axiomatic,with Nash(1950)
its mostwell-known representatie, andthe procedural bestrepresentedby Ru-
binstein(1982). Theaxiomaticmethodspecifiexertaindesideratdhata bamgain-
ing ruling shouldsatisfy In the bestcase thesearealso sufficient to specifya
solutionto the problem. This methodrefrainsfrom promulgatinga procedureby
which the baigainingoutcomeis to be attained. Therefore,|t is robustregarding
changesn the bargainingconditions. The procedurabpproactspecifiesexactly

259



260 WEG AND ZWICK

how thebamainingis to take place.In thisway, it is lessdependentn axiomsthat
lack unanimousndorsementideally, asNashhopedfor, a baigainingprocedure
couldbefoundto justify anaxiomaticapproacho bamgaining.Althoughthisidea
hasbeenpursuechothingconvincing seemso appeart

It wasRubinstein(1982),equippedwith thethennew concepbf thesubgamé
perfectequilibrium (SPE)rationality developedby Selten(1975),who wasable
to exploit what seemedo mary to be a naturalbargaining scenario. It is this
bamgainingapproactthatis exploredin this chapter

Considera unit (the pie) jointly ownedby two peoplewho canenjoy ary part
of it asdescribedby their respectie continuouslyincreasingutility function u;.
Rubinsteinconsidersanatomichbuilding block of bamgaininganditeratest asfol-
lows. Oneplayersuggests demandx of the pie with therestofferedto theother
player If the latter agreesthe bamgainingterminateswith the demandaccepted.
Otherwise the discretebamainingclock ticks oneperiodforwardandthe players
swap their rolesandstartall over again. This continuesuntil the white smole of
agreemenis detected.

This descriptiorfits perfectlyinto thestandargaradignof gamesn extensive
form, which, after Seltens innovation, could be solvedin a morerefinedmanner
thanprovided by the approachtendorsedy Von-Neumannywho sav suchgames
in their foldednormal(or strateic) form. Thus,insteadof looking for Nashequi-
libria, which areguaranteedb exist, onelooksfor a subsebf theseequilibriathat
survivesafter eliminatingall thosethat fail to remainin equilibrium for at least
one subgamé. The principal beautyof Rubinsteins resultis that this setis not
emptyunderavery mild requirementegardingthe effectsof time: the utility of x
consumedttimet is givenby u; (x)ES}, where0 < § <14

To introduceSPEin a very transparenapproach(good at leastfor the peri-
odic structureof baigainingwe have in mind), we considerthe fold of the given
bamgaininggame.Thisis atwo-persorstratgic gamedefinedasfollows. Let

Xi(xj) = {0 < x < Luj(1—x) > uj(xj)d;} (1)

beplayeri’s stratgy setdependingon player j's stratgy Xj. The stratgy setof
eachplayerdepend®nthestrategy choserby the other Thusa player'schoiceof
stratgy is restrictecby theother’s choice with thesimpleinterpretatiorthatin the
extensie bagaininggamewhatoneoffersthe other(1 — x), mustnot belowerin
utility thantheexpectedutility from thelatter’splannedaction. Thisinterpretation
might be characterizeédsmutualindividual rationality. But it is not sufficient to
specifyary action. For example,the stratgyy 0 is mutually rationalwith every
stratgyy of the otherplayer It is clearthatthesesetsare nonempty closed,and
corvex. We defineformally theutility of astrategyy combination(xy,x2) to playeri
asu;(x;). A Nashequilibriumof thefold games apoint (x,X2) € X1(X2) X X2(X1)
suchthatfor all x € X;(x;) we have ui(x) < ui(x;).

It is clearthatthe Nashequilibriaof the fold gamearegivenby the solutions
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of theset
U1(1—x2) >81u1(x1)

Uz(l — Xl) 262U2(X2)

2

whereat leastone of theseinequalitiesis satisfiedasan equality It shouldbe
intuitively clear that not all Nash equilibria of the fold gameare supportedn
the extensive gameby a subgameNashequilibrium. This distinguishedsetis
characterize@sthe solutionsof Eq. 2 satisfiedasequalities. One canview the
choiceof stratgy setsassatisfyinganecessargonditionfor subgameerfectness.

For theimmediateexperimentabpplicationsve assuméhatu(x) = x or u(x) =
exp(x). Onecaneasilyseethatfor thefirst case

1-3,
=155, (3)
andfor thesecond
1 if &> &
X1 =< — |Og62 if &> (4)

[—logd1,1] otherwise.

Thevalueof x; is thencalculatedoy substitution.

We referto thefirst type of time utility interactionasgeometricdepieciation
andto the secondas arithmetic depreciation® This distinctionis not mutually
exclusive. It hasmoreto do with the framing of the space-timegreferencestruc-
ture thanwith anything else. Geometricdepreciatiorwith risk-neutralutilities,
however, is directly comparablavith the arithmeticcase.

Duality

Therearessituationswherethe needarisesto sharea painful or an aversie joint
object. Examplesare the joint lossesof a failed partnershipor the division of
a sharedinvestment.In suchcasesgachof the partiesattemptsto minimizehis
or hersharein thejoint aversive propertythatwe call, for simplicity, deficit In
contrast,the thing desiredwould be termedjoint surplus It will be efficient if
the sametheorycould be appliedto both cases.The following duality principle
shaws that this is indeedthe case. It senesas a dictionary for the translation
of bagaining problemsover deficit into bagaining problemsover surplus,and
vice-versa.

Assumethat a timed loss can be measuredy the productof an increasing
nonngative function| anda power of y > 1. Thusthe total lossof a sharex at

timet is |(x)y".6 Then
()Y <1(y)y° (5
iff

)’ (6)
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wherex = 1—x andy = 1-Y. If wesetyz25; = u(x), and§ = 3 < 1, we see
thatto solve a deficit problemamountgo solvinga surplusproblemandapplying
theappropriataransformationThuswe have thefollowing duality:

Theorem (The Dictionary). Every deficitbamgainingsituationD = (11,y1,12,Y2)

_ _ 1 _ 1 . _ 1 _
hasa.dual surplusproblems_ (ul' = m,él = ﬁ,1'12 = .W,ESZ. = E)
andvice-versa.Moreover, X is a rationalshareto party 1 in D if andonly if 1 —x
isashareto party1in S,

Notethattheproofhasnothingto dowith thebarmgainingprocedurdrom which
the particularsolutionis derived. Thus, the duality principle canbe appliedto
ary bamgainingsolutionwheretime affectsutility in the mannerassumedy the
theorem.

Corollary. Whenl;i(x) = x, party1’'s shareis

1-v
. 7
1-viy2 @)
The proofis immediateby invoking the dictionarywith Eq. 3.
Example. For the risk-neutral(identity) lossfunctionswith y; = 10/9, party 1's
shareis 9/19.
We consideranotherspecialcase:

Corollary. Letthelossfunctionsbel;i(x) = exp(x). Thenparty1’s costshareis

0} ify1 < Yo

x1= 9 {1-log(y2)} ifva>ve (8)
[0,1—log(y1)] if y1 = V2.

Proof. Thisfollowsimmediatelyfrom thedictionaryandEq. 4.

Example. Consideranarithmeticdepreciatiorbamgainingon a deficit, with bar

gaining costsof log(y1) = ¢ = 0.2 andlog(y2) = ¢, = 0.1. The last corollary

shavsthatPlayerl’s sharein the deficitis 0.9.

Again, althoughthe duality principle dependsnly on the separabilityof the
time and spacecomponent®f the preferencestructure the formulasderived by
thesecorollariesdo dependon the bamgaining procedureand on the rationality
conceptprescribed— SPE.

SHARING A PIE IN PRACTICE

Several experimentswere carriedout to testa variety of the hypothesesmplied
by the solution of the bamgainingproblem. Someemployed arithmeticdeprecia-
tion (alsoreferredto asfixed cost),somegeometricdepreciation(alsoreferredto
asdiscountrate) and someeven proposedalternatve rejectionprocedures.This
sectionreviews the outcomef theseexperiments.
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Arithmetic Depreciation

The very first experimentimplementingthe Rubinsteinprocedurewith a fixed
cost(c = —log(d)) per periodwasconductecby Rapoport\Weg, andFelsenthal
(1990). Thisexperimentis dividedinto two studieghatdiffer only by thelevelsof
thefixedcostsof thebamainingperiods.ln eachstepof this experimentaninitial
groupof studentss subdvided randomlyinto pairsandeachpair is engagedn
a division of a pie of 30 Israeli Shelels accordingto the Rubinsteinregime. In
orderto endeachbargainingwithin reasonpamgainingis allowedto continuefor
at leasteight periodsbut no morethan13 periods. The exact cutoff is randomly
choserwithin thisinterval but subjectaverenot privy to thisrule. Thelogisticsof
runningconcurrenbargaininggamesandsteppinghroughthe severalgameghat
eachmemberof the groupof subjectss engagedn during a given experimental
sessioraregovernedby acomputemprogramrunningunderatime sharingsystem.

In both partsof the experiment threepower relationshipdetweerthe players
wereconceved: S(c; < ¢2), W (c1 > ¢2), andE (c; = ¢z). Thec; aremembers
of {0.1,2.5} for thefirst studyandof {0.2,3.0} for the second.A maximalcost
within theserespectie setsis takenfor conditionE.

