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Testing for the Equality of EC50 Values in the
Presence of Unequal Slopes With Application

to Toxicity of Selenium Types
Daniel R. JESKE, Huaying Karen XU, Todd BLESSINGER,

Peter JENSEN, and John TRUMBLE

The likelihood ratio test (LRT) for the equality of EC50 values using a probit model
that has parallel slopes is implemented in a variety of software packages. A preliminary
LRT can be used to ascertain the plausibility of parallel slopes. Testing for equal EC50
values is not as straightforward if the preliminary test rejects that the slopes are equal or,
equivalently, if a practitioner would rather not deal with the implications on the size of
the test in the presence of the preliminary test. An LRT for testing equal EC50 values
is not available in software packages for the case of arbitrary slopes. In this article,
we describe a simple and effective algorithm for implementing the LRT procedure in
this case. We also derive a quadratic form test procedure for the same hypothesis and
compare the two tests (size and power) in the context of our application that deals with
comparing the toxicity of four different types of selenium. The R-code is available as
supplemental material online.
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1. INTRODUCTION

The scientific literature in entomology, environmental science, and toxicology fre-
quently use log-dose probit analyses of chemicals to determine effective concentrations
(EC) of toxins for specific organisms. EC levels are the concentration levels needed to
eliminate a specified level of the population. Of frequent interest is the EC50 level, which
is the concentration level that kills 50% of the population. Comparative data on EC levels
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historically have been used for ranking toxicants, particularly pesticides (e.g., see Brown
1958 for an early reference). Rankings are currently used to determine the signal words
(e.g., danger, warning, etc.) required by the U.S. Environmental Protection Agency (EPA)
on all pesticide labels. Information on effective concentrations can also be used to com-
pare specific forms (or formulations) of individual toxicants as well as combinations of
toxicants. This information can provide insight into the potential additive, antagonistic, or
synergistic effects of chemicals and combinations of chemicals (e.g., Van Gestel and Hens-
bergen 1997). Finally, in risk assessment studies, such comparative toxicological data can
be used to estimate noeffect levels for further testing, or to help decision making efforts
when production or release of two or more toxicants is contemplated.

Ranking toxins based on EC values is more complicated when the dose-to-response
curves for the toxins have unequal slopes. In this case, the ranking results depend on which
EC level is used. This complication has been recognized in the toxicology literature, but it
is still common practice to use the EC50 level for ranking purposes (see Van Birgelen et
al. 1995 and Zeiger et al. 2001). One reason for continuing to use EC50 values for ranking
in this case is that they are the EC levels that can be estimated with the highest precision.
Lacking in the literature to date, but discussed in this article, is a suitable precursor test
(to the ranking) of whether the underlying EC50 values are all equal when the toxins have
different slopes.

The data from a typical toxicology experiment take the form of independent observa-
tions {Yij : 1 ≤ i ≤ I,1 ≤ j ≤ Ji}, where Yij denotes the number of organisms that were
killed when exposed to the j th concentration level of the ith toxin. Here, the notation in-
dicates that I toxins are under study and the ith toxin utilized Ji different concentration
levels. The probability model for Yij is binomial with sample size nij and probability of
death pij . Here, nij represents the number of organisms exposed to the j th concentration
level of the ith toxin.

A traditional toxicology model for the Yij observations extends the binomial model
by relating the pij values to the concentration levels of the toxins through a so-called
probit model of the form �−1(pij ) = αi + βixij , where �−1(·) is the inverse of the
cumulative distribution function of the standard normal distribution, xij is the (known)
j th concentration level that was used for the ith toxin, and (αi, βi) are unknown toxin-
dependent intercept and slope parameters. An equivalent way to express the probit model
is pij = �(αi + βixij ). A generalized probit model that incorporates death by natural
causes is pij = δ + (1 − δ)�(αi + βixij ), where δ represents the probability an organism
died in the absence of any toxin (i.e., death by an otherwise natural cause). Often δ is
estimated by exclusively using observations from a control experiment where the concen-
tration level is zero, and then interpreting the estimated δ as a known value. Through-
out the remainder of this article, we adopt this practice. Under the generalized probit
model, EC levels are defined with respect to the subpopulation of organisms that escape
death by natural causes. Hence, the EC level of the ith toxin that kills x% of the popu-
lation is (�−1(x/100) − αi)/βi . In particular, we let the EC50 values be represented by
Ri = −αi/βi .

