Aldrin Epoxidation: At least from A to D!

Robert I. Krieger Personal Chemical Exposure Program Department of Entomology University of California, Riverside

Aldrin

Biology

Chemistry

Aldrin

- Brooks, Agricultural Research Council, Pest Infestation Laboratory, Slough, UK
- Lewis: housefly mcs, CO inhibition
- Ray: in vivo CO inhibition
- Wilkinson: MDPs, synergism

"Our ability to use to maximum advantage and in relative safety the vast number of drugs, pesticides and other lipophilic xenobiotics currently at our disposal is dependent to a large extent on our ability to establish their metabolic fate in living organisms."

C. F. Wilkinson

Cornell University, 1979

Chemistry

- Southern armyworm Prodenia eridania
- Enzyme source: Microsomal mixedfunction oxidases
- Substrates
 - Aldrin
 - Aniline
 - p-Chloro-N-methylaniline
- Cytochrome P-450

Whole larvae and a blender did not yield active epoxidase!

Tissue distribution of epoxidase activity in southern armyworm larvae

Tissue	nanomoles dieldrin/minute $x 10^3$			
	100 mg	larva	mg homogenate protein	
Gut	344	110	702	
Fat body	55	23	42	
Malpighian tubules	25	1	42	
Carcass	4	5	7	
Head	307	23	147	

Similar profile in 9 of 10 species (exception Trichoplusia ni)

Microsomal mixed-function oxidase activity of caterpillar gut tissue

Intracellular localization

Differential centrifugation

Discontinuous gradients

NADPH and O₂

CO inhibition

Substrates

• Aldrin

epoxidation

Aniline

hydroxylation

• *p*-CI-*N*-methylaniline *N*-demethylation

Brooks, Progress in metabolic studies..., Wrld Rev Pest Cntrl, 1966

Epoxidation and Hydroxylation

- Whole caterpillar mcs
- Gut (*minus* contents) *plus* ALD or DHI in buffered NADPH-generating system

- Foregut, **Midgut**, Hindgut
- Other species:
- Snip, Snip, and Unzip!

After the organism has been reduced to its constituent molecules, it is necessary to put it back together again....

E. Hodgson

Enzymatic Oxidations of Toxicants, 1968

Biology

- 1. Do ALD epoxidation and DHI hydroxylation represent the oxidative metabolic capability of living SAWs?
- 2. Does epoxidase activity in midgut signal function in metabolism of lipophilic chemicals in caterpillars?
- 3. New perspective....
 - adaptive advantage
 - CYP3A function in intestine

Cyclodiene toxicity in southern armyworms				
Acute Toxicity	LD50 (mg/kg) 24h oral			
Aldrin	14			
Dieldrin	16			
Isodrin	15			
Dihydroisodrin	>450			
Piperonyl butoxide	>500			

Aldrin metabolism in southern armyworms (Dieldrin / Dieldrin + Aldrin) x 100								
Treatment	Hours 0	1/2	1	2	4	n		
Aldrin 5 ug oral	11	33	55	71	84	8		
<i>plus</i> oral pip butox (25 ug)	6	22	25	27	48	4		
<i>plus</i> topical pip butox (25 ug)	-	29	61	70	81	2		
<i>pre-</i> phenobar bital	18	37	61	76	83	2		
<i>pre-</i> dihydrois odrin	-	-	62	-	-	2		

Gut epoxidase activity of caterpillars and their host plant families: **Possible role in plant defences!**

	Number of plant families			
Caterpillar (species)	monophagous 1	oligophagous 2-10	polyphagous 11 or more	
Saturniid (6)	0	4	2	
Lasiocampid (2)	1	0	1	
Geometrid (1)	0	1	0	
Sphingid (1)	1	0	0	
Notodontid (1)	1	0	0	
Lymantrid (1)	0	0	1	
Noctuid (17)	3	8	6	
Arctiid (4)	0	2	2	
Nymphalid (1)	1	0	0	
Danaid (1)	1	0	0	
Mean epoxidase pmole/mg-min, n=2>	20.4	90.7	294.4	
n	8	15	12	

Piperonyl butoxide inhibition and induction of DHI homogenate hydroxylation

Function of intestinal CYP3A4

- cytochrome P450, family 3, subfamily A, polypeptide 4 [EC:1.14.14.1]
- First-pass metabolism in small intestine
- ALD epoxidase and P-450 association
- ALD epoxidation and DHI hydroxylation occur in small intestine

...many questions remain of fundamental importance to understanding the molecular actions of neurotransmitters and insecticides on ion channels. ... rapid advances in molecular biology, will ensure a prominent use for polychlorocycloalkanes and newer chemicals-with related actions as tools in these explorations. G. T. Brooks, 2001