Figure11.1 presentghe dataasreflectedby last perioddemandsdy Playerl
(first mover) in the lastiterationof eachplay.” UnderconditionS, Player1 is ex-
pectedo demandin thefirst period)30 Shelelsin eitherof the studiesandunder
conditionW, 2.5Shelelsin Study1 and3.0Shelelsin Study2. Thisassumethat
the bamgainingterminatesmmediately but if not, it repeatedlystartsa new sub-
gameof type Sor type W andbecause.5 or 3.0 aresmallcomparedo 30.00we
do notexpectto find muchof adifferencef we look atlastperioddemand$. The
raw datais particularlyimpressie asextremedemanddy andoffersto thestrong
playersarenot buriedin the averages Averagesin this casearenot particularly
appropriatdbecausdoundaryoutcomesarepredictedvhereastatisticshasedn
typical valuesnormally assumedeviations on either side, thatis, demandsare
expectedto fall beyondthe boundary

The secondstudy (Weg & Zwick, 1991),which followed a similar designto
the Rapoportet al’s studiesinvestigatecthe robustnessof the rational solution
underan isomorphictransformatiorprovided by the duality principle discussed
earlier Specifically it definesanapparentlydifferentarithmeticdepreciatiorbar
gainingwhereabetteroutcomes measuredby how smallit is. Thatis, abarmgainer
minimizeslossednsteadof maximizesgains.Formally, the disutility of x attime
t is measuredy x+tc wherec > 0. In a previous sectionwe have shavn that
the problemis identicalto the maximizationof shareunderthe utility 1 — x —tc.
Thusthe experimentprovidesfor acomparisorbetweerplayingdual surplusand
deficit games. Weg and Zwick (1991) comparedbargaining over lossesto bar
gainingover gainsby the samesubjectgwithin subjectdesign)with piesof $15
and costssetof {0.05,1.25}. Condition E studiedby Rapoportet al. was not
investigatediueto theexpecteduninformative outcome®f sucha condition. Fig-
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Iteration Three,Study 1 Iteration Three,Study 2
¢ €{0.1,2.5} ¢ €{0.2,3.0}
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Playerl’s part Playerl’s part
ConditionS ConditionW

Fig.111. Lastperioddemands.

urell.2presentsheraw datafor thesecondandlast)iteration,wherepayofs for

deficitbamgainingarenormalizedby theduality transformatiorl — x which allows

comparison®n equalfooting with surplusgames.
Threeconclusionganbe dravn from theseexperiments:

1. Strongpartiesobtainin generalwhatis predictedby subgameperfectrational-
ity.

2. It is hardto tell the differencebetweerbamainingover lossesandbargaining
overgains.

3. WeakPlayer1s (first movers)cannotin generalimprove their lot by decree:
The gamemoveson to a subgamewherethe strongplayer usually setsthe
“price”. The outcomesareinvariantwith regardto the positionof the strong
party exceptthata strongsecondparty tendsto gethis or hersharelaterthan
expected.

What makesthe arithmeticdepreciatiompreferencestructureattractve is the
clearcutextremepredictionst implies. We explore someinterestingapplications
of thisstructureandnow turnto arelatively morecomplec predictionderivedfrom
the Rubinsteinparadigm.

Geometric Depreciation

Accordingto Eq. 3, Playerl’s demands a continuousandnonconstanfunction
of the discountingparameters.Can one expecthumansubjectsto attendto the
type of influencetheseparameterhiave on the predicted(subgameperfect)de-
mands?Equation4, which is applicableto arithmeticdevaluation,is immensely
simpleralthoughdiscontinuous.lt is (two-valued)constantalmosteverywhere.
And, moreover, the domainof constang is a union of two connectedegions.
Therefore,assumingonly rough sensitvity to parametewvaluesby subjects,it

standsto reasonthat rational but perhapscognitively limited playerswould ad-
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Iteration Two, Surplus Iteration Two, Deficit
E
e
8 6
ﬁ 4
c 2
Y o

Playerl’s part Playerl’s part
ConditionS Conditionw []

Fig.112. Final demandsy Playerl. Sevendatapoints (of playsendedprema-
turely) arenot shawn.

here more closely to subgameperfectrationality in an arithmetic depreciating
ervironmentthanin ageometricone?

Much researchieportson experimentavheretheidentity utility is depreciated
geometricallyovertime. Weg, RapoportandFelsentha(1990)attemptedo test
rationality in a purely Rubinstein alternatingoffer bargaining. Bargainersn this
paradigmhave no otheroption but to cometo an agreementn finite time even
thoughtime is not formally limited, thoughno infinite pathsare superiorto ary
otherpath. Thus,bamgainershave a strongincentive notto pursuesuchpaths.

Two independenstudies,which are replicationsof eachotherin every way
exceptfor thequotientvalues(discountrates) arereported.In eitherstudythepie
is 60.00Shelels. In thefirst studythe discountsarerelatively mild and specify
three conditions: (01,02) is either (0.90,0.17), or (0.50,0.90), or (0.67,0.67).
The secondstudy experimentswith steeperates— (0.50,0.17), (0.17,0.50), or
(0.17,0.17). Table11.1shownsthegenerakrends.

The patternseemgo supportheconclusiorthatstrongplayersl areonly able
to extractat besthalf pies,andweakplayersl signaltheirintentionto compensate
for theirsteepedevaluation’® Notethattheseindingsarein distinctcontradiction
to rationalitybecauséhey fail to accountor the costof time in mary ways:

1. A breakdaevn of monotonicity(in theright direction)with quotientvalues.For
example,if we denoteby x(a,3) the payof to player1 for gameparameters
(a,B), thenfor &; < & we musthave x(d1,01) > x(d2,02). In fact,for these
casesbamgainerssplit piesin half, which is approximatelycorrectonly for
extremelyhigh quotientsthatis, whentimeis nggligible.

2. Symmetrizatiorof players’positions. In theory time is valuableandthere-
fore x(81,02) # 1—x(d2,01), or putting it differently, in generalbamaining
is not symmetricwith respecto time. Unfortunately this is not reflectedin
the data. Regardlesof position, players’payofs dependsolely on theirtime
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Table111
Mean First and Final Sharesto Player 1 in Studies1 and 2
lteration &1>8 =& 06 <®» 01>0 01=0 1<
Study 1
First Offers Final Offers
1 29.4 31.6 36.4 27.1 30.5 36.0
2 30.6 31.1 36.9 27.6 30.7 36.4
3 30.1 31.0 36.0 24.4 31.0 36.5
Study 2
1 29.5 33.0 42.8 22.4 31.8 40.3
2 28.6 34.3 43.3 23.2 325 42.1
3 19.2 36.1 46.1 23.1 34.3 43.6
devaluation.

A Preludeto Optional Game Termination

Oneof the moreinterestingapplicationsof arithmeticdepreciatiorbamgainingis

the assessmerf the prevalenceof fairnessconsiderationsn economicsitua-
tions (KahnemanKnetsch,& Thaler,1986). Giith, Schmittbeger, andSchwarze
(1982)initiatedalongline of ultimatumstudiesvhereonepersorproposes “take

it or leaveit” offerregardingthedivision of apie. Thus,oneplayerproposes and
the othereitheracceptdt, in which casethe gameterminateswith the proposed
outcome,or rejectsit wherethe statusquo (normalizedto 0) is obtained. This

studyshavedthatmostproposersvould sharethe pie evenly, in apparensupport
of fairnessconsiderationsandfurther, positive offersarerejectedn contradiction
to rationalbehavior. Rejectionof any partof thepieis anadmissiorthatobtaining
nothing,in thisgame s preferredto consuminga positive partof it, whichis nor-

mally untruein the context of individual choice.The problemwith theultimatum
gameasatool in theinvestigationof fairnessn economicsettingsis thatit does
not have an appropriatecontrolgame. Thus, it is nota priori clearwhetherthe

proposeiis mitigatedby afearof rejectionor by a consideratiorof fairnesst! We

shallnow shav how the arithmeticcoststructurelendsitself to several typesof

testsof thefairnesdgssue.For this we needto dwell alittle moreon thetheoryof

division problemswith so-calledoutsideoptions.
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BASIC OUTSIDE OPTIONS

Rubinsteins alternatingoffer paradigmis consideredasatomicor purebamgain-
ing. Thereare several directionsone can take with the aim of expandingthe
atomicform. Herewe consideronesuchextension.In alatersectionwe provide
abroadergeneralizatiorof thisroute.

In atomicbamaining,playersfind satishctiononly throughanagreementBut
this is possibleonly in afully deterministioworld. Becauseébamgainingproceeds
throughstepsin time, it is concevablethatthe intentionsof the playersmay not
befulfilled and/orsomenewn opportunitiesmayarise.

We introducea new movethatresultsin therealizationof the statusquo. Thus
a playermay opt to quit the bargainingon receiptof ary offer. Of course,the
terminationof bargainingwithout an agreemenshouldleadto somepayofs. If
bamgainingis to take place we shallimposesomerestrictionsonthesepayofs. A
naturalroughrequirements thatthesumof thesepayofsin pie unitsis no greater
thanthe pie. For otherwise oneparty may not have enoughincentive to bamgain
atall.

Sutton(1986)suggested generalizatiomf thisidea. Considemrandomevent
E that may follow a rejectionof an offer with a given, and commonlyknown
probability, p. Suttonsuggestswo interpretationgor theoccurrencef E:

V. Inthevoluntaryinterpretatiortherejectingplayer(i) hastheoptionto consume
anoutsidevalueof 5. In this casethe otherplayerconsumesn outsidevalue
andthe bagainingterminateslf the rejectingplayerchoosesotto consume
the outsidevalue, the bamgaining clock moves one unit forward and a new
demandnormally by therejectingplayer)is considered?

F. In the forcedinterpretationthe occurrenceof E signifiesthe necessityto ter-
minatethe baigainingwith eachplayerconsuminchis or heroutsidevaluess.
Theclock doesnottick.