Our toxicology experiments were performed to compare the toxicity on flies of four
different forms of selenium. Selenium is a metalloid with several valent states, each of
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Table 1. Data from toxicology experiments with selenium.

Selenium Conc. Samples, Deaths Selenium Conc. Samples, Deaths
type xij nij Yij type xij nij Yij

1 0 151 3 2 0 141 2
1 100 146 40 2 100 153 30
1 200 116 31 2 200 142 59
1 300 159 85 2 300 139 82
1 400 150 102 2 400 154 62
1 500 140 112 2 500 155 85

3 0 137 4 4 0 152 3
3 5 106 0 4 5 152 7
3 25 63 11 4 25 150 11
3 50 145 22 4 50 153 45
3 100 127 31 4 100 125 74
3 200 140 105
3 400 172 166
3 800 188 188

which are found in the environment at significant concentrations. Historically, toxicologi-
cal data have been collected only for total selenium levels, as it was not possible to detect
the different forms of selenium in organisms or the environment. Detection is now possible
with the emergence of new techniques and technology and thus, the important problem of
characterizing the toxicological profiles of the most prominent forms of selenium can be
addressed. The data in Table 1 resulted from our experiments with four different forms
of selenium (selenate, selenite, selenomethionine, and selenocysteine). We subsequently
identify the four forms of selenium as types 1–4.

The four observations from Table 1 at zero concentration can be pooled to obtain
δ = 0.021 as the probability of death by natural causes. Maximum likelihood estimates
(MLEs) and their standard errors (shown in parentheses) of the slope and intercept of the
generalized probit models for each selenium type are shown in Table 2, along with the
MLEs and asymptotic confidence intervals (derived using the delta method) of the corre-
sponding EC50 values. The plausibility of the probit model is illustrated by the linearity in

Table 2. MLEs, standard errors, and EC50 confidence intervals for selenium data.

EC50 value

Selenium type MLE intercept MLE slope MLE 90% conf. interval

1 −5.26 0.948 5.55 (5.45, 5.66)
(0.54) (0.095) (0.064)

2 −3.23 0.540 5.99 (5.32, 6.64)
(0.50) (0.088) (0.40)

3 −6.64 1.37 4.84 (4.63, 5.04)
(0.52) (0.102) (0.13)

4 −5.60 1.27 4.42 (4.10, 4.73)
(0.63) (0.153) (0.19)
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Figure 1. Observed probit plots for selenium experiments.

Figure 1 which is a plot of the empirical probits, �−1{[(Yij + 0.5)/(nij + 1)− δ]/(1 − δ)},
versus ln(xij ) for the nonzero concentrations and for each selenium type. (Note that we
have defined the empirical probits using a modified estimator of pij that accommodates
the two extreme cases where Yij is zero and nij .) Only the two points at the lowest concen-
tration level show appreciable deviations from the fitted (MLE) lines (which are labeled
1–4 to map them to the selenium types). These points correspond to concentration level
x = 5 that was used for selenium types 3 and 4, a concentration that is arguably too low
to have an effect on mortality. In terms of fitting the model, these observations are not
influential on either the parameter estimates or any of the inferences subsequently drawn.

While it is common to find MLEs of EC50 values from probit analyses in the toxicology
literature, it is a little less common to find a hypothesis test procedure to determine whether
estimated differences between EC50 values are statistically significant. In cases where in-
ferences of this nature have been drawn, the use of nonoverlapping confidence limits for
the EC50 values has frequently been used as an indication of significant differences (e.g.,
Abot et al. 1995; Liu et al. 2003). Fieller’s theorem (see Cox 1990) is typically used to
obtain the individual EC50 confidence limits. Use of nonoverlapping confidence limits for
EC50 values to declare significant differences results in a conservative test. Schenker and
Gentleman (2001) and Payton, Greenstone, and Schenker (2003) are good references for
further discussion on the widespread use of the overlapping confidence intervals technique
and its associated limitations.

An LRT for testing the equality of EC50 values is well known (e.g., Sokal and Rholf
1969) and is implemented in many statistical analysis software packages. However, to date
implementations of the LRT assume equality of the slopes in the probit model. If the slopes
are not equal, an LRT test is not directly available in any software packages that we are
aware of; we know of no applications where it has otherwise been used to test the equality
of EC50 values. As a result, we were motivated to develop a simple and effective algo-
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Figure 2a. Probit regressions with different slopes and different EC50 values (x-intercepts).

rithm for computing the LRT. Our purpose in this article is to describe it in the belief it
will be beneficial to other practitioners interested in testing for equal EC50 values, as a
precursor analysis to ranking, without making the assumption of equal slopes. To gain in-
sight into the performance of the LRT procedure (i.e., size and power), we compare it with
a quadratic form test procedure which has the appearance of being more straightforward
from a computational point of view.

