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Temperate plants are capable of developing freezing tolerance

when they are exposed to low nonfreezing temperatures.

Acquired freezing tolerance involves extensive reprogramming

of gene expression and metabolism. Recent full-genome

transcript profiling studies, in combination with mutational and

transgenic plant analyses, have provided a snapshot of the

complex transcriptional network that operates under cold

stress. Ubiquitination-mediated proteosomal protein

degradation has a crucial role in regulating one of the upstream

transcription factors, INDUCER OF CBF EXPRESSION 1

(ICE1), and thus in controlling the cold-responsive

transcriptome. The changes in expression of hundreds of

genes in response to cold temperatures are followed by

increases in the levels of hundreds of metabolites, some of

which are known to have protective effects against the

damaging effects of cold stress. Genetic analysis has revealed

important roles for cellular metabolic signals, and for RNA

splicing, export and secondary structure unwinding, in

regulating cold-responsive gene expression and chilling and

freezing tolerance.
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Introduction
Cold stress is a major environmental factor that limits the

agricultural productivity of plants. Low temperature has

a huge impact on the survival and geographical distri-

bution of plants. Plants differ in their tolerance to chilling

(0–15 8C) and freezing (<0 8C) temperatures. Plants

from temperate regions are chilling tolerant, although

most are not very tolerant to freezing but can increase

their freezing tolerance by being exposed to chilling

temperatures, a process known as cold acclimation [1].

By contrast, plants of tropical and subtropical origins,

including many crops such as rice, maize and tomato, are
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sensitive to chilling stress and largely lack the capacity for

cold acclimation.

Most molecular studies on plant responses to cold stress

are focused on the mechanism of cold acclimation rather

than on chilling tolerance. Nevertheless, recent evidence

indicates that some of the molecular changes that occur

during cold acclimation are also important for chilling

tolerance [2,3�]. In other words, it appears that chilling

tolerance that is exhibited by temperate plants is not

entirely constitutive, and that at least part of it is devel-

oped during exposure to chilling temperatures.

Numerous physiological and molecular changes occur

during cold acclimation [4]. Among them, the transcrip-

tional activation and repression of genes by low tempera-

ture are of central importance [4]. The reprogramming

of gene expression results in the accumulation not only of

protective proteins but also of hundreds or more of

metabolites, some of which are known to have protective

effects. This review summarizes recent work on cold-

responsive gene expression and metabolite accumulation

in Arabidopsis. In addition, we discuss some intriguing

findings on the role of metabolic status and posttranscrip-

tional RNA processing in controlling cold-responsive

gene expression and chilling and freezing tolerance.

Cold-responsive transcriptional cascades
Various differential screening and cloning studies over the

years have led to the identification of a core set of robustly

cold-regulated plant genes, which are known as COR (cold-

regulated), KIN (cold-induced), LTI (low-temperature-

induced) or RD (responsive to dehydration) genes

(reviewed in [4]). C-repeat (CRT)-binding factors (CBFs),

also known as dehydration-responsive-element-binding

proteins (DREBs), are upstream transcription factors in

the APETALA2 (AP2)/ETHYLENE RESPONSE

FACTOR (ERF) family that bind to the promoter cis-
element and activate the expression of these cold-respon-

sive genes [4]. The CBF genes are induced early and

transiently by cold. Ectopic expression of the CBFs in

Arabidopsis results in constitutive expression of down-

stream cold-inducible genes, even at warm temperatures,

and in increased freezing tolerance. Several cis-elements in

the CBF2 promoter have been found to be involved in the

cold induction of CBF2, although the transcription factors

that bind to these elements have yet to be identified [5].

