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ABSTRACT

RNA silencing-mediated small interfering RNAs
(siRNAs) and microRNAs (miRNAs) have diverse
natural roles, ranging from regulation of gene expres-
sion and heterochromatin formation to genome
defense against transposons and viruses. Unlike
miRNAs, endogenous siRNAs are generally not
conserved between species; consequently, their
identification requires experimental approaches.
Thus far, endogenous siRNAs have not been reported
from rice, which is a model species for monocoty-
ledonous plants. We identified a large set of putative
endogenous siRNAs from root, shoot and inflores-
cence small RNA cDNA libraries of rice. Most of
these siRNAs are from intergenic regions, although
a substantial proportion (22%) originates from the
introns and exons of protein-coding genes.
Northern and RT–PCR analysis revealed that the
expression of some of the siRNAs is tissue specific
or developmental stage specific. A total of 25 trans-
posons and 21 protein-coding genes were predicted
to be cis-targets of some of the siRNAs. Based on
sequence homology, we also predicted 111 putative
trans-targets for 44 of the siRNAs. Interestingly,�46%
of the predicted trans-targets are transposable
elements, which suggests that endogenous siRNAs
mayplayan important role in thesuppression of trans-
poson proliferation. Using RNA ligase-mediated-50

rapid amplification of cDNA end assays, we validated
three of the predicted targets and provided evidence
for both cis- and trans-silencing of target genes by
siRNAs-guided mRNA cleavage.

INTRODUCTION

In plants and animals, microRNAs (miRNAs) and small
interfering RNAs (siRNAs) have emerged as important

negative regulators of gene expression (1–4). miRNAs
arise by endonucleolytic processing by the enzyme Dicer
from hairpin-structured single-stranded precursor RNAs
that are transcribed from endogenous nonprotein-coding
genes (2,3). siRNAs are also processed by a Dicer, but
are generated from double-stranded RNAs (dsRNAs) as a
result of antisense or convergent transcription or due to
the activity of one or more cellular RNA-dependent
RNA polymerases (RdRPs) (4). These small RNAs serve
as specificity determinants of transcriptional gene
silencing (TGS) and post-transcriptional gene silencing
(PTGS) (5–7).

The RNAi pathway and machinery are highly conserved
throughout lower to higher eukaryotic organisms
(Schizosaccharomyces pombe to metazoans). However,
there are differences in siRNA-mediated RNA silencing
pathways between plants and animals. For instance, siRNAs
produced in Drosophila embryos (7) and in mammalian cells
(8) belong to the �21 nt class, while siRNAs in plants and
fungi fall into two distinct classes: a short (�21 nt) and a long
(�24 nt) size class (9–15). Recently, it was shown that the
�21 nt class of siRNAs designated as trans-acting siRNAs
(tasiRNAs) from Arabidopsis are associated with post-
transcriptional silencing by directing the cleavage of target
mRNAs (16,17). The longer size class of siRNAs (�24 nt)
are associated with TGS involving DNA methylation and
histone (H3K9) methylation (18–20). The length and func-
tional diversity of small RNAs in plants are reflected in the
multiplicity of DCL (Dicer-like) activities. Dicer is represen-
ted by one or two genes in animals, which indicates that often a
single Dicer processes both miRNAs and siRNAs. In contrast,
Arabidopsis and rice encodes at least four and three DCL
proteins, respectively (19). Arabidopsis homozygous for the
weak loss-of-function allele dcl1-9 is impaired in miRNA
precursor processing (15,21–23), whereas the DCL2 and
DCL3 proteins are implicated in viral siRNA biogenesis
and endogenous siRNA biogenesis, respectively (19). In addi-
tion to DCLs, an Argonaute (Ago-4), HEN1 and SDE4 have
been implicated in siRNA accumulation (18,24–26). These
studies suggest that plants have evolved multiple small
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RNA processing pathways with specific as well as overlapping
functions.

