
COPLBI-617; NO OF PAGES 7
Available online at www.sciencedirect.com

Epigenetic regulation of stress responses in plants
Viswanathan Chinnusamy1 and Jian-Kang Zhu2
Gene expression driven by developmental and stress cues

often depends on nucleosome histone post-translational

modifications and sometimes on DNA methylation. A number of

studies have shown that these DNA and histone modifications

play a key role in gene expression and plant development under

stress. Most of these stress-induced modifications are reset to

the basal level once the stress is relieved, while some of the

modifications may be stable, that is, may be carried forward as

‘stress memory’ and may be inherited across mitotic or even

meiotic cell divisions. Epigenetic stress memory may help

plants more effectively cope with subsequent stresses.

Comparative studies on stress-responsive epigenomes and

transcriptomes will enhance our understanding of stress

adaptation of plants.
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Introduction
Information content of the genome (DNA sequence) and

its expression in response to stress are crucial for the

adaptability of a genotype. Expression of the genome is

influenced by chromatin structure, which is governed by

processes often associated with epigenetic regulation,

namely histone variants, histone post-translational modi-

fications, and DNA methylation. Developmental and

environmental signals can induce epigenetic modifi-

cations in the genome, and thus, the single genome in

a plant cell gives rise to multiple epigenomes in response

to developmental and environmental cues [1]. Under-

standing stress-induced epigenetic processes in stress

tolerance of plants requires answers to the following

questions: How much of the stress-induced gene expres-

sion changes are associated with alterations in DNA

methylation and histone modification marks? Are

stress-induced DNA and histone modifications during
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acclimation or during the first experience of stress mem-

orized and inherited mitotically and meiotically? What are

the adaptive values of epigenetic stress memory? This

review briefly describes epigenetic processes, and then

focuses on recent data on the epigenetic regulation of

stress responses and its heritability in plants.

Epigenetic regulation of stress responses
Retention of stress memory for short durations is well

known in plants, as evident from acclimation responses

[2,3]. The stress memory can be retained for only short

durations if the memory depends on the half-life of

stress-induced proteins, RNAs, and metabolites, while

the memory can last longer if it involves reprogramming

in phenology and morphology of plants. Epigenetic

processes, that is, stable or heritable DNA methylation

and histone modifications, can also be a choice of

retaining stress memory for longer times. Methods to

decipher epigenetic changes are briefly described in

Box 1.

Histone modifications

N-terminal regions of nucleosome core complex histones

undergo various post-translational modifications. In

addition, each histone has variants encoded by different

genes. The combinations of histone variants and post-

translational modifications can be considered a ‘histone

code’, which plays a key role in chromatin structure and

thus determines the transcriptional state and expression

level of genes. Some histone modifications, namely acety-

lation, and certain phosphorylation and ubiquitination

[4,5], enhance transcription, while biotinylation and

sumoylation repress gene expression [6,7]. Trimethyla-

tion of H3K4 activates transcription, while dimethylation

of H3K9 and H3K27 represses transcription [5]. Because

several of the histone modifications are associated with

changes in gene transcription in general, it is not surpris-

ing that stress-induced gene regulation is associated with

histone modifications in all cases that have been inves-

tigated. Changes in histone variants, histone modifi-

cations as well as DNA methylation are often referred

to as epigenetic regulation. However, such changes may

or may not be truly epigenetic in nature because common

epigenetics definition requires mitotic or meiotic herit-

ability.

Drought induced the linker histone variant H1-S in

tomato. H1-S appears to be involved in the negative

regulation of stomatal conductance, because stomatal con-

ductance and transpiration rates were higher in antisense

transgenic H1-S tomato plants than in wild type (WT)

plants [8].
onses in plants, Curr Opin Plant Biol (2009), doi:10.1016/j.pbi.2008.12.006
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Box 1 Deciphering epigenetic changes

Histone modifications:

Chromatin immunoprecipitation (ChiP) — histones bound to the DNA

in vivo are covalently crosslinked to DNA in situ by vacuum

infiltration of plant tissue with formaldehyde. Then chromatin is

isolated as part of cell extract, fragmented, and protein–DNA

complexes are immunoprecipitated with antibodies specific against

modified histone, for example, acetylated or dimethylated H3K9.