More formally, we consider the generalized probit model, with δ assumed known, and
develop the LRT and quadratic form tests for H :α1/β1 = · · · = αI /βI vs. K :∼ H . Fig-
ures 2a and 2b provide a visual contrast between H and K , showing that under K the
different probit regression lines potentially all have different x-intercepts while under H

all of the lines have the same x-intercept which is the common EC50 value. A reduced

Figure 2b. Probit regressions with different slopes and a common EC50 value (the x-intercept).
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model, known as the parallel-slope model, adds a constraint to the probit model of the
form C :β1 = · · · = βI . Under this constraint, H reduces to the hypothesis that the x-
intercepts of the probit regression lines are all equal. As mentioned above, the LRT of H

under the parallel-slope model is a well-known test and is implemented in commercial sta-
tistical software packages. In the same packages, it is also possible to obtain an LRT for
testing if the constraint C is valid, and this could be done as a preliminary test to the LRT of
H vs. K (e.g., Van Gestel and Hensbergen 1997). The problem we confront in this article
is how to test H vs. K when the constraint C is not valid, either because the preliminary
test of its validity was rejected or because a practitioner is otherwise unwilling to adopt the
parallel-slope model.

The rest of this article is organized as follows. In Section 2, we develop the LRT and the
quadratic form test procedures of H :α1/β1 = · · · = αI /βI versus K :∼ H . In Section 3,
we use a simulation study to investigate the adequacy of the asymptotic null distributions
of the two test procedures and demonstrate the need to calibrate the size of the quadratic
form test. The two test procedures are illustrated in Section 4 with the experimental data
collected from our own selenium toxicity experiments. The power of the two test proce-
dures is analyzed in Section 5 with a simulation study, where we find that the performance
of the calibrated quadratic form test procedure is equivalent to the LRT test procedure. We
conclude with a summary in Section 6 that includes some comments about how the test
procedure can be extended to related contexts.

2. TEST FOR EQUALITY OF EC LEVELS

2.1 LIKELIHOOD RATIO TEST

With θ = (α1, β1, . . . , αI , βI )
′, the null hypothesis can be expressed as H : g(θ) = 0,

where g(θ) is a (I − 1) × 1 vector whose elements are gi(θ) = αi/βi − αI /βI (i =
1, . . . , I − 1). The likelihood function for θ based on the observations {Yij : 1 ≤ i ≤ I,1 ≤
j ≤ Ji} can be written as (recall that δ is being regarded as a known constant):

L(θ) ∝
I∏

i=1

Ji∏
j=1

[δ + (1 − δ)�(αi + βixij )]yij [1 − �(αi + βixij )]nij −yij .

The LRT statistic is � = −2 log[L(θ̃)/L(θ̂)], where θ̃ and θ̂ denote the restricted max-
imum likelihood estimate (under H ) and the unrestricted maximum likelihood of θ , re-
spectively. Under the null hypothesis H , the asymptotic chi-square distribution of � is
chi-square with I − 1 degrees of freedom.

Calculation of the denominator of �, via θ̂ , is straightforward since the standard soft-
ware packages can be used on the data individually for each toxin to find the MLE of the
intercept and slope parameters, say {(α̂i , β̂i)}Ii=1. Calculation of the numerator of �, via θ̃ ,
is a little more challenging as is any restricted optimization relative to an unrestricted op-
timization. However, the iterative Lagrangian algorithm outlined in Henk (1985) provided
a relatively simple and very effective solution. In Henk’s algorithm, the iterates for θ̃ were
given by:

θ̃k+1 = θ̃k + P(θ̃k)l(θ̃k) − [I − P(θ̃k)B(θ̃k)]G+(θ̃k)g(θ̃k), k = 0,1, . . . ,
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where l(θ) is the 2I × 1 vector of derivatives of the log-likelihood with respect to the
components of θ , G(θ) is the (I − 1) × 2I matrix whose (i, j)th element is ∂gi(θ)/∂θj ,
G+(θ) is the Moore–Penrose generalized inverse of G(θ), B(θ) is the 2I × 2I matrix
whose (i, j)th element is the expected value (under the full model) of −∂2l(θ)/∂θj ∂θi ,
I is 2I × 2I identity matrix, and P(θ) is the Moore–Penrose generalized inverse of I −
G+(θ)G(θ).