Cloning of small RNAs is a starting point to understand
their number, diversity and possible roles in any organism.
Recent studies clearly indicated the importance of small
RNA cloning, particularly in the identification of hitherto
unknown classes of endogenous small RNAs in diverse
species, such as S.pombe, Drosophila, Caenorhabditis elegans
and Arabidopsis. A large number of endogenous small RNAs
referred to as repeat-associated small interfering RNAs
(rasiRNAs) that can be mapped to transposons of the
Drosophila genome have been identified (27). Another class
of small RNAs referred to as tiny non-coding RNAs
(tncRNAs) have been identified in C.elegans (28). Heterochro-
matic siRNAs that corresponded to both DNA strands of
centromeric repeats have been identified in S.pombe (29).
Similarly, cloning in Arabidopsis led to the identification of
a large number of endogenous siRNAs (15,16,19). The
functions of these recently discovered endogenous siRNAs
have not been investigated in detail, but they appear to
have important regulatory roles in gene expression.
For example, two recent studies have demonstrated that
Arabidopsis endogenous siRNAs referred to as tasiRNAs
act similar to miRNAs and can direct the cleavage of the
predicted trans-target mRNAs (16,17).

Since computational methods to predict endogenous siRNAs
are currently unavailable, the identification of these siRNAs
requires experimental approaches. Endogenous siRNAs have
thus far been cloned only from a dicotyledonous plant
(Arabidopsis), but siRNAs from monocotyledonous plants
are not known. Rice is the world’s most important crop, as
measured by the portion of calories provided to the human
diet, and is the only monocot species with a completely
sequenced genome. To identify endogenous siRNAs and
miRNAs from rice, we generated three small RNA cDNA
libraries from different tissues. In this study, we report the
first identification and characterization of a large set of
putative endogenous siRNAs from rice. Most of these siRNAs
map to intergenic regions. Some of the siRNAs show tissue/
developmental stage-dependent expression. A total of 5 of the
siRNAs are perfectly complementary to 25 different transpo-
sons and 8 of the siRNAs display perfect complementarity
with 21 protein-coding genes, suggesting the possibility that
these genes might be regulated in cis by endogenous siRNAs.
Besides these, 111 trans-targets were predicted for 44 of the
siRNAs and the predicted trans-target genes consist largely of
transposable elements. This observation implies a role for
endogenous siRNAs in controlling the proliferation of trans-
posons in both cis- and trans-silencing manners. Importantly,
we show that three of the predicted targets are genuine targets
of endogenous siRNAs in rice and their mRNA cleavage
in vivo is guided by the siRNAs. This is the first demonstration
of mRNA targets of endogenous siRNAs in rice.

MATERIALS AND METHODS

Cloning of endogenous siRNAs from rice

Total RNA was isolated separately from shoots and roots of
4-week-old young seedlings and inflorescences of adult rice
plants (Oryza sativa spp. japonica cv. Nipponbare) with use of

TRIzol (Invitrogen Life Technologies, Carlsbad, CA)
according to the manufacturer’s instructions. Cloning of
small RNAs was performed as described previously (15). In
brief, small RNAs from 18 to 26 nt were size fractionated,
purified and ligated sequentially to 50 and 30 RNA/DNA
chimeric oligonucleotide adapters. Reverse transcription
was performed after ligation with the adapters, followed by
PCR amplification. The resulting PCR products were cloned
and transformed into competent cells. Plasmids were isolated
from individual colonies and sequenced.

Sequence analysis

Automated base calling of raw sequence traces and vector
removal were performed with the PHRED and CROSS
MATCH programs from Ewing and Green (30). To avoid
loss of critical sequence information in our short RNA
sequences, a two step approach was used. First, non-insert
and low quality sequences were removed with relatively
forgiving filter settings by running the CROSS MATCH
program with a minimum match parameter of 15 nt and a
PHRED score of 14. In a second step, the obtained insert
sequences with quality scores below 20 were flagged and
further quality inspected by eye. Candidates with ambiguous
base calls were removed from the dataset. The filtered and
trimmed sequences with >16 nt in length were used to search
the Rfam database (31) using the BLASTN program (32). This
step allowed the removal of most RNA species that might be
degradation products of non-coding RNAs in the dataset.
Putative origins for the remaining sequences were identified
by BLASTN searches against the genomic sequences of the
version 2.0 annotation of O.sativa spp. japonica from The
Institute for Genomic Research (TIGR) (ftp://ftp.tigr.org/
pub/data/Eukaryotic_Projects/o_sativa/). Candidates with
perfect matches against these genomic datasets were desig-
nated as endogenous siRNAs when they showed no fold-back
structure in secondary structure predictions with the mfold
program (33).