DNA is isolated from the immunoprecipitate and analyzed by PCR

[4,9��,15��,16�,18�,51].

ChiP-Seq — this method combines ChiP with next-generation

sequencing technology such as Solexa sequencing to analyze gen-

ome-wide-specific histone modifications [52].

DNA methylation:

Methylation-sensitive restriction endonucleases — the classical

method of cytosine methylation analysis is the restriction analysis of

template DNA with methylation-sensitive restriction enzymes. Re-

stricted DNA is then ligated to restriction site specific adaptor and

analyzed by PCR or restricted genomic DNA is analyzed by Southern

blotting [22,27�,49��,50�].

Bisulfite method — sodium bisulfite converts cytosines, but not 50-

methylcytosines, into uracil, under denaturing conditions. PCR

amplification of bisulfite-treated DNA results in conversion of uracil to

thymine. Bisulfite-treated DNA is analyzed by PCR or DNA sequen-

cing [4,23�,33��,49��,50�]

Methylated-DNA immunoprecipitation (MeDIP) — genomic DNA is

fragmented and precipitated with 5-methylcytosine-specific anti-

body. The precipitated DNA is then analyzed by PCR or whole-

genome tiling microarrays [53,54].

Shotgun bisulfite-sequencing — this combines bisulfite treatment of

genomic DNA with next generation sequencing technology such as

Solexa sequencing. The converted sequences are mapped to the

reference genome sequence to identify methyl-cytosines [21,55].
In rice seedlings, submergence induced histone H3K4

trimethylation and H3 acetylation in alcohol dehydrogen-

ase 1 (ADH1) and pyruvate decarboxylase 1 (PDC1)

genes. These histone modifications were correlated with

enhanced expression of ADH1 and PDC1 under stress.

The modifications, however, were dynamic and were

restored to the basal level after stress was relieved by

reaeration [9��].

Environmental and endogenous signals can repress the

target genes through reduction in histone acetylation

levels. The REDUCED POTASSIUM DEPEN-

DENCY3 (RPD3) family histone deacetylases (HDACs),

namely HDA6 and HDA19, mediate histone deacetyla-

tion in response to biotic and abiotic stresses in Arabi-
dopsis. HDA6 is induced by jasmonic acid (JA) and

ethylene [10]. HDA6 is involved in transcriptional gene

silencing (TGS) [11] and RNA-directed DNA methyl-

ation (RdDM) in Arabidopsis [12]. Wounding, infection by

Alternaria brassicicola, and plant hormones (JA and ethyl-

ene) induced the expression of the HDA19/HD1/

AtRPD3A gene. Overexpression of HDA19 in transgenic

plants reduced histone acetylation levels and increased

the expression levels of ETHYLENE RESPONSE FAC-
TOR-1 (ERF1) and PATHOGENESIS-RELATED (PR)
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genes. In contrast, RPD3A-RNAi plants exhibited higher

histone acetylation, which was accompanied by down-

regulation of ERF1 and PR genes in Arabidopsis [10].

Enhanced HDA6 and HDA19 expression caused by stress

and hormonal signals thus might affect chromatin modi-

fications at several loci.

ABA downregulated the expression of AtHD2C (a mem-

ber of plant-specific HD2 family of HDACs). Transgenic

Arabidopsis plants overexpressing AtHD2C exhibited

enhanced expression of ABA-responsive genes and

greater salt and drought tolerance than the WT plants

[13�]. In rice, expression of different members of the

HDAC families is also differentially regulated by abiotic

factors such as cold, osmotic and salt stress, and hormones

such as ABA, JA, and salicylic acid [14].

Besides the HDACs, the WD-40 repeat protein TBL1

(Transducin Beta-Like protein-1) is associated with

histone deacetylation in humans. The Arabidopsis hos15
(high expression of osmotic stress responsive genes15) mutant

was hypersensitive to freezing stress, and was hypersen-

sitive, in terms of germination, to ABA or NaCl. HOS15
encodes a protein similar to TBL1, which interacts with

histone H4. HOS15 is probably involved in H4 deacety-

lation because acetylated H4 was higher in hos15 mutants

than in WT plants, and thus regulates stress tolerance

through chromatin remodeling in Arabidopsis [15��].