As with any iterative optimization algorithm, a critical question is what to choose for
the initial starting value θ̂0. In our particular context, we see that H implies αi = −Rβi

(i = 1, . . . , I ), where R is the common EC50 value. Fitting a nointercept least-squares
lines through the points {(−β̂i , α̂i)}Ii=1 produces a value R̃ that is a crude, but useful, first
guess at the restricted maximum likelihood estimate of the common value of the common
EC50 value. Consequently, we define θ̃0 = (−R̃β̂1, β̂1,−R̃β̂2, β̂2, . . . ,−R̃β̂I , β̂I )

′. Our
experience shows that, in addition to being simple, this choice for the starting value is
quite effective.

2.2 QUADRATIC FORM TEST

We begin by noting that for each i = 2, . . . , I , the ith EC50 value will be equal to
the first EC50 value if and only if α1βi − αiβ1 = 0. Setting φi = α1βi − αiβ1 and φ =
(φ2, . . . , φI )

′, it is easily seen that testing H vs. K is equivalent to testing H ∗ :φ = 0 vs.
K∗ :∼ H ∗. Let θ̂ i = (α̂i , β̂i )

′ and φ̂i = α̂1β̂i − α̂i β̂1 denote the MLEs of θ i = (αi, βi)
′ and

φi , respectively.
Expanding each φ̂i in a Taylor series about the point (θ ′

1, θ
′
i )

′ leads to φ̂−φ ≈ A(θ)(θ̂ −
θ), where A(θ) is a (I − 1) × 2I matrix whose ith row contains the first-order partial
derivatives of φi , with respect to the elements of θ . Denoting the inverse of the expected
Fisher information matrix of θ̂ i by �i (θ i ), it follows that an approximation to the variance–
covariance matrix of φ̂ − φ is then:

�(θ) = A(θ)var(θ̂ − θ)A′(θ)

= A(θ)diag[�i (θ i )]Ii=1A′(θ)

= diag[θ ′
1U�i (θ i )U′θ1]Ii=2 + [θ ′

iU�1(θ1)U′θ j ]Ii,j=2, (2.1)

where U = (0 −1
1 0

)
. Let S(θ) denote Equation (2.1), but with each �i (θ i ) replaced by the

inverse of the corresponding observed Fisher information matrix, say Si(θ i ). Then a large
sample theory approach to testing H ∗ vs. K∗ would be to use the statistic T1 = φ̂′S−1(θ̂)φ̂,
which under H ∗ has an asymptotic chi-square distribution with I − 1 degrees of freedom.
A nominal size γ test based on this large sample test statistic rejects H ∗ if and only if
T1 > χ2

I−1,γ . We note that T1 is a particular implementation of a Wald test statistic for the
case of a nonlinear hypothesis.

The expansion leading to Equation (2.1) results in approximating the variance of φ̂i by
a quantity that is too small. This can be seen by using the law of total variance and the
asymptotic normal distribution of θ̂ to obtain:

var(φ̂i) = E{var(φ̂i |θ̂1)} + var{E(φ̂i |θ̂1)}
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= E{α̂2
1 var(β̂i) + β̂2

1 var(α̂i) − 2α̂1β̂1 cov(α̂i , β̂i )}
+ var{α̂1E(β̂i) − β̂1E(α̂i)}

≈ θ ′
1U�i (θ i )U′θ1 + tr(�1(θ1)U�i (θ i )U′) + θ ′

iU�1(θ1)U′θ i , (2.2)

where tr(·) denotes the trace operator on matrices. Note that the (positive) trace term in
Equation (2.2) is the correction relative to the underestimate provided by Equation (2.1).
The approximations of the covariance terms cov(φ̂i , φ̂j ) implied by Equation (2.1) agree
with what would similarly be obtained by using the law of total covariance. The corrected
variance terms in Equation (2.2) can naturally be incorporated to give a corrected approxi-
mation to the variance–covariance matrix of φ̂ − φ of the form:

�c(θ) = diag
[
θ ′

1U�i (θ i )U′θ1 + tr{�1(θ1)U�i (θ i )U′}]I
i=2

+ [θ ′
iU�1(θ1)U′θ j ]Ii,j=2, (2.3)

which in turn suggests T2 = φ̂′S−1
c (θ̂)φ̂ as a modified test statistic, where Sc(θ) denotes

Equation (2.3) with each �i (θ i ) replaced by Si(θ i ). An alternative nominal size γ test of
H ∗ vs. K∗ rejects H ∗ if and only if T2 > χ2

I−1,γ .