Inducer of CBF Expression1 (ICE1), a bHLH (basic helix–

loop–helix) protein, is an upstream transcription factor

that binds to the CBF3 promoter and is required to

activate CBF3 expression upon cold stress [6]. Recently,
www.sciencedirect.com
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an R2R3-type MYB transcription factor, AtMYB15, was

found to interact with ICE1 and to play a negative role in

regulating the expression of CBF genes under cold stress

[7�]. It appears that cold induction of the three CBF genes

is controlled by a set of redundant and interacting bHLHs

(ICE1 and other related bHLHs) and MYB transcription

factors. Some of these transcription factors cross-regulate

each other [7�]. Similarly, CBF2 was known to regulate

CBF1 and CBF3 negatively [8], and ZAT12 negatively

regulates the expression of the CBF genes [9��].

The signal transduction pathway that is responsible for

cold stress activation of the ICE1–CBF–COR transcrip-

tional cascade remains to be defined. It involves as-

yet-unknown cold sensor(s), calcium and inositol 1,4,

5-triphosphate, phosphatidyl inositol 4,5-phosphate

and other phospholipid second messengers, calcium-

sensor(s) and calcium-dependent protein kinases, and a
Figure 1

Schematic illustration of the cold response network in Arabidopsis. Cold se
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mitogen-activated protein (MAP) kinase (MAPK) cascade

(reviewed in [10]). The cold-activated Arabidopsis MAP

kinase kinase 2, and probably its downstream MAPK4 and

MAPK6, are important for the expression of the

CBF regulon and for freezing tolerance [11]. In Arabidopsis
plants, ICE1 is phosphorylated in response to cold treat-

ment (H Fujii, J-K Zhu, unpublished). Therefore, tran-

scription cascades that are directed by ICE1 and ICE1-like

bHLH proteins are probably activated by the cold sensing

and signaling pathway via protein phosphorylation

(Figure 1). The cold-induction of CBFs is gated by the

circadian clock [12�], but the step at which the input from

circadian rhythm is integrated into the cold-response path-

way is unknown.

The availability of DNA microarrays has provided oppor-

tunities to examine genome-wide cold-regulated gene

transcripts [9��,13��,14]. Using Affymetrix Arabidopsis
nsing and signaling leads to the activation of multiple transcriptional

S1 negatively regulates ICE1. Metabolism, and RNA processing and

xpression. The constitutive HOS9 and HOS10 regulons have a role in the

ce; MYCRS, MYC recognition sequence.
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24K GeneChips representing about 24 000 Arabidopsis
genes, 655 genes were identified statistically as cold

upregulated and 284 as cold downregulated [13��]. This

study suggests that cold stress triggers a multitude of

transcriptional cascades because many of the early cold-

responsive genes encode transcription factors that probably

activate the genes that are induced after longer periods of

exposure to the cold. Most of these transcription factors are

induced in response to cold, and only one transcription

factor was downregulated during early cold stress,

suggesting that cold responses in plants are initiated mainly

by transcriptional activation rather than by repression of

genes. In addition to genes that are involved directly in

stress protection or in metabolism, growth and develop-

ment, several genes that are involved in RNA metabolism

and genes encoding chromatin remodeling proteins were

found to be cold regulated [13��]. A comparison of cold-

responsive transcript profiles between wildtype and ice1
mutant plants strengthens the notion that ICE1 plays an

important role in cold-responsive gene regulation and cold

tolerance in plants [13��]. The dominant negative ice1
mutation affects the cold induction of a large number of

genes, including many transcription factors. In addition,

the ice1 mutation alters the basal transcript levels of many

cold-responsive genes [13��].

In a separate study using Affymetrix 24 K GeneChips,

514 genes were found to be cold-responsive, including

302 upregulated and 212 downregulated genes [9��]. A

comparison with the gene expression profiles of plants

that ectopically express CBF2 revealed that 85 of the

cold-upregulated genes and eight of the cold-downregu-

lated genes belong to the CBF2 regulon. Therefore, in

addition to the CBF regulon, many other regulons exist in

the cold responsive transcriptome. Nevertheless, of the

25 most highly upregulated genes, 21 are regulated by

ectopic expression of CBF2. Furthermore, the ZAT12

regulon includes substantially fewer cold-responsive

genes than the CBF regulon. These results support a

major role for CBFs in configuring the low temperature

transcriptome in Arabidopsis. It is interesting to note that

the ectopic expression of CBF genes activates the expres-

sion of several other cold-responsive transcription factors,

such as the RELATED TO AP2 proteins RAP2.1 and

RAP2.6, which presumably control subregulons of the

CBF regulon [15].