If E doesnot occur, the bamainingclock simply ticks a unit. We referto a
playerasanF-playeror a V-playerdependingn theinterpretatiorof theeventE
thatmayfollow his or herrejectionof anoffer.

Note thatthe notion of outsideoptionsis orthogonalto the baigainingproce-
dureandthat,in fact,only the Rubinsteinprocedurénasbeengivenexperimental
treatmenin non-cooperatie baigaining.

Forced Termination

Considertwo F-playerscharacterizedy the probability p of being terminated
with outsidestatus-qugayof 5. How shouldthey play?We imitatetheapproach
we have taken earlierby definingan appropriatefold game. We derive subgame
perfectnes$rom thefollowing principles:

InterperiodRationality. An offer will not beacceptedf it dictatedessutility
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thanwhat one offers oneself. This will be translatednto a specificopera-
tionalization,dependingon the bamgainingervironment. Equation2 is spe-
cific to pureRubinsteinbamgaining.For anFF bargainingenvironment,this
is translatedo uj(1—x;) > (1— p)diui(x;) + pu(s) fori # j. Theright-
handtermin this inequality is the expectedprospectof a rejectionto the
rejectingplayer This assumesasis currentlyall too common thatplayers
obey expectedutility. In principle, other utility theoriescanbe graftedas
long asthey aremadeto be commonknowledge. Thuswe setthe strateyy
setfor playerj,

Xj(x) ={0<x<1ui(1-x) > (1= p)diui(x) +pu(s)}  (9)

and the formal utility for the stratgyy combination(xy,x,) to playeri is
ui (%)

InterpersonRationality. Again we look for the Nashequilibria for the fold
game.

To make the fold gameplayable,the stratgy setsneedto be nonemptyfor
all valuesof their algument. One seesby inspectionof the definitionsthat this
conditiondependon the probability p andthe outsidevaluess.. We definethe
presentvalueto playeri of a promiseto sharex oneperiodlaterto be

PVi(x, p) = U {((1~ p)&iui (x) + pu(s)) (10)

wherefor anincreasindunction f, f~1(x) =inf{y|f(y) > x}.13 We say“promise”
becausats fulfilment dependson the occurrenceof a randomevent E whose
probabilityis p. Now we assumehats is suchthat PVi(x, p) < 1, which malkes
the strat@y setsnon-empty This is trueautomaticallyfor example,whens < 1.
As above, the Nashequilibria of the fold gameare of interest. They exist
becausghe equations
1-x= P\/l(Xl, p)

1- X1 = P\/Q(Xz, p) (11)

areequialentto theequation
x1 = 1—PVa(1—PVi(x1,p), p)- (12)

Becauséhe PV, mapstheunit interval continuouslyinto itself, this equationrmust
have a solutionby elementaryconsiderations.
Now (x1,%2) is supportedby SPEif andonly if two conditionsaresatisfied:

PVj_(l— X2, p) + PV2(X2) <1 (13)

and
PV2(1—x1,p) +PVi(x1) < 1. (14)
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For example,supposeplayer1l demandsnorethenx;. Thenit is rejectedby
player2’splan,andtheutility of apromiseof 1—x, oneperiodlateris ui (PV1(1—
X2,P)) < u1(1— PVa(x2, p)) = ui(x1) (we useboth mutual consisteng (Eq. 13)
andthefactthat(x1,xp) is asolutionof Eq.11). Henceplayerl’'s deviationis not
profitablein the extensive game!lf Player2 accepts > x; thenhe doesnotgain
becauseuy(1—X) < u1(1—x2) = ux(PV2(x2)) by Eq.11.

A sufiicientconditionfor Eq.13and14is 5 < x;. Thisfollowsfrom

Lemma (PVi). PVi(x, p) < maxs,X).
Theproofis asimpleobsenation.

Corollary. PVi(1—xz,p) < max{s;,1—Xz} =max{sy,PVi(x1, p)} < max{si,x1} =
Xy = 1—PVo(X2, p).

This chainof inequalitiess justified by appeato Eqg. 11 andthelemmawhich
resultsin Eq.13.
Example. Hereis a casewhereEqg. 13 and 14 are not satisfied. Supposethe
utilities areidentities,5 = 0.9, p= 0.9 andd; = 0.1. ThenEq. 11 reducego:

1—x=0.01x;+0.81

(15
1—x; =0.01x;+0.81.

Thenx; = x = 0.188119%but whenplayerl demandssay0.20 > xg, it is re-
jectedandhe or sheis “promised”a little-valuedfuture amountof 1 — 0.188119
but its presentvalueis muchhigher(dueto the relatively high probability of re-
ceiving immediately0.9), so a deviation is profitable. Hence(x1,x2) cannotbe
subgameerfect.Thisis theintuition. Pluggingin the propervaluesin Eqg.13and
14 shaws thatthe conditionsarenot fulfilled.

Voluntary Termination

The samelogic we appliedto forcedterminationcanbe appliedto voluntaryter
minationwith PVi(x, p) = PV (X) = u7((1 - p)&iui (x) + pmax(&iui(x), i(s))).
If we denotethe definition of presenvaluefor F-playerby PV we seeimmedi-
ately that P\/iV > PV™. Therefore theintuition that ceterisparibus, beingunder
avoluntaryregimeis advantageouso beingundera forcedregimeis justified by
inspectingthe equationdeterminingthe partitions. In makingthis statementve
imply thatthelogic canbeappliedto heterogenouplayers(F andV).

NotethatlemmaPV; with its immediateconsequencstill holdsandfor future
usewe alsorecordthefollowing

Theorem (VV inequalities). Supposeheplayersarerisk averseandzeroatzero
(u; areconcae andu;(0) = 0). Thenfor a VV bamainingwhere

52U2(1 — Sj_) > Uz(SQ) (16)
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and
O1u1(1—sp) > us(s1) (17)
we have:
$1<1-%(l-5)<x<1l-%

18
$<1-01(1-5) <xx<1-s. (18

Notethatthe conclusionimpliesthat (x;,x2) is supportecby an SPEstrateyy
combination.
Proof. Notethat

1— x> PVi(x1, p) =up (1 — p) max(Bu(x1), uy(s1)) + pua(sy)) >

Uy H(ui(s1)) =si. 19

Hencewe obtainthe secondnequalityof the secondassertiorof thetheorem.
Similarly, we obtainthe correspondingnequalityof thefirst assertion.

It follows from what we have just proved and the monotonicityof PV; with
respecto thefirst variablethat PVa(x, p) < PVa(1—s1, p).

Now

PVa(1— 1, p) =z (1 — p) max(Bauz(1 - 1), Ua(S2)) + PLa(sz)) <
Uy (a2 (1 — 1)) <z (Ua(Ba(1— 1)) < B(1— 1),

(20)
which follows becausef risk aversionandEq. 16.
Thereforeby Eq.11
x1=1—PVa(Xz, p) > 1= PVo(1—s51,p) > 1= &(1-s1). (21)

Note: The conditionson the utilities requiredby the theoremaresatisfiedfor the
identity utilities, which make the theoremusefulin experimentalwork.

Arithmetic Depreciationwith Outside Options

We return now to the experimentalsetting. Weg and Zwick (1994) and Zwick
andWeg (1996) experimentedwith exponentialutilities and side options. Their
generalsetupis especiallysimple. The probability of accesdo an outsidevalue
is always 1 andit is voluntaryfor eachof the players. Thusoutsideoptionsare
alwayspresentwhenan offer is considerecdy a recipient. What makesthe pre-
dictedoutcomesspeciallysimpleis the choiceof fundamentailitilities for money
— Ui (x) = exp(x). Thesolutionfor thefixed pointsis simple.

We useEq. 11 with the properunderstandinghat PVi(x, 1) = PV\¥ (x,1). We
seethatEg. 11is equivalentto

X2 = 1—max(xy — C1,51) (22
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Fig. 113. Arithmetic depreciationg; < cp.

and
X1 =1—maxx; - C2,%), (23)

wherec; = —log(g;) > 0. It is only in the specialcaseof p; = 1 thatwe can
representhe utility in logarithmicform, therebythe arithmeticdepreciationof
theidentity utility by thefixedcostc;. Thisis in facttheterminologyusedby Weg
andZwick (1994).

Thefixed-pointequationis easilyshovn to be

min(max(x— 1+ C2,51 + C2),1 — %) = x. (29

To male the solution of the bargainingproblema little moreinteresting,we
assumehats; + s, + max(cy, c) < 1. This conditionimpliesmutualconsisteng
of thesolution,asrequired.Now the predictedpayof to Playerl is

1-s ifci<co
X14 S1+C2 if c1>c (25)
[s1+Co,1—5] ifc1=co.

Figurell.3shovsthegraphicsolution. A simplewayto concevethisresultis
givenby thisrule: Everybargainerclaimshis or heroutsideoptionandbargains
over what's left (without outsideoptions). This rule hasa significantheuristic
value. It fact,it correspondso individual rationality, which is well known in the
theoryof gamesn characteristiéunctionform. Every solutionconcepssuggested
for thatdomainsatisfieghis requirement.