3. SIZE AND CALIBRATION

All three statistics �, T1, and T2 have asymptotic chi-square distributions with I −1 de-
grees of freedom. We utilize a small simulation study to investigate the adequacy of using
the chi-square distribution as the appropriate null distribution. Design parameters for the
study are motivated by the design parameters associated with our selenium experiments.
Consequently, four toxicological treatments are considered and for each of them, concen-
tration levels of 10, 25, 50, 100, 200, and 400 are used. In terms of the notation introduced
in Section 1, we have I = 4, J1 = · · · = J4 = 6. We take nij = 30 for all (i, j) as a suitably
small value to test the adequacy of the asymptotic distribution. The underlying model is
the generalized probit model described in Section 1, using log-concentration as xij .

For the size simulations, we used 5 as a common EC50 value (corresponding to roughly
the center of the four observed selenium EC50 values), δ = 0.021 (the observed value
in the selenium experiments) and defined four equal sized intervals B1 = [0.25,0.5625),
B2 = [0.5625,0.875), B3 = [0.875,1.1875), and B4 = [1.1875,1.5] which surround the
range of slopes observed in our selenium application. For each interval Bj , we randomly
sampled 20 slope vectors (β1, β2, β3, β4)

′ and then for each slope vector 1000 simulated
datasets were generated. For each generated dataset, the three test statistics �, T1, and
T2 were computed and compared to the χ2

3,0.9 critical value to carry out nominal 10%
Type I error tests. The average power for the 20 repetitions corresponding to different
slope vectors is reported in Table 3 as a summary of the size associated with the slope
interval Bj (and the common value of 5 for the EC50 values).

Table 3 suggests the asymptotic chi-square distribution is adequate for � for sample
sizes as small as 30, but that small sample calibration is needed for T1 and T2. [We note
that additional simulations (not reported here) confirm that by increasing the value of nij ,
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Table 3. Simulated size (see Section 3) of nominal 10% tests of H0 : equal EC50 values.

Test statistic

Interval for slopes T1 T1 (calibrated) T2 T2 (calibrated) �

B1 0.048 0.11 0.041 0.11 0.10
B2 0.062 0.10 0.056 0.10 0.10
B3 0.056 0.11 0.050 0.11 0.11
B4 0.050 0.11 0.044 0.11 0.11

the size of the uncalibrated tests based on for T1 and T2 do, in fact, converge to the correct

nominal size.] Appendix A illustrates how bootstrap calibrated p-values (e.g., Chernick

1999) can be obtained for T1 or T2 (generically denoted by T in the algorithm). The basic

idea is to create a histogram of bootstrap values of the statistic using simulated datasets

that are generated under a null model that is estimated from the observed dataset. In typ-

ical applications of bootstrap null distributions, the null model used to generate the simu-

lated datasets is the model fit using the constrained (by H ) MLE. An alternative, simpler

approach, defined in step 3 of Appendix A, is to generate null datasets using the value

θ̃0 = (−R̃β̂1, β̂1,−R̃β̂2, β̂2, . . . ,−R̃β̂I , β̂I )
′, the starting value associated with the Henk

algorithm discussed in Section 2.1. Table 3 shows that bootstrap calibration of the p-values

obtained from the tests based on T1 or T2 effectively corrects the size.

4. APPLICATION OF TESTS TO SELENIUM DATA

4.1 LIKELIHOOD RATIO TEST

Table 2 shows the unrestricted MLEs θ̂ i (i = 1, . . . ,4) that were obtained using PROC

PROBIT in the SAS language. The standard chi-square LRT (with 3 degrees of freedom)

for equal slopes is rejected based on a test statistic value of 48.46. Table 2 also shows the

corresponding MLEs of the EC50 values along with 90% confidence intervals for the EC50

values. The EC50 confidence intervals were computed using the delta method. The value

of L(θ̂) is easily calculated.