Gene expression changes that are associated with cold

deacclimation, i.e. recovery from cold stress, have also

been examined recently [14]. Using an Arabidopsis 7000

cDNA microarray and the Agilent 22 K oligonucleotide

array, 292 genes were identified as being upregulated and

320 as downregulated during deacclimation. Consistent

with the notion that cold-stress-induced genes are needed

for cold tolerance whereas cold-repressed genes are imp-

ortant for active growth, many of the genes that are

downregulated during deacclimation are cold-inducible
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genes, and conversely many of the genes that are upre-

gulated during deacclimation are cold repressed.

The importance of regulons that are not
cold responsive
Recently, forward genetic analysis in Arabidopsis ident-

ified two transcription factors, HIGH EXPRESSION OF

OSMOTICALLY RESPONSIVE GENEs 9 (HOS9) and

HOS10, that are required for basal freezing tolerance

[16,17�]. The HOS9 and HOS10 genes encode home-

odomain and MYB (AtMYB8) transcription factors,

respectively, and their transcript levels are not cold

responsive. Loss-of-function mutations in these genes

cause significant decreases in basal and acquired freezing

tolerance. Interestingly, the mutants show stronger or

earlier cold-induction of several CBF-target genes, such

as RD29A and COR15A, but no effects on the expression

of CBFs. These results suggest a crucial role in freezing

tolerance for regulons that are not cold responsive, and

these presumably constitutive regulons have a negative

effect on the cold-responsive CBF regulon.

The importance of CBF-independent pathways is also

supported by analysis of mutants that have increased

freezing tolerance. Mutations in ESKIMO1 (ESK1), a

protein of unknown function, result in constitutive freez-

ing tolerance, but the genes that are affected by the esk1
mutation are distinct from those of the CBF regulon [18�].
Similarly, mutations in the transcriptional adaptor protein

ADA2 also cause constitutive freezing tolerance but not

constitutive expression of COR genes [19].

Regulatory roles of protein ubiquitination
in cold stress responses
HOS1, a negative regulator of the CBF regulon, was

identified from a genetic screen for mutants with de-

regulated expression of CBF target genes [20,21]. The

cold induction of CBF genes and their downstream COR
genes is enhanced in loss-of-function hos1 mutant plants

[20]. HOS1 encodes a 915-amino acid protein that con-

tains a short motif near the amino terminus that is similar

to the Really Interesting New Gene (RING)-finger

domain found in the Inhibitor of Apoptosis (IAP) group

of animal proteins [21]. In vitro ubiquitination assays

demonstrated that Arabidopsis HOS1 is a functional

RING-finger protein that has ubiquitin E3 ligase activity.

HOS1 physically interacts with ICE1, suggesting that

HOS1 might ubiquitinate ICE1 and target it for proteo-

somal degradation. Indeed, both in vitro and in vivo
ubiquitination assays showed that HOS1 mediates the

polyubiquitination of ICE1 [22��]. Cold-induced degra-

dation of the ICE1 protein was observed in Arabidopsis
plants and this degradation is blocked by the hos1
mutation, indicating that HOS1 is required for the degra-

dation of ICE1, which functions to attenuate cold

responses in Arabidopsis [22��]. ICE1 and perhaps related

transcription factors that control the expression of CBF
www.sciencedirect.com



Plant cold acclimation Zhu, Dong and Zhu 293
genes are present in the absence of cold stress, but probably

undergo certain posttranslational modification(s) (e.g.

phosphorylation) in response to cold stress, thereby becom-

ing active in switching on the expression of CBF genes [6].