To identify putative target sequences, all predicted and
cloned CDS (coding sequences) and UTR sequences from
O.sativa (TIGR all.cdna set) were searched using the PatScan
program (34). The following parameters were used for these
pattern searches, all referring to the 50 end of the siRNAs in
antisense orientation: no more than three mismatches exclud-
ing at the positions 10 and 11. The retrieved siRNA/target site
pairs were ranked and scored by aligning them with the
Needleman–Wunsch global alignment program from
EMBOSS (35).

RNA blot analysis

Total RNA was isolated from root, leaf and inflorescence
tissues of adult plants and from 4-week-old young rice seed-
lings with use of Trizol. Low molecular weight RNAs were
isolated by polyethylene glycol precipitation of total RNA (5).
Fifty micrograms of low molecular weight RNA was loaded
per lane, resolved on a denaturing 15% polyacrylamide gel and
transferred electrophoretically to Hybond-N+ membranes.
Hybridization and washings were performed as described
previously (15). The membranes were briefly air dried and
then exposed to a PhosphorImager.
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PCR-based detection of candidate siRNAs

PCR-based detection of small RNAs was performed as
described previously by Grad et al. (36). To PCR amplify
the candidate siRNAs from the small RNA libraries, an
oligonucleotide complementary to the 50 adapter was used
with a 30 oligonucleotide complementary to the particular
candidate siRNA.

50 Rapid amplification of cDNA ends

Total RNA from 4-week-old rice seedlings was extracted with
use of Trizol reagent. Poly(A)+ mRNA was purified from total
RNA with use of the Poly(A) kit (Promega). RLM-50 RACE
(RNA ligase-mediated-50 rapid amplification of cDNA ends)
was carried out with use of the GeneRacer Kit (Invitrogen Life
Technologies). The GeneRacer RNA Oligo adapter was
directly ligated to mRNA (100 ng) without calf intestinal
phosphatase and tobacco acid pyrophosphatase treatment.
Gene-specific primers (9629.m00201, 9636.m02299 and
9632.m00807) were designed and used for cDNA synthesis.
Initial PCR was carried out with the GeneRacer 50 primer and
gene specific primers. Nested PCR was carried out with 1 ml of
the initial PCR, GeneRace 50 nested primer and gene-specific
internal primers. After amplification, 50 RACE products were
gel-purified and cloned, and at least 10 independent clones
were sequenced.

RESULTS

Cloning, size distribution and 50 nucleotide preference
of rice endogenous siRNAs

We constructed three libraries of small RNAs each from the
shoots and roots of seedlings and from the inflorescence
tissues of adult rice plants (O.sativa spp. japonica cv.
Nipponbare) plants. Small RNAs from 16 to 26 nt in length
were isolated by size fractionation and ligated to 50 and 30

adapters, and then cloned and sequenced. A total of �10 000
clones were sequenced (�1/3 from each library) and nearly
half of it was represented by clones either shorter than 16 nt or
without cDNA inserts (i.e. self-ligation of the adapters). The
remaining 4910 small cDNA sequences were between 16 and
26 nt in length. All vector trimmed sequences longer than 16 nt
were used to search the Rfam database (www.sanger.ac.uk/
Software/Rfam) with BLASTN (31). This step allowed for the
removal of most RNA species that might be degradation
products of non-coding RNAs in the dataset (Table 1). The
largest class of cloned RNAs represents fragments of abundant
non-coding RNAs (rRNA, tRNA, snRNA and snoRNA) as
determined by BLASTN searches against the Rfam database.
Seventy percent of the sequences correspond to ribosomal
RNAs. Furthermore, 26S rRNAs and 18S rRNAs together
accounted for �40% of the total sequences (Table 1). Several
clones mapped to chloroplast or mitochondrial genomes and
may represent either degradation or possibly regulatory pro-
ducts of organellar RNAs (Table 1). Several sequences (478)
did not match to any nuclear or organellar sequence, suggest-
ing that these may correspond to unfinished regions in the rice
genome (Table 1). Putative origins for the remaining
sequences were identified by BLASTN searches against the
genomic sequences of O.sativa spp. japonica. Candidates with