To compute the numerator of the LRT statistic, Henk’s algorithm was employed. Defin-

ing uij = αi + βixij , the derivatives needed for the evaluation of l(θ) are given by:

(i = 1, . . . ,4)

∂LT

∂αi

= (1 − δ)

Ji∑
j=1

Yijφ(uij )

δ + (1 − δ)�(uij )
−

Ji∑
j=1

(nij − Yij )φ(uij )

1 − �(uij )
,

∂LT

∂βi

= (1 − δ)

Ji∑
j=1

Yijφ(uij )xij

δ + (1 − δ)�(uij )
−

Ji∑
j=1

(nij − Yij )φ(uij )xij

1 − �(uij )
.
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It is easy to verify that

G(θ) =

⎡
⎢⎢⎣

1
β1

− α1
β2

1
0 0 0 0 − 1

β4

α4
β2

4

0 0 1
β2

− α2
β2

2
0 0 − 1

β4

α4
β2

4

0 0 0 0 1
β3

− α3
β2

3
− 1

β4

α4
β2

4

⎤
⎥⎥⎦ ,

and that the matrix B(θ) is 8 × 8 and takes the form:

B(θ) =

⎡
⎢⎢⎣

B1(θ1) 0 0 0
0 B2(θ2) 0 0
0 0 B3(θ3) 0
0 0 0 B4(θ4)

⎤
⎥⎥⎦ ,

where Bi (θ i ) is a 2 × 2 matrix whose elements are given in Appendix B, and 0 denotes a
2 × 2 matrix of zeroes.

The nointercept least-squares fit of the line through the points {(−β̂i , α̂i)}4
i=1 yields a

slope of R̃ = 4.902. Thus, the starting value for implementation of Henk’s algorithm was
θ̃0 = (−4.645,0.948,−2.642,0.539,−6.729,1.373,−6.214,1.268)′. After 25 iterations
the algorithm returns restricted maximum likelihood estimates that are identical to three
decimal places, yielding θ̃ = (−1.946,0.397,−0.156,0.032,−6.916,1.412,−3.490,

0.713)′. The value of L(θ̃) is easily evaluated, and then it follows that � = 138.45. When
compared to a chi-square distribution with 3 degrees of freedom, the p-value associated
with the LRT is less than 0.001. The ability to test and formally reject the hypothesis of
equal EC50 gives a practitioner more confidence to rank the toxins based on their estimated
EC50 values.

4.2 QUADRATIC FORM TEST

Referring to Table 2, the MLEs θ̂ i (i = 1, . . . ,4) imply φ̂ = (0.214,−0.925,−1.361)′.
Further calculations show that the estimated asymptotic variance–covariance matrices of
θ̂ i (i = 1, . . . ,4) are:

S1(θ̂1) =
[

0.284 −0.0502
−0.0502 0.00894

]
, S2(θ̂2) =

[
0.243 −0.0429

−0.0429 0.00763

]
,

S3(θ̂3) =
[

0.263 −0.0511
−0.0511 0.0101

]
, S4(θ̂4) =

[
0.393 −0.0949

−0.0949 0.0232

]
,

and from (2.2) we find:

S(θ̂) =
⎡
⎣ 3.173 × 10−3 7.273 × 10−5 −8.232 × 10−4

7.273 × 10−5 2.105 × 10−2 1.910 × 10−2

−8.232 × 10−4 1.910 × 10−2 7.373 × 10−2

⎤
⎦ .

It follows that T1 = φ̂′S−1(θ̂)φ̂ = 59.29. The trace terms in Equation (2.3), which represent
the corrections relative to the underestimates provided by Equation (2.1) are, respectively,
4.017 × 10−5, 9.20 × 10−5, and 5.90 × 10−4. Adding these terms to the diagonal of S(θ̂)

gives Sc(θ̂), and a subsequent calculation gives T2 = φ̂′S−1
c (θ̂)φ̂ = 58.95.

Calibrated p-values associated with T1 or T2 were generated from the algorithm in
Appendix A, as described in the previous section. The slope of the nointercept regression
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of the points (−β̂i , α̂i)
4
i=1 is R̃ = 4.9, and this value together with the slopes {β̂i}4

i=1, was
used to generate independent bootstrap observations {Y ∗

ij : 1 ≤ i ≤ 4,1 ≤ j ≤ Ji}, where
Y ∗

ij has a binomial distribution with trial parameter nij and probability of success parameter

δ + (1 − δ)�[β̂i (xij − R̃)] (recall from Section 1 that δ = 0.021). The bootstrap calibrated
p-values for both with T1 or T2 are both less than 0.001, implying the hypothesis of equal
EC50 values for the four types of selenium is handily rejected.