The main purposeof usingexponentialutilities with fixed discountrates(or
whatamountto the samething, identity utilities with fixed costsof depreciation)
is to presenfairnessconsiderationgn a differentlight. It is particularly suitable
for experimentatiorbecaus@swe have seenthebaigainingscends very simple
andmustbe understoodhatway, giventhe“good” behaior underthe nonoutside
optionregime (Rapoportetal., 1990;Weg & Zwick, 1991).
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Althoughthestandara&conomianethodemploystheultimatumgamethatwas
popularizedy Guth (seeGuth & Tietz,1990),Weg andZwick (1994)optedfor an
alternatve. Recallthatanultimatumis a single periodgameandthereforeusing
thestandardemporalaccountingvherethe presents neverdiscountedgdiscounts
areirrelevantandbaigainingis reducedo a single offer that Player2 is entitled
to eitheracceptor reject. In thelatter case the gameendswith somepredefined
statusquo. Normally the ultimatumis normalizedto have outsideoptionsequal
to zero. It is obviousthat rational offers shouldamountto nothing (assuminga
continuouspie). What Guith et al. (1982)found is that mostoffers settleon the
midpoint of the pie. Their interpretationis that Playerl normally shows a taste
for fairness.This interpretationwasgivenadditionalsupportby Kahnemaret al.
(1986) who, for that purpose,inventedthe dictator game,an ultimatum where
Player? is relegatedto merelyan obsener. But naturally the fairnessinterpre-
tation attributedto Playerl was contestedvith the alternatve, which attributes
asymmetridairnesscomponento Player2’s utility. Thisis postulatedo be evi-
dentto Player1 who is asgreedyascanbe andmerelyoptimizespayofs by re-
ducingtherisk thata small offer might berejected.Supporter®f this alternatve
hypothesisxplain KahnemanKnetsch,& Thaler's (1986)generoudlictatorsas
merelydesirousof the experimenters goodwill, andthereforemply thatdictator
experimentsarelik ely to produceartifactualresultst*

Weg and Zwick (1994) consideredarithmeticdepreciatiora complementary
if not betterarenato testfor fairness. Considerfirst the analogto the standard
dictatorgiven by a bargaininggamewithout outsideoptionsandwherec; < c;.
The predictedpayof allocatesthe whole pie to Playerl in thefirst period. Thus
the outcomels the sameaspredictedfor the dictatorgame(aswell asthe ultima-
tum game) but without allowing for earlytermination.Playerl is the omnipotent
playerwho can,if heor shesochoosesgeviatefrom therationaldictumandoffer
symmetricallocations Next, consideitheanalogto theultimatumgame.Herewe
take thearithmeticdepreciatioragainbut with the provision of outsideoptionsof
zeo to eachof the players. Again the predictedallocationis the sameasin the
dictatoranalogexceptthatnow Player2 hasthe sameoptionasPlayer2 in theul-
timatumgame— refuseasmalloffer by optingoutto obtainevenasmallerpayof
of zero. BecausePlayerl in the dictatoranalogwasfoundto be a highly greedy
player, unafectedby his or herappearancto the experimenter§Rapoportetal.,
1990;Weg & Zwick, 1991),arny mitigationof demandsn the ultimatumanalogs
is attributedto thefearthatPlayer2 will acton athreatof quitting. This expected
behavior wasin facttestedby Weg andZwick (1994).Figurel11.4is aconceptual
schemaof thevariousgamesandtheir interrelationships.

This experimentis concernedwith the division of piesof $20.00,with a cost
setof {0.1,2.00}. Somebargaininggamesallow for optingout with zeropayofs
andsomedo not. Althoughthe bamgainingis concevedasunlimitedin time, in
practice,a gameis terminatedif the negotiationreacheshe fourteenthperiod,
which in factoccurredonly twice in 216 plays. The experimenthasa2 x 2 x 3
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Fig. 114. Schematiaelationshipsamonggamesn the searchor fairness.

factorialstructureconsistingof gametype (with or without outsideoption), costs
pattern(cy < ¢z or c; > ¢p), anditeration(whetherthefirst mover holdsthis role
for thefirst, secondpr third time). Thelasttwo factorsareof the within-subject
type,whichmeanghatduringasinglesessionsubjectylay only oneof thegame
types.For our purposesiere,our maininteresties with the conditionc; < cy.

Figure11.5presentghe frequengy distribution of the last offersto the strong
player(theonewith thesmallercost)in thefirst andthird (last)iterationby game
type (with accesgo null outsideoptionsandwithout). Somesummarystatistics
for this experimentareshavn in Table11.2.

Althoughthe cost-basedvealer playerseldomexerciseshe optionto opt out
(3 times out of 108 games),the mere availability of this option is sufficient to
deterthe cost-basedtrongplayerfrom highdemandsThus,the mainhypothesis
that sharingin competitve ervironmentsis lessaffectedby fairnessconsidera-
tionsthanby the threatof lost opportunitiesis supportedbut the extremegreed
shavn by Rapoportetal. (1990)andWeg andZwick (1991)failedto materialize
in this experiment.A possibleexplanationfor this discrepang is suggestedater
Nonethelessthe principal contribution of this setupis in providing aneconomic
testbedto the hypothesisln particular any behaior in a dictatorsetupis inher
ently confounded |t is analogougo a boxing matchwith onecontestanfighting
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with his armstied down. 1°
Geometric Depreciation With Outside Options

Several studieswere conductedunder a richer format than the original Rubin-
stein’s paradigmwith severalintentionsin mind. Somelike Binmore,Shaled,and
Sutton(1989)andBinmore,Morgan,Shaled, and Sutton(1991)were motivated
perhapso demonstratehe sensitvity of subjectsto the structureof bargaining.
Bargainingoutcomesn thesestudiesdependon the precisespecificationof the
availablemoves. Thus,Nashs (1950)bargainingsolution,which is derivedfrom
axioms,wouldnotbeapplicablepredictorfor thebamgainingproceduresmployed
in thesestudies.

On the other hand, Zwick, Rapoport,& Howard’s (1992) experimentwas
guidedby the formal similarity betweendiscountingandthe probability of con-
tinuation of the bargaining. And finally, Weg, Zwick, and Rapoport(1996) and
KahnandMurnighan(1993)exploredtheapplicability of rationalbamainingwith
outsideoptionsundersomavhatlessfocal predictions.In fact,theirgamesgspe-
cially KahnandMurnighans, mightbedescribecasgamesn areasonablgeneral
position. Nonethelessaswe shall see they all carry a significantheuristicasto
therelative power of the players,andthusprovide cluesto reasonabléehaior.
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Table112
Upper Quartiles of First and Final Offers to the Strong Player (Proportions)

Iteration CostsPattern GameType First Period Final Period

1 c1<C No Quit 0.80 0.70
Quit 0.70 0.62

C1>0C No Quit 0.60 0.70

Quit 0.60 0.61

2 Cc1<Cp No Quit 0.80 0.75
Quit 0.70 0.67

C1>Cp No Quit 0.70 0.70

Quit 0.60 0.65

3 c1<Cp No Quit 0.90 0.90
Quit 0.70 0.70

C1>C No Quit 0.75 0.80

Quit 0.60 0.70

Note.pie 20,¢; € {0.1,2.0}

Deal Me Out (DMO). Binmoreetal. (1989)setout to shawv thatthe corven-
tional wisdomof evenly sharingthe leftover after accountingor outsideoptions
(obtainedif bamgainingfails to reachan agreementjs not alwaysa reliable pre-
dictor of behavior. For this they exploit theVV bamainingprocedurewith s; = 0,
s = {0, %, 47} with identitiesas utilities. Note that the conditionsfor theorem
VV inequalitiesare satisfiedin this caseand thereforesolutionsfor Eq. 11 are
subgameerfect. They hold regardles®of probabilitiesanddiscountingquotients!

Cornventionalwisdomwould lead us to predictthat player 1's sharewill be
”SiT_SQ. Thisis reasonableperhapsif onedoesnot specifythe negotiationpro-
cedure But applyingEqg. 11 we seethatthe Nashequationis reducedo

X2 = 1—maxd1X1,S1) (26)

and
X1=1-— ma)(52X2,SQ). (27)
Hence by substitutionsve needto solve thefixed pointsfor

1—max62(1—maxd1x,51)),%)- (28)
Simplificationshowvs thatwe needto solve

min(max(1— 82+ &%, 1— &»(1—95)),1— ) =x. (29)

We assumehatd; (1—s;j) > s . Fromthis we concludethatbamgainingwould
continueasusualif andonly if
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Fig. 116. Extremecaseof VV solution.

1-51-s)< =2 <1_s, (SeeFig.11.6) (30)
1-010

Consequentlyplayer2 doesnotbamgainif bargainingresultsin anoffer of less
thens, andplayerl demandd — 6,(1— s) if bamgainingresultsin asmallerpay-
off. Bargainingheremeanshatplayersactasif outsideoptionsarenot available
(or they are zero). Otherwise,outsideoptionsaretoo smallto make an effect.
Note thatwe have metthis situationin a differentguise: arithmeticdepreciation
with outsideoptions.