perfect matches against these genomic datasets were endogen-
ous small RNAs. These consist of miRNAs (124 sequences)
(33) and putative endogenous siRNAs (314 sequences repres-
enting 284 unique siRNAs; all sequences are provided in
Supplementary Table 1). The putative endogenous siRNAs
correspond to genomic sequences that do not have predictable
fold-back structures. A large set of small RNAs with sizes
between 20 and 24 nt and in the sense orientation to
non-coding RNAs (rRNA, tRNA, snRNA and snoRNA) and
exons of protein-coding genes were not included in this
analysis. Although many of these are likely degradation
products of the abundant non-coding RNAs or mRNAs,
some may be siRNAs. For example, some of the endogenous
siRNAs in Arabidopsis have been shown to be derived from
rDNAs and exons of protein-coding genes in the sense
orientation (12,19). However, these were not characterized
further in this study. Ascertaining these molecules unambigu-
ously as rice siRNAs will require their expression analysis in
dcl and rdrp mutants, which are not available for this species at
the present time.

The number of endogenous siRNAs cloned from the differ-
ent libraries varied greatly (Figure 1A). Most of them (225) are
derived from the inflorescence library, whereas the shoot and
root libraries yielded a substantially lower number of siRNAs
(42 and 17 siRNAs from shoot and root libraries, respectively)
(Figure 1A). Fifteen of the siRNA sequences (P4-D6, P8-E2,
P16-C3, P65-B7, P86-H10, P88-A8, P88-A11, P91-A10,
P94-H11, P98-A9, P103-B2, P104-G7, P107-E1, P108-A7
and P108-D3) showed an overlap between the libraries. The
majority of the siRNAs are 21–24 nt in size, which is the
typical size range for Dicer-derived products (Figure 1B).
The 24 nt size class is predominant. The identified siRNAs
exhibit a biased nucleotide distribution at their 50 end. Of the
284 unique siRNAs, 105 begin with a U and 95 with an A,
regardless of their size. About two-thirds begin with a pyri-
midine, whereas the sequences that begin with C or G are
underrepresented among the cloned sequences (Supplement-
ary Table 1). Furthermore, each of the two size classes start
with a distinct nucleotide at their 50 end, with U predominating
in the 21 nt class and a 50 A in the 24 nt class (Figure 1D).

The publicly available Arabidopsis siRNAs (http://asrp.
cgrb.oregonstate.edu/) were analyzed similarly to determine
whether this nucleotide preference is a common feature in the

Table 1. Small RNA composition of the cDNA library

RNA class Numbers of small RNAs

28S rRNA 189
26S rRNA 1218
25S rRNA 407
23S rRNA 292
18S rRNA 846
16S rRNA 307
5S rRNA 291
tRNA 253
SnRNA 52
SnoRNA 18
Chloroplast/mitochondria 121
miRNAs 124
Endogenous siRNAs 314
No perfect hits to rice genome 478
Total 4910
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21 and 24 nt size classes of plant siRNAs. Most of the
endogenous siRNAs of the 21 nt class begin with a 50 U,
whereas the 50 nt of the 21 nt class transgene siRNAs show
an even distribution among A, U, C and G (13) (http://asrp.
cgrb.oregonstate.edu/). The bias of the endogenous rice and
Arabidopsis siRNAs or non-bias of the transgene siRNAs in
their 50 nt may reflect the specific activities of DCL involved in
their biogenesis. Some of the putative siRNAs of the �21 nt
size class could be miRNAs. These could be generated from
atypical hairpin structures that cannot be recognized as
miRNA precursors. Analysis of the 24 nt size class in
Arabidopsis further confirmed that this class of endogenous
siRNAs has a 50 A preference. This observation could suggest
that one of the DCLs in rice and Arabidopsis is responsible for
the generation of the 24 nt class of siRNAs preferentially with
A on the 50 end of the molecule. It was hypothesized that
DCL3 and RNA-dependent RNA polymerase 2 (RDR2)
generate endogenous siRNAs primarily of the large size
(�24 nt) class in Arabidopsis (19). Similarly, the DCL3 ortho-
log in rice may be involved in the generation of the �24 nt
class of siRNAs. Further studies are required to correlate the
generation of endogenous small RNAs with the specific DCL
and RdRP activities in rice.