5. POWER COMPARISON

The simulation study described in Section 3 was extended to compare the power of
the proposed test statistics. Since calibration is critical when using T1 or T2, their uncali-
brated versions were not evaluated in the power study. In addition, the simulation results
confirm that the performance of T1 and T2 are very similar, so only the results for T1 are
reported. The design parameters for the power comparison coincide with those introduced
in Section 3 for the size study, but here we explore alternatives to equal EC50 values.

It is easy to verify that φi = 0 ⇔ βiβ1(Ri −R1) = 0 (i = 2,3,4), and thus intuitively we
can expect that the power of any test of H versus K will depend on both the slopes {βi}4

i=1
and {Ri}4

i=1. Our size and power study reflects this observation in the following way. First,
for the EC50 values we use four patterns of {Ri}4

i=1. Letting R and � > 0 denote arbitrary
constants, the four patterns are (R,R,R,R), (R,R,R,R+�), (R,R,R+�,R+�), and
(R,R + �,R + �,R + �). The first of these patterns corresponds to the null hypothesis
where all three φi (i = 2,3,4) are zero. In the second pattern, only φ2 = φ3 = 0 and in
the third pattern, only φ2 = 0. All three of the φi (i = 2,3,4) are different from zero in
the fourth pattern. Thus, the patterns get progressively farther away from the null in terms
of Euclidean distance. For each of these four patterns, we also consider their symmetric
counterparts that are obtained by replacing � by −�. With R = 5 and δ = 0.021 (as was
chosen in Section 3 for the size study), we varied � ∈ {0.2,0.4} to control the distance of
the various alternatives from the null.

For the slopes, we again used the four equal sized intervals B1, . . . ,B4, and for each
pattern of EC50 values and each slope interval Bj , we again selected 20 slope vectors
(β1, β2, β3, β4)

′ by randomly sampling four values from Bj . Then, for each combination
of EC50 pattern and slope vector, we ran 1000 simulations to estimate the power of nom-
inal 10% significance tests of H0 : equal EC50 values, based on both � and T1, and using
bootstrap calibrated p-values. The average power for the 20 repetitions corresponding to
different slope vectors is reported as a summary of the power associated with the EC50
pattern and the slope interval Bj .

Table 4 reports the results for the power of the tests based on � and T1. Both tests exhibit
equivalent and good power for the alternatives that were considered. Comparing the power
across all four slope intervals, it can be seen that the power increases as the magnitude
of the slopes increases. This is an expected finding. (Additional simulations, not reported
here, show that if the slopes are sampled across the four intervals, the power of the tests
lies between the power obtained when the slopes are taken from within B1 and B4, respec-
tively.) Also, as anticipated, the power increases as we move from � = 0.2 to � = 0.4. An
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Table 4. Power of nominal 10% test of H0 : equal EC50 values.

� = 0.2 � = 0.4

EC50 pattern Interval for slopes � T1 � T1

(R,R,R,R + �) B1 0.14 0.14 0.24 0.22
B2 0.21 0.21 0.47 0.49
B3 0.29 0.30 0.74 0.73
B4 0.37 0.38 0.86 0.88

(R,R,R,R − �) B1 0.14 0.14 0.25 0.25
B2 0.21 0.21 0.52 0.52
B3 0.28 0.30 0.76 0.76
B4 0.37 0.40 0.88 0.90

(R,R,R + �,R + �) B1 0.16 0.14 0.32 0.25
B2 0.23 0.25 0.59 0.57
B3 0.35 0.37 0.82 0.85
B4 0.45 0.47 0.94 0.95

(R,R,R − �,R − �) B1 0.16 0.16 0.33 0.34
B2 0.25 0.26 0.64 0.66
B3 0.36 0.38 0.88 0.89
B4 0.46 0.48 0.95 0.96

(R,R + �,R + �,R + �) B1 0.14 0.13 0.30 0.21
B2 0.21 0.21 0.51 0.46
B3 0.27 0.31 0.70 0.73
B4 0.37 0.38 0.84 0.86

(R,R − �,R − �,R − �) B1 0.14 0.15 0.28 0.30
B2 0.21 0.23 0.56 0.58
B3 0.30 0.32 0.76 0.81
B4 0.37 0.39 0.88 0.90

interesting observation is that the (R,R + �,R + �,R + �) pattern does not have the
highest power. Although it is the farthest away from the null pattern in terms of Euclidean
distance, (R,R,R + �,R + �) is the farthest away in terms of the more relevant φ′�−1φ

distance metric. The same observation is revealed when −� is used in the EC patterns. The
dependence of power on a generalized distance is familiar from other contexts, including,
for example, the power of the F -test in a completely randomized design where the power
depends on a noncentrality parameter that is a function of a generalized distance.