By choosinga commondiscountquotientof 0.9 and p = 1, Binmore et al.
(1989)madetheexpectedbaigainingoutcomegwithoutoutsideoptions)be0.526=
ﬁ) ~ 0.5. They provide experimentalevidencethat for the two smallervalues
of s, thereis a noticeableconcentratiorof offers at aboutthis point, whereas
whens; is largerthanhalf, the concentrations shiftedto about¥ (seeFig. 11.7).
This is exactly whatis expectedwhenthe bamgainingprocedurewhich proceeds
in a very well-specifiedmanney is taken into consideration.Note that the con-
ventionalNashsolutionis predictedto resultin significantincreasesn payof to
Player?2 (for the nonnull outsideoptions),which is not the empirical case. We
comebackto this explanationlater

ForcedTermination. In anattemptto partially replicateWeg etal. (1990)with-
out the possibledravback of finite implementationof an infinite game,Zwick
etal. (1992)substitutedrobabilitiesof termination(or ratherof continuation¥or
discountquotients.Their designcanbeviewedasanFF bamainingwith notime
devaluationbut with probability p > 0 ands; = s, = 0. Thus, the problem of
terminationis built into thedesign.Using Eq. 11 we seethat

1-x=(1-p)x;. (31)

By settingd = 1— p we seethatin thebamainingproblemwith forcedtermination
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Fig.117. Firstperioddemandoy playerl. A & marksrationaldemand.

the probability of continuationcanformally be seenasthe discountquotient,and
thereforerationalbehavior is predictedby the sameformulasasgivenby the cor-

respondingliscountversion(Eq. 3). Zwick etal. (1992)experimentedvith these
valuesof p: 5/, 1/3, andl/10and$30pies. Theirresultsarepresentedh Fig. 11.8
andcanbesimply summarizedy adictum: equalsplit (plusacorrectionfavoring

thefirst mover). They follow a similar patternfoundin Weg et al. (1990). Note
that for high valuesof p we have an approximateultimatum, andin this light,

fairnessconsiderationsnight be in force. We discusspossibleinterpretationsof

this deviation later

Split the Difference(STD) vs. DMO — Procedural Implementation. Bin-
moreet al. (1991) canbe viewed asan extensionof both Binmoreet al. (1989)
and Zwick et al. (1992). First recall that DMO can be statedas “allocate your
opponenta side option unlesshe or shecando betterby bamgaining” Binmore
etal. (1989)shovedthatthe bamgainingpartcanbegivenaprecisemeaningasin
Rubinsteinbaigainingwith having alwaysaccessibleutsideoptionsthatarenot
taken. But the outsideoptionideais moreversatile.

Note that with the Rubinsteins bamgaining paradigm,playerscan be made
symmetriconly at the limit point, whentime is irrelevant. (Of course,at that
pointtherationaloutcomeof the equalsplit failsto beunique.)Now, thenext step
is to askwhetherone canobtainby bamgaining(in the limit) anequalsplit, after
statusquovalues(s; ands,) arepaid; thatis, Playeri is paid 878 \we recall
thatformally we cantake discountdo beinterpretedasprobabilityof continuation
with § = 0. Thereforewhenp; — 0 theplayerssharethepie equally Zwick etal.
(1992)experimentedvith this framewnork exceptthattheir probabilitiesarenever
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Fig. 118. Firstperioddemandduringlast. A & marksrationalpartition.

closeenoughto zero. This intuition leadsto the predictionthat, quite generally
rationalpayofs for a nonzerooutsideoptiongameunderan FF regime aresplit
thedifferencewhen p is smallenough.This is shavn moreformally in the next

two paragraphs.

Assumethats; +$, < 1, & = 1, andutilities areidentities.Accordingto Eq.11

X2 =1—((1-p)xa+ psi) (32)
and
x1=1-((1-p)X+ px). (33
Therefore a )+ (1-p)
p(l—s)+(1—p)ps
X1 = . 34
=TI pa-p) (39
Multiplying theaboveby 1 = % for p# Owesee
= tsd=p)—% (35)

2—-p

Taking the limit p — O we obtain STD payofs: eachplayergetsan outside
option plus half the remaininginterval. Thus,STD ascorventionalwisdomcan
be approximatedy procedurabarmaining. Notethatx;, > 5 for a small enough
p. Thusaccordingto the corollaryto lemmaPV;, the solutionto Eq. 11 is in fact

supportedy SPE.
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Table113
The Designof Binmore et. al (1991)Study

High— s, = 0.64 Low — s, =0.36
o p o p

vV 0.9 1 vV 0.9 1

FF 1 0.1 FF 1 0.1

Doesit work in practice?An affirmative answeris the essentiatlaim of Bin-
more,Morgan,Shaled,& Suttons (1991)researchThey arrangefor the play of
four typesof gamesall sharinga commonimpatiencecoeficient (discountquo-
tientsinterpretedas risk valuesor vice versa),which are classifiedas shovn in
Table11.3(outsidevaluesarenormalizedto unit pies).

The outsideoptionto Playerl, s, is negligible andsetto 0.04for all games.
Piesare £5 sterlingapiece. As commonwith equalparameteigames piesand
outsideoptionsshrink over time wheneverimpatiences a discountquotient. The
main findingscanbe detectedn Fig. 11.9. Referringto Player2’s high outside
optioncondition,Binmoreetal. (1991)wrote:

It is not surprisingthat 50 : 50 doesnot do well whenplayer2 canget64%
withouttheconsentf hispartnerbutit is instructve thatS-T-D predictsvery
mud betterthanD-M-O in forcedbreakdavn gameswhile D-M-O predicts
betterthanS-T-D in optionalbreakdavn games(p. 304, italics added)

Unfortunately this beautifulresultis not replicatedso well whenPlayer2’s
outsideoptionis low.® NotealsothatSTD, whenoutsideoptionsarezero,is also
equalsplit. Zwick et al. (1992) shaved that equalsplits are typical regardless
of the probability of accessgo the outsideoption’ Thus, the finding of splitting
differencedn thelimiting caseof FF gamesmight reflecta generalttendeng to
ignoretheeffectsof time. ThefactthatDMO is notseenn FF gamess obviously
dueto thevery meaningof voluntaryexit (whichis notavailable),andthefactthat
theforcedprobability of exiting is behaiorally irrelevant! But theoretically STD
dependn low probabilitiesand Binmore, Morgan, Shaled, & Suttons (1991)
satishctionovertheir subjects'goodbehaior is perhapsiot completelyjustified.

Outside Options — Middle RangeCases. Two otherstudiesfollowedthepath
pioneeredy Binmoreandhis associates the studiegust reported.

The researchby Weg et al. (1996)is a direct descendanof Binmore et al.
(1991). It compareglayingVV gamedo playing FF gameswvhereprobabilities
of accesgo outsideoptionsare not boundaryvalues— p € {0.2,0.8}. These
eventsarerealizedby the spinof anactualwheelof fortuneshovn to thebamgain-
ers.It allows, thereforethetestingof the prevalenceof STD wherethe normative
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Fig. 119. Finaldemandsor Playerl. A & marksrationaldemand.

point of view forbidsit. Subjectspaticipatedin both typesof gamesin the the
samesession. The paradigmis a shrinking pie whereall piesstartwith a rela-
tively large sumof $30.00. Becausehe shrinkingrateis uniformly setto 0.9,
gamesnightextendslightly but meaningfullylongerin time without dealingwith
negligible pies. Only Playerl hasa nonzerooutsideoption— oneof {3,12, 24}
in dollars® Probablitiesand outsideoption valuesdo not vary within an experi-
mentalsession.

Figure11.10presentshefrequeng distribution of first perioddemandoy the
mainparametersf the experiment.Thefactthat,for the moreinterestingparam-
eters,averagesplits do not supporttheoreticalpredictionsis perhapsinderstand-
able. The bestone cansay aboutthe resultsis that first period demandsarein
generalmonotonicwith the rationaldemands.Also, generalqualitative predic-
tions that players2 in FF gamesare worseoff thantheir counterpartsn VV is
borneout. But again rationaloutcomesarealmostneverattainedandactualmean
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Fig.1111.A treediagramof bamgainingterminationrules.

behavior is very consenrative. Theeffectsof time (or probabilitiesof termination)
areunderestimated.

Mixed Options. The researchby Kahn and Murnighan (1993) presentecan
experimentwith mixed featuresof voluntary andforcedterminationin a single
game. In orderto provide an appropriateframenork for this experiment,we
present generalframevork thatencompasseal bagainingproceduresve have
discussedofarunderasingleparadigm.n fact,therearetwo such(inconsistent)
extensionghathapperto coincidein the specialcaseof KahnandMurnighan.

Extension A. Whena playerrecevesan offer it may be acceptedr rejected.
In the former case,the gameendsas usual. Otherwise,the gamecontinuesas
follows. Therearetwo stochasticallyindependeneventsP andQ. If P occurs,
the gameterminatesmmediatelywith eachplayerconsumingan outsideoption.
Otherwise,if Q occursthen the player may announcethe immediatetermina-
tion of bargainingwith eachof the playersconsumingan outsideoption or opt
to counterproposén the next bamgaining period. If Q fails to occur, the player
counterproposeis the next period.

Therearetwo extremecaseghatwe have alreadytreated AssumethatP is the
impossibleevent. Then,obviously, we have a voluntaryoption dependingon the
occurrenceof Q. If Q is theimpossibleeventthenwe have a forcedtermination
dependingon the occurrenceof Q. Figure11.11depictsthe situationwith labels
attachedo theterminalnodesdescribinghe utility of reachinghesenodes.

Considenow thestandardrubinsteirbamgainingtree. To eachrejectionbranch
oneattacheshetreediagramto obtainthe barmgainingtreefor agenerabargaining
gamewith outsideoptions.

In this mannerwe have unified the existing bargaining schemesnto a cube
whosedimensionsare F, V, andD. A point in the cubeanda point in the unit
intenval'® is a choiceof parameters, g, 8, ands, respectiely, which with the
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additionof a utility u definesabargainingplayer A choiceof two suchquintets,
P = (&, pi,q, S, i), andanorderbetweerthemdefinesa bagaininggame(See
Fig. 11.12),denotecdby the signature(P*, P?). This unificationfacilitatesa com-
parisonof playsof bagaininggamescharacterizedperhapsby slightly different
parameters.This is so becausahe gamesgeneratedn this way map continu-
ouslyinto the predictedpayofs to Player1.2° In this mannemwe seethatthe FF
gamesandVV gamesarenot separatentities,ascould have beenassumedbut
rathermembersof a larger family of hybrid gamescharacterizedy eventsthat
arepeculiarto eachof the bagainers.