Drought-induced expression of stress-responsive genes is

associated with an increase in H3K4 trimethylation and

H3K9 acetylation in Arabidopsis [16�]. In Drosophila, H3

Ser-10 phosphorylation activates transcription during

heat shock responses [17]. In Arabidopsis also, high sal-

inity, cold stress, and ABA triggered rapid and transient

upregulation of histone H3 Ser-10 phosphorylation, H3

phosphoacetylation, and H4 acetylation followed by

stress-type-specific gene expression [18�].

Histone acetyltransferases (HATs) interact with tran-

scription factors and are involved in activating stress-

responsive genes. GCN5 is the catalytic subunit of the

Spt-Ada-Gcn5 acetyltransferase (SAGA) and transcrip-

tional adaptor (ADA). Like ADA2 and GCN5 in the

response of yeast to extreme temperature stress, in Ara-
bidopsis as well, GCN5 and ADA regulate cold tolerance

by interacting with C-repeat Binding Factor-1 (CBF1).

CBF1 activates transcription of its downstream cold-

responsive genes probably through the recruitment of

ADA/SAGA-like complexes that may mediate chromatin

remodeling in target genes [19].

DNA methylation

DNA cytosine methylation, both asymmetric (mCpHpH)-

methylation and symmetric (mCpG and mCpHpG)-meth-

ylation, is associated with repressive chromatin in gene

promoters and with repression of gene transcription. De
onses in plants, Curr Opin Plant Biol (2009), doi:10.1016/j.pbi.2008.12.006
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novo methyltransferases DRM1 (DOMAINS

REARRANGED METHYLASE 1) and DRM2 catalyze

new cytosine methylation, while the maintenance of

symmetric CG and CHG methylation is mediated by

the DNMT1-like enzyme MET1 and the plant-specific

enzyme Chromomethylase 3 (CMT3), respectively [20].

Recent studies suggested that MET1 and CMT3 may

also catalyze de novo methylation, while DRM1 and

DRM2 are also important for the maintenance of sym-

metric methylation [1,21].

Stresses can induce changes in gene expression through

hypomethylation or hypermethylation of DNA. In maize

roots, cold stress-induced expression of ZmMI1 was cor-

related with a reduction in methylation in the DNA of the

nucleosome core. Even after seven days of recovery, cold-

induced hypomethylation was not restored to the basal

level [22]. In tobacco, aluminum, paraquat, salt, and cold

stresses induced-DNA demethylation in the coding

sequence of the NtGPDL (a glycerophosphodiesterase-

like protein) gene correlated with NtGDPL gene expres-

sion [23�].

Osmotic stresses induced transient DNA hypermethyla-

tion in two heterochromatic loci in tobacco cell-suspen-

sion culture [24]. DNA hypermethylation was also

induced by drought stress in pea [25]. In the facultative

halophyte Mesembryanthemum crystallinum L., drought and

salt stresses-induced a switch in photosynthesis mode

from C3 to CAM. This metabolic change was associated

with stress-induced-specific CpHpG-hypermethylation

of satellite DNA [26].

Transposons constitute a significant portion of plant

genomes and are maintained in a repressed state by

DNA methylation. Environmental factors may activate

transposons through DNA demethylation. In Antirrhinum
majus, cold stress induced hypomethylation, and transpo-

sition of the Tam-3 transposon [27�].

Stress-induced histone modifications can also influence

DNA methylation. Knockout mutants and RNAi lines of

stress-inducible HDA6 of Arabidopsis and HDA101 of

maize showed an increase in histone acetylation accom-

panied by changes in histone methylation pattern and

derepression of silenced genes [28,29]. Specific histone

modification-dependent pathways appear to mediate

methylation of about two-thirds of the methylated loci

in the Arabidopsis genome [1]. Thus, dynamic histone

modification marks could be converted into DNA meth-

ylation marks, which are often more stable.

RNA-directed DNA methylation

Genetic analysis using Arabidopsis mutants impaired in

genes for siRNA biogenesis or action revealed the invol-

vement of small interfering RNAs (siRNAs) in RdDM

[20,30]. Integration of the Arabidopsis floral epigenome
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with the floral transcriptome and small RNA profiles

revealed a direct correlation between the ability of geno-

mic sequences to produce small RNAs and DNA meth-

ylation [21]. In fact, siRNAs are involved in the

methylation of at least one-third of methylated loci

[21]. Studies on the repressor of silencing 1 (ros1) mutant

of Arabidopsis revealed that the DNA glycosylase ROS1

actively demethylates DNA by a base excision repair

mechanism and can counteract RdDM [31,32]. ROS3,

a RNA recognition motif-containing protein, binds to

small RNAs and may direct sequence-specific demethyl-

ation by ROS1 and related DNA demethylases [33��].