6. EXTENSIONS AND SUMMARY

Although the LRT and quadratic form tests were derived in the context of wanting to
test the equality of all of the EC50 values, the extension of the test procedures to a reduced
subset of EC50 values (e.g., a particular pair) is straightforward. Similarly, extending the
test procedures to consideration of other EC values and/or other forms of the binomial link
function (e.g., logit) is equally straightforward. On the computational side, we note the
algorithm we describe in Section 2.1 for obtaining the value of the numerator of the LRT
is not the only way to proceed. Savvy users of the SAS package can utilize PROC NLIN to
obtain that value. Readers interested in using this approach are referred to example 60.3 in
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SAS (2008). Considering both the demonstrated computational tractability of the LRT and
the diminished computational advantage of the quadratic form tests due to the necessity to
calibrate their size, we recommend the LRT as a precursor test of equal EC50 values prior
to doing a ranking analysis based on estimated EC50 values.

A. APPENDIX: BOOTSTRAP CALIBRATED p-VALUES

1. Initialize B and δ

2. Use {Yij : 1 ≤ i ≤ I,1 ≤ j ≤ Ji} to compute MLEs (α̂i , β̂i )
I
i=1 and the observed test

statistic T

3. Fit a no-intercept regression to the points (−β̂i , α̂i )
I
i=1 and use the fitted slope R̃ to

estimate the constrained EC50

4. For k = 1 to B

For i = 1 to I

For j = 1 to Ji

Simulate Y ∗
ij from a binomial distribution with trial parameter equal to nij

and success probability δ + (1 − δ)�[β̂i (xij − R̃)]
Next j

Next i

Use the observations {Y ∗
ij : 1 ≤ i ≤ I,1 ≤ j ≤ Ji} to compute bootstrap observa-

tion of the test statistic T ∗
k

Next k

5. Compute the calibrated p-value for the test statistic as the fraction of {T ∗
k }Bk=1 that

exceed T .

B. APPENDIX: ELEMENTS FOR Bi(θ i)

Bi (θ i ) =
[−b11(θ i ) −b12(θ i )

−b12(θ i ) −b22(θ i )

]
.

Recall that uij = αi + βixij ,

b11(θ i ) = (1 − δ)

Ji∑
j=1

nij [δ + (1 − δ)�(uij )]

×
{ [δ + (1 − δ)�(uij )]φ′(uij ) − (1 − δ)φ2(uij )

[δ + (1 − δ)�(uij )]2

}

−
Ji∑

j=1

nij (1 − δ)[1 − �(uij )]
{ [1 − �(uij )]φ′(uij ) + φ2(uij )

[1 − �(uij )]2

}
,
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b12(θ i ) = (1 − δ)

Ji∑
j=1

nij [δ + (1 − δ)�(uij )]xij

×
{ [δ + (1 − δ)�(uij )]φ′(uij ) − (1 − δ)φ2(uij )

[δ + (1 − δ)�(uij )]2

}

−
Ji∑

j=1

nij (1 − δ)[1 − �(uij )]xij

{ [1 − �(uij )]φ′(uij ) + φ2(uij )

[1 − �(uij )]2

}
,

b22(θ i ) = (1 − δ)

Ji∑
j=1

nij [δ + (1 − δ)�(uij )]x2
ij

×
{ [δ + (1 − δ)�(uij )]φ′(uij ) − (1 − δ)φ2(uij )

[δ + (1 − δ)�(uij )]2

}

−
Ji∑

j=1

nij (1 − δ)[1 − �(uij )]x2
ij

{ [1 − �(uij )]φ′(uij ) + φ2(uij )

[1 − �(uij )]2

}
.

SUPPLEMENTAL MATERIALS

R-code: R-code for computing the LRT for the Selenium data example is available from
the JABES website. (R Code for LRT With Selenium Data.txt)
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