To solve this type of gamewe needour standardechniquen which we have
to defineonly theappropriatgpresentaluefunctions.But thesearesimpleexten-
sionsto thevoluntaryandforcedterminationparadigms:

PVPO(x, pi, i) = PVi(x, pi, Gi) = U ((1— pi) (1 — g)x+

(36)
(1— pi)ai max(ui(x),u(s)) + pu(s))

thatarecontinuousvhenuy; are. Again we fold the extensive gameandfocuson
its NashequilibriathatsatisfyEq. 11. Now the conditionsin Eq. 13 and14 look
asfollows:

PV1(1— X2, p2,02) + PVa(X2, p2,02) < 1 (37)

and
P\/Z(l — X1, P1, ql) + P\/l(Xl, P1, ql) < 1 (38)

for any solution (x1,x2) of Eq. 11. And we notetheindices. Playeri would not
demandmore thanx;, the solutionof Eq. 11, if andonly if Eq. 37 andEq. 38
are satisfiedand the expectationfrom a “promise” of (1 — x;) dependson j's
probabilities! LemmaPV aswell asits corollary still holdsin this extendedcase.
Thus,whenx; > s for asolution(x1,x2) of Eq. 11, the latter mustbe supported
by SPE.
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Extension B. Thereis no reasonto arrangethe eventsP and Q in this order
Their reversalresultsin a gamblewith, in general differentexpectedutility. One
casein which thetwo schemesoincideis the casewherethe eventQ is the sure
event.

For then

PV(x,p,1) = u"(max((1- p)du(x) + piu(s), u(s))) (39)
underscheme-Aand

PV(x,p,a) = u™}(g(max(u(s), (1~ p)3u(x)) + pu(s))+
(1=a)((1~P)3u(x) + pu(s)))

underscheme-BA substitutionfor g = 1 in thelattergivestheresult.

Very interestingcasesariseby the choiceof extremevaluesfor someparame-
tersandamongthoseis thecasewhereqg; = 1 and0 < p; < 1, whichwasexplored
by KahnandMurnighan(1993). The only asymmetryallowed amongthe play-
ersis reflectedby the outsideoptionsratio the experimentershoose— o, which
meanghatonly oneplayerhasa nonzerooutsideoption. In a sensetheir exper
imentis one of several naturalcontinuationsof the other experimentsreported.
Thenovelty liesin the mixing of voluntaryoutsideoptionsweightedby a certain
risk (high or low) of forcedtermination.

Kahn and Murnighan (1993) optedfor gamesof scheme-Bsemanticswith
commonterminationprobability p, commonvoluntaryexit probabilityqg = 1, and
a commondiscountquotientd. Oneplayerhaszerooutsideoptionandthe other
may opt for 0.1 or 0.9 of the pie in ary givengame.Theseoptionsare available
(in two differentgames)n bothordersto Playerl and2, respectiely. Thegames
areimplementedy the shrinkingpie methodandinformationexchangebetween
playersis by humanmessengersRandomeventsarerealizedby coin tossingor
chip drawing. All gamepiesare$10at the startof the negotiation. In additionto
theseparametergthergameparameterareall elementsrom theproductof these
sets:F = {0.05,0.5} for probabilitiesof forcedterminationsandD = {1,0.8} for
discountquotients.

Two lastremarksregardingthe designarein order First, whenPlayerl has
a nonzerooutsideoption, he or shemay leave the bargainingbeforeeven giving
anoffer. Secondpecausghe zerooutsideoptionis not normatively effective, the
experimenterdiave optedto expresst by notallowing ary voluntaryoptingto its
owner. This makestheframingof bamgainingabit morenatural?! In thelanguage
of thisresearchthe probabilityq couldin factbeary value.

Table 11.42 presentshe subgameperfectpredictionand meanfirst period
offersfor the variouscombinationcells of the experiment. Admittedly, the table
is complex. But a glanceat Fig. 11.13revealsalmostall the readermay need
to know. It plots the meanfirst-perioddemandon the predictedSPE demand.
Note that subgameperfectnesss rare, andthat subjectsoverdemandvhen SPE

(40)
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Table114
Mean First Period Demand (Slanted)and SPE (Upright)
q=0 q=1
p o s Rich Poor Rich Poor

0051 0.1 0.6500 0.6500 0.5600 0.6200
0.5615 0.4615 0.5615 0.4615

0.9 0.8500 0.6200 0.9200 0.2500
0.9513 0.0513 0.9513 0.0513

0.80.1 0.5700 0.5500 0.5700 0.6300
05772 05563 0.5772 0.5563

0.9 0.5700 0.5100 0.8400 0.2500
0.6491 0.4616 0.9240 0.1000

05 1 01 0.5300 0.6300 0.5600 0.6400
0.7000 0.6000 0.7000 0.6000

0.9 0.8100 0.4800 0.9300 0.3000
0.9667 0.0667 0.9667 0.0667

0.80.1 05900 0.5900 0.6200 0.6100
0.7381 0.6548 0.7381  0.6548

0.9 0.8500 0.4900 0.9100 0.2900
0.9286 0.1786  0.9600 0.1000

Note. SPES are significantto at leastthree digits (the minimum necessaryo
distinguishbetweerthe cells)andobsenedmeansareroundedo two digits. The
rich playeris theonewith s > 0. Columnsclassifyfirst movers.

indicatessmallvaluesunderdemandn high SPEvalues andareinsensitvein the
middlerange?? It is alsomisleadingo quotethe Pearsorcorrelationcoeficient of
0.86 here.With therangeof predictedvaluesasit is, very approximateoehaior
is sufficient to inducethis artifact.

Abstract Vs. Potential Outside Options. “To acceptor not to accept”is the
fundamentabuestionfor oneof the partiesat arny givenperiodand,of coursepy
implication, “what an is acceptablelemand”to the other Naturally, it depends
ontheavailablealternatves. But whatarethey? In Rubinsteins formulation,the
singleoptionis to initialize the bamgainingat the next period. The outsideoptions
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addcertainotheralternatvesto thelist. Thesealternatvesshouldbelookedatas
encapsulationsf certainsituationsthatareexpectedo neta presenutility.

We have seensomemore or lessreasonabldargainingbehaior whensuch
outsideoptionsarepresen{Binmoreetal.,1989,1991;Kahn& Murnighan,1993;
Weg etal., 1996). Zwick, RapoportandWeg (1996)testedthe hypothesisorigi-
nally madein Weg etal. (1996)that“correct” behaior doesnotnecessarilyeflect
the centrality of SPErationality in players’ considerationsbut is ratherdueto
mauginal cuesprovidedin thesestudieswhichin turn narrov the acceptableut-
comessignificantly For example,considerKahn & Murnighans (1993)games
whereoneplayer’s outsideoption nets90% of the pie. Any demandundermary
experimentakonditions,cannotbetoo far from therationaldemand.

For anotherexample,considerthe bagainingproblemwith signature(P*, P?)
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whereP! = (1,0.1,0,0.64,1) andP? = (1,0.1,0,0,1) investigatedoy Binmore
etal. (1991). Thisis anFF gamewith 0.64 outsideoptionto Player2 andarel-

atively small probability of the gameterminatingafterary givenrejection.Thus,
the costof rejectionto the receving partyis rathersmall. Therefore the players
aremadealmostsymmetriovith respecto theremainingpie after Player2 is im-

mediatelypaidthe outsideoption. Therefore STD is expected.Of course for the
normatietheoryto resultin auniqueprediction,someuncertaintywith respecto

continuations necessargndthis happengo coincidewith theideathatin caseof

insufficient reasonpnetendsto arguefor the equalizingof treatmentsHowever,

whenone staysaway from the limit casesgitherbecauseahe discountquotients
are steepor becausehe probability of terminationis high, baigainingis greatly
affectedby time.

Weknow from Zwick etal. (1992),Weg etal. (1990),andKahnandMurnighan
(1993) that peopleare highly conserative and lack an appreciationfor these
effects. Weg et al. (1996) conjecturedthat when outside options are given in
their unencapsulatetbrm, for example,as outsidebargaining options,their ef-
fectswould bewashedaway. To testthis hypothesisZwick et al. (1996)consid-
ereda gameA definedrecursiely asA = (P, P?) whereP! = (5,0,1,A,1) and
P? = (8,0,1,0,1).2* Thatis, althoughPlayer2 hasavoluntaryoutsideoptionval-
uedatO, Playerl is entitledto opt out to play a bargaininggameof the sametype
with anothermlayer The semanticgivento this gameareasfollows. Thereare
threeplayers,onesellerandtwo buyers. The sellersellsa productvaluedby the
sellerat$0 andto eachof thebuyersat$10. Thesellingpriceandpricesaving are
discountedy o for every participant. Thebargainingstartswith theselleroffering
apriceto abuyerof choice.The buyermayacceptandthe bagainingterminates,
opt out andreceve nothingwhile the seller startsthe samegamewith the other
buyer (thebamainingclock doestick), or rejectthe offer in orderto make a coun-
teroffer to the sellerin the next period. The sellerthencanacceptimmediately
optto restarthebargainingwith the otherbuyeratthe next periodby makinghim
or herapriceoffer, or rejectandmake a counterofer to the samebuyerin thenext
period.

What should reasonabléamgainersdo? Of course,the outsideoptionsare
irrelevant! For the buyersan outsideoptionis certainlya nongainingadvantage
andthereforemightaswell beignored.And thesellermustbeindifferentbetween
either of the buyersand thereforeexpectsto obtainthe sameas when playing
againsta single buyer. Therefore,reasonablgeopleare not impressedy the
enrichedsituation.Thepriceis setby thelogic of a 2-persorRubinsteirparadigm
— 15 to thesellerandtherestto oneof the buyers2

But the datatell a different,nonetheles$amiliar story (recall Weg & Zwick,
1994). We do not cover the full designof Zwick et al. (1996)here. They com-
paredstandardRubinstein$ bamgainingto bamgaining underthe bargainingrule
definedby A with two between-subjealiscountquotients: % and 2. The ob-
senedfirst period priceswhenthe sellerhasthe optionto switch buyersaresig-
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nificantly higherthanwhenheor shedoesnot, contraryto normative expectations
(Fig. 11.14). Further demandsn the 1-buyer gameare not predictedby ratio-

nal behaior (notethe distinctly modestdemanddor & = ¥%). This aspects a

replicationof Weg, Rapoport& Felsenthab (1990)results.