Gene silencing processes can be sensitive to temperature.

Temperature and other abiotic stresses can also regulate

specific small RNAs. Low temperature promoted virus-

induced gene silencing, while high temperature delayed

it [34]. Endogenous siRNAs that are regulated by abiotic

stress have been identified in Arabidopsis [35]. In Arabi-
dopsis, 24-nt SRO5-P5CDH nat-siRNA downregulates

the expression of P5CDH mRNAs through mRNA clea-

vage, leading to decreased proline degradation, and

enhanced proline accumulation and salt stress tolerance

[36]. This and other stress-regulated siRNAs conceivably

could also lead to changes in histone modifications and

DNA methylation. Microarray data showed that abiotic

stresses and ABA influence the expression of many of the

genes implicated in RdDM pathways in Arabidopsis (our

unpublished data). Further studies are clearly needed to

unravel the roles of RdDM pathway under stress.

Plant development under stress
Reprogramming of cell differentiation in response to

environmental stress leads to phenological and develop-

mental plasticity, which are important mechanisms of

stress resistance. Phenotypic plasticity helps adjust the

durations of various phenological phases in plants, and

thus allows plants to avoid exposure of critical growth

phases, and especially reproductive development, to

stress. Further, adjustment of growth and development

is critical for effective use of resources under stress.

Germination and vegetative growth

Osmotic stress reduces the uniformity of seed germina-

tion and seedling establishment. Several HDACs are

induced by ABA in Arabidopsis [13�] and rice [14]. Arabi-
dopsis HDA19/HD1 interacts with a global corepressor of

transcription, AtSIN3, which in turn interacts with

AtERF7 (APETALA2/EREBP-type transcription fac-

tor). Suppression of AtERF7 and AtSIN3 in plants caused

hypersensitivity to ABA during germination and seedling

growth [37]. Arabidopsis HDA6/HDA19 double repression

lines showed growth arrest after germination and for-

mation of embryo-like structures on true leaves [38].

These results suggest that ABA accumulation leads to

change in expression or activity of HDACs, which in turn

regulate growth under stress.
onses in plants, Curr Opin Plant Biol (2009), doi:10.1016/j.pbi.2008.12.006
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Transgenic Arabidopsis overexpressing a SNF2/

BRAHMA-type chromatin remodeling gene AtCHR12
exhibited growth arrest of primary buds and growth

reduction of the primary stem. These responses were

more pronounced under drought and heat stress than

under nonstress conditions. Conversely, the growth arrest

response under stress was less in the AtCHR12-knockout

mutant than in the WT plants [39��].

Reproductive development

Flowering and seed development are crucial for plant

reproduction. Hence, plants have evolved mechanisms

to flower when environmental conditions are appropriate.

In Arabidopsis, low temperatures during vernalization

induce epigenetic mechanisms which repress the FLOW-
ERING LOCUS C (FLC, a MADS-box protein) gene, and

the repressed FLC chromatin is maintained till transition

to flowering. The mechanisms of mitotic inheritance of

the repressed epigenetic state of FLC chromatin and

resetting during reproduction are not fully understood

[40]. Because the low temperatures that induce vernali-

zation also induce cold acclimation, some of the gene

expression programs could be under common epigenetic

control.

Mutations in some of the genes involved in stress-related

epigenetic processes cause changes in flowering time.

The hos15, a freezing sensitive mutant of Arabidopsis,
was late flowering owing to downregulation of flower-

ing-regulatory genes SOC and FT [15��]. Plant hormone

and stress-regulated HDA6 and HDA19 may act as a link

between stress and developmental cues that control flow-

ering and plant development. Reduction in HDA19
expression in antisense transgenic plants/T-DNA

mutants resulted in developmental abnormalities in-

cluding delayed flowering [41,42]. HDA6-RNAi

lines and axe1-5/hda6 mutants showed hyperacetylation

of histone H3 globally, downregulation of JA-responsive

genes, upregulation of FLC, and delayed flowering [43�].