The active, modified form of ICE1 might be more effi-

ciently recognized by HOS1 and then degraded through

the ubiquitination/proteasome pathway.

Protein synthesis under cold stress might also be

regulated by ubiquitination. A cold- and heat-upregulated

Arabidopsis F-box protein, AtFBP7 (At1g21760), is

required for protein synthesis under temperature stress

[23]. The mechanism of AtFBP7 function is not known.

RNA processing and nucleocytoplasmic
transport play crucial roles in plant
responses to cold stress
Both cold-stress-induced transcripts and constitutively

expressed transcripts need to be processed, exported to

the cytoplasm and kept in conformations that are com-

petent for translation. RNA can fold into extensive sec-

ondary structures that could interfere with its function,

and this interference is exacerbated by cold temperatures.

In bacteria, nucleic-acid-binding cold shock proteins

(CSPs) accumulate at cold temperatures and function

as transcription antiterminators or translational enhancers

by destabilizing RNA secondary structure [24]. Some

CSP-domain-containing proteins in plants are upregu-

lated by cold stress, and might function as RNA chaper-

ones in the regulation of translation [25�,26]. A different

cold-responsive nucleic-acid-binding protein, a zinc-

finger-containing glycine-rich RNA-binding protein

from Arabidopsis designated atRZ-1a, is also upregulated

by cold stress, and genetic analysis supports its function in

freezing tolerance [27].

Another group of RNA chaperones, RNA helicases, are

involved in every step of RNA metabolism. In cyano-

bacteria, a cold-induced DEAD-box RNA helicase was

suggested to unwind cold-stabilized secondary structure

in the 50-untranslated region of RNA during cold stress

[28]. Compared to other organisms, plants have the largest

number of DEAD-box RNA helicase genes. One of these

helicases, which is encoded by the Arabidopsis LOW
EXPRESSION OF OSMOTICALLY RESPONSIVE
GENES4 (LOS4) gene, is essential for plant tolerance

of chilling and freezing stress [2]. LOS4 is required for

efficient export of RNA from the nucleus to the cyto-

plasm [29��]. The Arabidopsis nucleoporin AtNUP160/

SUPPRESSOR OF AUXIN RESISTANCE1 (SAR1)

also controls RNA export, and is crucial for chilling and

freezing tolerance [3�]. Both LOS4 and AtNUP160

proteins are enriched at the nuclear rim [2,3�]. Defects

in the nucleocytoplasmic transport of RNA seem to affect

cold tolerance preferentially, because the los4 and

atnup160 mutant plants do not have severe growth or

developmental phenotypes, nor are they strongly altered
www.sciencedirect.com
in tolerance of other abiotic stresses. Interestingly, the

los4 and atnup160 mutants both have defects in the cold

regulation of the CBF regulon. A crucial regulator of the

CBF regulon might be more strongly impacted by RNA

export than other genes in general. It is also possible that

the nuclear pore complex might undergo remodeling

under cold temperatures to accommodate altered RNA

structures or possibly higher RNA export demand caused

by cold stress. LOS4 and AtNUP160, and perhaps other

nucleoporins, might be important for this nuclear pore

remodeling. Although a higher or modified demand for

RNA export is still speculative, there is evidence of an

increased demand for RNA splicing under cold stress.

The Arabidopsis protein STABILIZED1 (STA1) is a pre-

mRNA splicing factor similar to the yeast Prp1p and

Prp6p [30�]. STA1 expression is strongly upregulated

by cold stress. A hypomorphic sta1 mutant allele causes

mis-splicing of RNAs under cold conditions and the

mutant plants are extremely chilling sensitive, suggesting

that pre-mRNA splicing is of particular importance for

cold tolerance in plants.