DISCUSSION

Ourconclusionsrerathersimple,althoughyetverytentatve: Peoplearereason-
ablewithin their cognitive limitationsand moral constraints.This doesnot mean
thatthey behaerationallyaccordingo point specificationsNo oneexpectsthem
to. Rather peoplerespondio changingbargainingconditions,in general,in the
right directions.Thisis clear, for example,by recallingthat:

i. Voluntarily terminatedPlayer?2 is in generalmore powerful thana forcibly
terminatedPlayer2 with the sametime and utility preferencegWeg et al.,
1996).

ii. Underwell-choserparameterd)MO is obsenedundervoluntarytermination
andSTD underforcedtermination(Binmoreetal., 1989,1991). We alsoob-
sene the limitation of thoserules (Kahn & Murnighan,1993). The mental
accountindgor thisis the sameasfor the previousitem.

iii. Arithmetic depreciationis, sometimesunderstoodand actedon very accu-
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rately (Rapoportetal., 1990;Weg & Zwick, 1991).

Buttheserulesareeasilyfoiled by well-choserredherrings. Thus,ultimatum-
like gamesituationsattenuatelemandgWeg & Zwick, 1994)andimplementing
outsideoptionsasactualbargainingbolstersthem (Zwick et al., 1996). In both
casessomeseeminglystrat@ic optionstake centerstagein humanbargaining
behaior.

And finally, thereis a cuewhoseeffectscanincreaseor diminish stratayic ac-
curag dependingnwell-specifiedcircumstanceasfollows. Nothing,of course,
changesn the preferencestructureof a Rubinsteinbamaininggamewhentimeis
takeninto accounfrom theveryfirst period2® This rule wasadoptedy Rapoport
etal. (1990)andWeg andZwick (1991),but the customaryrule wasfollowed by
Weg andZwick (1994)in anarithmeticdepreciatiorbaigaininggame. More ex-
tremedemandsverefoundwith theimmediatedepreciatiorrule. It appearghat
the advantageof the strongplayer (particularlywhenmoving first) is more eas-
ily seenwhenthe effectsof delaysin cominginto an agreemenareimmediate.
On the other hand, Weg et al. (1990) shaved that this immediatedepreciation
hasquite a different effect whenimplementedgeometrically Subjectsseemto
solve theequatiorx; & = (1 — x1)d, andthusappropriatehe pie in proportionto
their counterpars discountquotient. This impliesthatwhendiscountsareequal,
equalsplit prevails regardlesof time effects. We concludefurther thatthe idyl-
lic prescriptiongiven by the DMO rule is behaiorally borneout only whenthe
discountquotientsare high (when rational and behavioral focal predictionsare
approximateljthe same)andcanbetotally fallaciousotherwise We just have to
considerequalbut steeptime effects. In this casewhenPlayer2’s outsideoptions
are high but lessthan half, he or shemay still obtain half the pie unjustifiably
Thisis becausehe Rubinsteinbargainingpartition, which predictsa low shareto
player2, is invariably missed. The neglect of stratgyic advantageon the part of
subjectsalsocanbe seerwhenit is derivedfrom risk (Kahn& Murnighan,1993;
Zwick et al., 1992). But in thesecasesthe argumentis slightly wealer dueto
unaccountedby experimentersgffectsof risk nonneutrality

Whatstorycanwe whip up (for thedatais ratherscarcefrom thesesuccesses
andfailuresof rationality? Bargainingis a group problem-solvingactiity with
well-specifiedrulesof communicatiorandmessageontent.And, like ary other
problemsolving, it relieson meaningfulandreliableclues.Out of the cluespeo-
ple createthe story and even setthe goals(suchaswealth, wealth mitigatedby
fairness}hat they wantto achiere. Of course bamgainersarenot clonesof each
other andthereforethe scenarioghey build independentlyf eachotherarenot
necessarilcompatible althoughthey oftenare.

Bargaining Time

The essencef thetheoreticakucces®f the noncooperatie approactto bargain-
ing restsnoton utility, linearor not, but onthediminishingusefulnessf any gain
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overtime?’ This s clearintuitively, andcanbe seenby two unknavnswhenthe
discountguotientsarel, andthereforeprovidesno cluefor adequataction.When
time of agreementnakesa difference playersneedto realizewhatan adequate
proposals.

In thecaseof afinite horizon,it is verytemptingto try to reachit. Thisleadsto
thefollowing calculationwhichis shovn only for thesimplestcase thediscounts
arethe sameandthe utilities areidentities. The properdemandfor a gameof
order0 (which endsaftera singledemand)s ap = 1, andthe properdemandor
a gameof ordernis ay = 1 — dap—1. The problemboils down to the solution of
this recursve definition. Reachingfor the horizonmeansbackward induction?®
Everyoneknowswhatag is, unlessperhapgairnesss atissue.But, very quickly,
therecursve stepgoesout of behavioral tune(Neelin, Sonnenscheir& Spiggel,
1988; Ochs& Roth, 1989). In fact, this approachwhich may seemattractie,
is very cumbersomend seemscognitively intractablefor subjects.Learningis
expectedto be difficult (in fact, a neverending problem)becauseof its linear
dependencen gameorder

The infinite horizon casehastwo immediatebenefits. First, becausehere
is no definite endto the bargaining, the fairnessissuederived from last mover
adwantage,asis known from ultimatum plays, vanishes. This can be seenby
imitating the procedurgakenin Endnote28. Assumingthat0 < ap = b < 1, the
payof to player1 for a gameof ordernis ¥ o«j<n_1(—8)' +b(—8)". Takingthe
limit asn — oo shaws that fairnessconsiderationslueto endgameeffect do not
appeato beanissue.

Secondtheinfinite horizoninvites a differentapproact?® which oftenworks
but caneasilybe madeto fail. If thepresenis notdiscountedthereis a strongin-
centiveto ignoredifferentialeffectsof baigainingdelays.If no delaysarewanted
andtheinfinite regresss unpalatablewhatseemsnorelik ely thananequalshare?
This is the commoncase exceptfor a small commissiontaken by the bamgainer
who is the proposer It mustbe notedthatthis is the behavior of naive subjects,
who, aftera few practiceplays,aremadeto play a few gamedor real. We have
no knowledgeatall of whatthe effect of saturatedehaior is.

Whatif the pie is depreciatedmmediatelyandperhapsvenatdifferentrates?
Again, subjectsareguidedby manageabl®ols. If theframeis discountquotients,
thenequalnetshareseemsappealing.But eventhis solutionmay tax communi-
cation channels. It relies on both playersrealizing the reasonfor suchan odd
offer, especiallywhena strongplayeris to receve it.%° Failure to coordinatein
this manneiis thereasorfor the prevalenceof thefocal equalsplit.

Thearithmeticframehasadifferenteffectin thiscase.Recallthattherescaling
of the exponentialutility structurealso providesfor a differentand muchmore
meaningfulconsequencef delayin that utility may be reflectedin actualloss,
penetratingputthepielimits. Forthisreasonperhapsmary subjectgendto settle
on extremedemandwery quickly, but only whenlosstakesits toll immediately



11. INFINITE HORIZON 291

Outside Options

The introductionof outsideoptionshasresultedin someof the bestsupportthat
subgameperfectnesdasrecevedin the areaof bargainingundergeometricde-
preciation. This might seemsurprisinggiven the counterrationabehaior under
purebamaining. Nonethelessye give our interpretation— aninterpretatiorthat
underscoreghe needto understandhe precisemechanismsgjoverning pure bar
gaining.

The relative successn playing outsideoption gamedlies in the clearunder
standingof theimmediatempactof theaccesdo thoseoptions.

It is cognitively trivial to realize (becausat lies at the very core of whatan
outsideoptionis andis thusunderstoodat the instructionallevel) that the larger
theoutsideoptiononehasaccesso, thelargerthe pieceof thepieit is reasonable
to expectunderary givenconditions.In asensetheintroductionof animmediate
outsideoption bringsthe gamecloseto a singleperiodgame.

Whenaplayeris in aforcedterminationstate(F), the higherthe probability of
terminationthe closerthe payof to the outsideoption. This may not be the case
if the outsideoptionis low enoughto raisefairnesgestraints.

When a playerhasthe option to terminatethe gamevoluntarily, the outside
option providesa certainprotectionagainsthe otherwiseinferior bargainingpo-
sition. Obviously, thelargerthe probability of accessthe betterthis protection.

We think thatthis typeof simpledeductionwhichfollowsdirectly from thein-
structionsdrivestheresultsobtainedn bamgainingexperimentswith sideoptions.
Thiswill betrueto alarge degreeregardlesf the precisebarmgainingprocedure.
But thereis moreto the bamainingthatcanbe derived only from the specificna-
ture of the discountedalternatingprocedure For example,considerthe natureof
the protectionprovided by the voluntary position. In orderfor this to be compat-
ible with rationalbehavior, it is requiredthatthe playersare bamgainingrational.
For example,underpurebarmgainingwith discounts(d1,d,) = (0.7,0.9), Player2
is offeredabout73% of the pie throughbamgaining. If the voluntaryoutsideop-
tionis 20%,heor sherejectsanything smallerthanthisvalue(73%)becausef the
bargainingadvantage However, if theequalsharerule prevails,thenevena 50-50
split is reasonabl@nd even attractve. In fact, this behaior seemgsretty likely,
albeitirrational. Considemow the sameparametergsxceptthatthe gameis made
into a single periodgamewith Player2 having anoutsideoption of 50%. In this
casethesubgameerfectdemands 50%,which dealsPlayer2 out. Theseexam-
plessene to shown thatestimatingthe usefulnes®f anoutsideoptiondepend®n
theunderlyingprevailing bargainingrationality DMO behavior is thusfortuitous.
Its beautyreliesmoreon its mathematicatklegancethanonits behaioral reality.