In Arabidopsis, FCA and FPA proteins form an autonom-

ous flowering pathway by downregulating flowering

repressor FLC. Both FCA and FPA are RNA-binding

proteins that can regulate DNA methylation [44]. ABA

and drought stress induced the expression of chromatin

remodeling gene PsSNF5 (Pisum sativum SNF5).

PsSNF5 interacts with Arabidopsis SWI3-like proteins

(SWI3A and SWI3B), which in turn interact with FCA

[45,46]. ABA-induced SNF5 and FCA may regulate

flowering time and stress responses through chromatin

remodeling.

Because stresses reduce crop yield and quality, and ABA

regulates seed development partly through epigenetic

processes [47], effects of stress on ABA accumulation

or epigenetic processes therefore may affect seed/fruit

development under stress.
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Senescence

Abiotic stresses induce premature leaf senescence, which

leads to reduced photosynthesis and thus less biomass

accumulation. JA – and ethylene-responsive-HDACs,

HDA6 and HAD19, appear to modulate leaf senescence.

Arabidopsis HDA6-RNAi lines and axe1-5 (hda6) mutants

exhibited downregulation of JA-responsive genes and

senescence-associated genes, and delayed senescence

as indicated by higher chlorophyll content and PSII

activity as compared to WT plants [43�]. In contrast,

HDA19 antisense transgenic plants/T-DNA mutants

showed early senescence [41].

Stress memory
UV-C radiation or flagellin (an elicitor of plant defense)

induced a high frequency of somatic homologous recom-

bination, and the hyper-recombination state was trans-

mitted as a dominant trait to untreated progenies of

stress-treated parents [48��]. Similarly, tobacco mosaic

virus (TMV) infection resulted in a high frequency of

somatic and meiotic recombination rates in tobacco. The

progeny of TMV-infected plants exhibited hypomethyla-

tion in several leucine-rich repeat (LRR)-containing loci

and a higher frequency of recombination in hypomethyl-

ated LRR-containing TMV (N-gene) resistant gene

[49��].

The adaptive value of stress-induced epigenetic plasticity

was studied in hypomethylation progenies of 5-aza-deox-

ycytidine (inhibitor of DNA cytosine methylation)-trea-

ted rice seeds. In one of the progenies, methylation was

completely erased in Xa21G, a Xa21-like protein gene.

The erasure of promoter methylation and inheritance of

this epigenetic state resulted in constitutive expression of

Xa21G in the progeny line and enhanced resistance to the

pathogen Xanthomonas oryzae pv. oryzae, race PR2 [50�].

Conclusions
Stress-induced changes in histone variants, histone N-tail

modifications, and DNA methylation have been shown to

regulate stress-responsive gene expression and plant de-

velopment under stress. Transient chromatin modifi-

cations mediate acclimation response. Heritable,

epigenetic modifications may provide within-generation

and transgenerational stress memory (Figure 1). It is

unclear how much of the stress-induced histone and

DNA modification changes that have been observed to

date may be epigenetic in nature because little is known

about their mitotic or meiotic heritability. Abiotic stress-

induced epigenetic changes might have an adaptive

advantage. However, stress memory could have a nega-

tive impact on crop yield by preventing the plant from

growing to its full potential. Thus, stress memory has

implications for the use of seeds from stressed crop to

raise ensuing crops by the farmers, breeding for stress

environments and in situ conservation of plant species.

Recent progress in understanding DNA methylation and
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Figure 1

Epigenetic regulation of stress tolerance. Primary and secondary stress signals induce changes in the expression and/or activity of epigenetic

regulators namely, small RNAs, RdDM components, histone variants, histone modification enzymes, and chromatin remodeling factors. These

epigenetic regulators modify histone variants, histone modifications, and DNA methylation. Some of these are heritable epigenetic modifications, while

others are transient changes. Transient chromatin modifications mediate acclimation response. Heritable epigenetic modifications provide within-

generation and transgenerational stress memory.
demethylation, histone modifications, small RNAs and in

developing powerful and versatile tools to study these

epigenetic processes makes it possible to critically ana-

lyze epigenetic stress memory and harness it for crop

management and improvement.
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