The low-temperature metabolome and
interplay between metabolic status and
cold stress signaling
Cold stress causes dramatic changes to plant metabolism,

as a result not only of general reductions in enzyme

activities and reaction rates in the cold [1] but also of

active reconfiguration of the metabolome [31,32]. The

protective functions of metabolites such as sucrose, tre-

halose, fructan, maltose, galactinol, proline and glycine-

betaine are well documented [33–35]. Recently, vitamin

E was found to be important for chilling tolerance as

vitamin-E-deficient Arabidopsis mutants are chilling sen-

sitive because of defective export of photoassimilate [36].

Large-scale profiling of metabolites by gas chromatog-

raphy-mass spectrometry (GC-MS) has revealed sweeping

changes in the plant metabolome in response to cold stress

[31,32]. Of more than 400 polar metabolites monitored by

Cook et al. [32], 75% increased upon cold treatment.

Remarkly, cold-induced changes in the metabolome can

be largely mimicked by ectopic expression of CBF genes at

warm temperature, demonstrating a prominent role for

the CBF regulon in the reconfiguration of the low-tempera-

ture metabolome. Consistent with an important role for the

CBF regulon and the metabolites in cold tolerance,

an Arabidopsis strain that is incapable of cold acclimation

(Cape Verde Islands-1 ecotype) has a weak CBF regulon

and is deficient in CBF-regulated metabolites [32].

The active reconfiguration of the metabolome is achieved

by cold-regulated gene expression changes, which in turn

are controlled by low-temperature signaling. Metabolism

is not, however, a passive target of cold signaling. It can

also regulate cold signaling and cold-responsive gene

expression. At least three types of metabolic signals might
Current Opinion in Plant Biology 2007, 10:290–295
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be important for cold signaling. First, soluble sugars can

serve as important signaling molecules [37]. Second, the

tetrapyrrole intermediate Mg-protoporphyrin (Mg-Pro-

toIX) was recently found to accumulate in plants under

cold conditions and binds to the translational elongation

factor 2 protein. Arabidopsis mutants that are deficient in

Mg-ProtoIX are impaired in cold-responsive gene expres-

sion and have reduced freezing tolerance (A Strand, pers.

comm.). Consistent with a putative chloroplastic signal for

cold regulation of gene expression, barley mutants that

are affected in chloroplast development are impaired in

cold-responsive gene expression [38]. The third type of

metabolic signal for cold regulation might be reactive

oxygen species (ROS). The Arabidopsis frostbite1 mutant

is impaired in the mitochondrial electron transfer chain

and hyperaccumulates superoxide and hydrogen peroxide

[39]. The high levels of ROS in this mutant might serve as

the metabolic signal that causes reduced cold-induction

of COR genes and decreased freezing tolerance [39].

Another Arabidopsis mutant, chy1, which is defective in

a peroxisomal b-hydroxyisobutyryl-CoA hydrolase

needed for fatty acid b-oxidation and valine catabolism,

also accumulates high levels of ROS (C-H Dong, J-K Zhu,

unpublished). The chy1 mutant shows a reduced cold

induction of CBF genes, and is defective in chilling

and freezing tolerance that can be rescued by ectopic

expression of CBF3 under a constitutive promoter. ROS

levels and subcellular distribution are very dynamic. ROS

is possibly a ubiquitous metabolic signal that modulates

many cellular processes, including cold responses.

Conclusions and future directions
Large-scale profiling of gene transcripts and metabolites

has permitted a glimpse of the sweeping changes to the

plant transcriptome and metabolome that take place under

cold stress. Genetic analysis has revealed the unexpected

involvement of metabolic signals and of RNA processing

and export in cold stress signaling and tolerance. The

precise mechanism of these involvements remains to be

defined. Information on the low-temperature transcrip-

tome, proteome and metabolome is expected to continue

to increase in the near future. This information is necessary

for our understanding of the complex network of molecular

changes that are important for chilling and freezing toler-

ance. The power of forward and reverse genetic studies,

particularly when combined with biochemical analysis,

needs to be exploited further. Additionally, innovative

approaches are needed to identify and establish the func-

tion of the cold sensors and signaling components that are

responsible for the activation of cold-responsive transcrip-

tional cascades.
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