Final Remarks

In theabstracto his paperontheinterpretatiorof gametheory Rubinstein(1991)
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wrote:

It is aguedthata goodmodelin gametheoryhasto berealisticin the sense
thatit providesa modelfor the perceptionof realllife socialphenomenalt
shouldincorporatea descriptiorof therelevantfactorsinvolved,asperceved
by the decisionmakers. Theseneednot necessarilyepresenthe physical
rulesof theworld. It is not meantto beisomorphicwith respecto “reality”
but ratherwith respecto our perceptiorof regularphenomenén reality. (p.
909)

In experimentaleconomics,we often createthe “realities” to be tested. It
seemghatour subjectsinsiston telling a story differentfrom SPE.Do they per
ceiveadifferentrealitythanintended?As we have alreadypointedout,onestepin
the abstractiorprocessdn the areaof baigainingwastaken by Rubinstein(1982)
himselfin his research.The essentiaktepwas the freeing of bamgaining mod-
elsfrom anirrelevant restriction— the finite horizon. Nonethelessan inherent
asymmetnbetweerthe playersderivedfrom the discreteand orderedprocedure
is still left — a vestigeof technicalrequirements.Thesemight be overcomeby
consideringhediscountquotient— 9, ascumulative over infinitely smallsubin-
tenals of the unit of time. This is anothermethodof abstractionalthoughit is
not in the formal rule of the game. In that case the payof to player1l in pure
bargainingbecomes

im 1-& logd;
x=01— (6162))( h |0961 + |Og62 )

(44)

It follows thatthe orderin the alternatingprocedurdosesits significancefor the
partitionis independenof it. Similarly, one may operateon Eq. 35 in the same
manne?! andobtainthe STD rule, regardlesf the probability of accesperunit
of time. In this way, one may arguefor the Zwick et al. (1992) resultsof equal
split whenthe probability of accesss far from 0.

Themaindifficulty, of coursejs thatthelimit processiasnoimplementatior??
How would subjectseforcedto considersmallerintervalsof timeif theiractions
areunitizedby the experimenter?0One may think of the limit procesgakingthe
role of anaxiom. But thenwe fall backto squareone,startedwith the Nashax-
iomatic method. We are inclined to believe that anotherstepin the processof
abstractiorstartingwith Rubinsteins neededAs we have heuristicallyindicated,
aprocedurabymmetrizatiorof playersis requiredto achieve predictionsthatbet-
teraccommodatsubjects’hehaior.
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ENDNOTES

n

~

Harsawi (1977), for example shavs that a certain Zeuthen$ processfor bagaining
doesleadto Nashs baigainingsolution. But it seemshat the requiredprocedureis
quite cumbersoméor practicalapplication.Nashprovided his own suggestionywhich
restson a technicalselectioncriterion amongthe mary Nashequilibria of a certain
demandyame.

For our needsa subgames to agameasasubtreds to atree.

Thereareat leasttwo generalproblemsin applyingNashequilibriato our case.First,
the Nashequilibrium lacks predictive value. Thereare simply too mary of them. In
factevery partitionis supportecby a Nashstratey. Secondjt ignoresthe depththat
is inherentin atreestructure which is relatedto thefirst problem.Thefactthatacting
outastratgy in atreegameunfoldsovertimeis responsibldor eliminatingincredible
moves.

Considera generalrepresentatiornf preferenceover space-timegiven by the utility
U (x,t), whichis continuousjncreasingn thefirst variableanddecreasingn the sec-
ond. AssumethatU (x,t) —U(x,s) = k(t —s) for k < 0. ThenU (x,t) = U(x,0) + kt.
Thusthe preferenceelationis representedy u(x)8 whereu(x) = exp(U(x,0)) and
0 = exp(k). The assumptionpermitting this representatiomre acceptableéo us and
thereforewe limit our discussiorto thebawgainingprocedureandits impacton beha-
ior.

Thisis becausehelogarithmictransformatiorthatallows for a simplelinearrepresen-
tationof utilities overtime, becausexp(x)d° > exp(y)&' is equivalentto x— cs>y—ct
wherec = —log(d). Although the original representatiors useful for a more com-
pacttheoreticatreatmentthe logarithmicrepresentatiois particularlyconvenientfor
experimentation.

Similar to theway compoundednterestis treated.

ConditionE is notreportecheredueto thefairly consistenequalsplit behaior found.
But quite generally unboundedorizonbaigaininggamesareisomorphicto infinitely
mary of their subgamesRaw dataof last offers shaw corvergentbehaior that quite
oftenrevealshow closelysubjectslay the original game.

. We do not expect,however, thatall fixed-costpredictionswvould be verified. Note, for

example,that the expectedsharesare contingentonly on the ordinal relationshipbe-
tweendelaycostsratherthanon actualquantitatie levels. Rapoportet al. (1990)and
Weg and Zwick (1991) experimentedwith highly separablgparametricvalues. This
is understandablgiven that an initial testof a theorytendsto be doneunderrather
“promising” conditions.However, Zwick andChen(1997)demonstratethatcostval-
uesdo indeedaffect agreementm a significantway.

10.Theexperimentdiscountsrom the very first period!
11.This is not exactly the case.One comparisorwasindeedproposedzthe dictatorgame

(Kahnemaretal., 1986),whichis discussedater.

12.Exactly whenthe clock ticks makes a differencecomputationally but conceptuallyit

haslittle significance.

13.Thefunction f ~lis everywheredefinedandnon-decreasing\otethat f canin general

obtaininfinite values,but it is irrelevantin our application. It is continuousf it is not
infinite (regardlesof whetherf is).

14.For an ardentattemptto differentiatefairnessfrom greed,andthusto disprove Kah-
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neman Knetsch,& Thalers (1986)conclusionsseeHoffman, McCabe,Shachatand
Smith (1994)who by carefulexperimentatiorarguedfor selfishdictators. A later at-
temptby Hoffman, McCabe,and Smith (1996)to replicatetheir earlierresultsunder
improved experimentalcontrolhasnot beencompletelysuccessful.

15.Another perhapsmore successfulcontrol gameto the classicalultimatum, may be
foundin BoltonandZwick (1995)wheresingleperiodbaigainingis suggestedPlayerl
may choosebetweena 50/50 split and, without risk, a more extremepartition. A re-
jectionby Player2 doesnot affect Playerl’s share.The main differencebetweerthis
gameandthe dictatoranalogis that Player2’s acquiescences not requiredto imple-
mentPlayerl’s desire.This could be desirabledependingn one’s point of view.

16.Binmore,Morgan, Shaled, & Suttons (1991)attemptto clarify this point throughthe
removal of attractive focal pointsby changingthe denominatiorof the pie is lessthan
acompletesuccess.

17.RecallthatSTDis expectedonly atthelimit.

18.Having Playerl possesthemeaningfuloutsideoptionmalesthe gamesnorecomple
thanBinmoreet al. (1989)andBinmore et al. (1991) dueto the needto accountfor
Playerl’s opportunitiesbeingdevaluedoneperiodafterthe commencemertf play.

19.We separatehe dimensiondn this way for thelack of visible four dimensionaboxes.

20.For simplicity, this portrayalassumegdentity utilities, denotedoy 1.

21.Binmoreetal. (1989)optedfor a similarframingwhena playerhasa voluntaryoutside
optionof zero. Thatthis simplificationmay be behaiorally unwarrantedvasnotedby
Weg andZwick (1994).

22.The authorsare thankful to LawrenceKahn and Keith Murnighanfor furnishing the
datafor thistable.

23.By looking at the table one seesthat split-the-diferencefails for extreme predicted
allocations.For g = 1, very weakbamgainersignoretherealitiesaltogether

24 For this specialcasewe shallassumehat outsideoptionsareconsumed periodlater
thanthe usualcorvention.

25.In reality, neitherbuyerhasan optionto leave the bamgaining. In this way, theapparent
disparitybetweerthe buyersandthe selleris madelarger

26.Thus,theutility of x attimet is u(x)3** fort = 0,1, ..., insteadof the usual,u(x)3'.

27.Thestationarityrequirements reviewing Equation2, whichis reducedo asingleequa-
tion with moretechnical.

28.Anotherway is the paperandpencilapproachLet

ox) = 3 an" (41)

n>0

beapower serieswith coeficients,an, beingthepayofs to Playerl in Stahlbagaining
gamef ordern and

P =y X", (42)

Thenwe seethat (W(x) — d@(x))x+ 1 = @(x) andtherefore

P +1 WX

@) = 1+0x 1+

It follows thatan = ¥ sio(—0)'.
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29.Entertainingdelaysjust inducesgamesof the sametype, andthe “horizon” remainsas
faraway asit normallyis.
30.Thereforethisrule is oftenadoptediy weakproposers.
31.Thatis, by considering
1+ (1-p)P*sp—

2—a(p.x) (49

asx — 0 wherethefunctionw(p,x) — 0 asx — 0.

32.Limit procesds acommonmannerof definitionin certainareasf mathematicsTake,
for example,the conceptof area.But this is preciselywhatit is: a definition, whichis
notappropriatén the casewe arediscussing.
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