Genomic organization of endogenous siRNAs in rice

The genomic locations of rice endogenous siRNAs identified
in the present study are shown in Supplementary Table 1. The
284 siRNAs map to 942 loci on the 12 rice chromosomes
(Figure 1C and Supplementary Table 1). The discrepancy
between the number of identified siRNAs (284) and the
number of their corresponding genomic loci (942) is due to
the fact that some siRNAs have multiple loci. Among the
siRNAs, 165 are encoded by single copy loci in the rice
genome, whereas the remaining siRNAs have multiple loci
(2–21) (Supplementary Table 1). A total of 729 loci can be
mapped to intergenic regions, and 213 correspond to introns
(110 in the sense polarity and 103 in the antisense polarity
relative to the genes) (Supplementary Table 1 and Figure 1C).
They are scattered across all chromosomes with several
islands of higher density (Supplementary Figure 1). The
total number of siRNA loci between the different chromo-
somes is highly variable. The total number of siRNA loci
peaks on chromosomes 11 and 12, whereas chromosome 5
has the lowest density and number of loci (Supplementary
Figure 1). However, we were unable to detect a marked density
correlation between siRNAs and genes or transposons along
the different chromosomes.
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Figure 1. Rice endogenous siRNAs. (A) Histogram of the number of siRNAs identified from the libraries of shoots and roots of young seedlings, and inflorescence
tissues. (B) Size distribution of endogenous siRNAs. (C) The rice endogenous siRNAs correspond to sequences from ORFs, transposons, introns and intergenic
regions. (D) Sequence composition of the 50 ends of rice siRNAs as a function of length.
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Some of the siRNAs display perfect complementarity with
protein-coding genes and transposons (Tables 2 and 3). A total
of 8 of the siRNAs (P1-C04, P7-E5, P8-G3, P56-H4, P78-E8,
P83-D5, P108-B7 and P109-D12) are perfectly complement-
ary to the mRNAs of 21 protein-coding genes (Table 2). Some
of these siRNAs are complementary to multiple genes. For
example, P56-H4 is complementary to 12 genes, and P1-C04
to 2. Similarly, 5 of the siRNAs (P33-D12, P40-H12, P56-H4,
P90-B8 and P107-E1) are perfectly complementary to 25 of
the transposons (Table 3). These include several classes of
transposons (DNA transposons, retrotransposons and trans-
posases). This observation implies that these siRNAs originate
from the same locus as their respective target genes. However,
some of these siRNAs appear to have multiple loci, and there-
fore it cannot be confirmed whether these siRNAs are derived
from antisense transcription of the same locus or originate
from a different locus and target the genes in trans. In
summary, the endogenous siRNAs from rice largely originate
from intergenic regions, but a significant proportion also arises
from introns, exons and repetitive sequences (transposons and
retroelements).

Rice siRNA clusters

siRNA loci often generate multiple, overlapping clusters of
small RNAs. This stands in contrast to miRNA loci that gen-
erally yield a single miRNA. We have identified six clusters
in intergenic regions, each with two or more siRNAs. These

clustered siRNAs are spaced within an interval of 500 nt
(Figure 2). Some of the clusters contain small RNAs that
map to the plus and minus strands of short genomic regions
(Figure 2). This observation suggests the possibility that the
different siRNAs in a cluster originate from one long dsRNA.

Expression pattern of rice endogenous siRNAs

The tissue- and developmental stage-specific expression of
small RNAs can provide clues about their physiological
function. In C.elegans, the expression of several tncRNAs
was found to depend on developmental stages (28). To
examine whether rice endogenous siRNAs are expressed in
a developmental stage-dependent and/or tissue-specific
manner, we performed northern analysis using low molecular
weight RNA blots from various tissues of mature plants (root,
leaf and inflorescence) as well as 4-week-old young seedlings.
For expression analysis, we tried to select siRNAs that
appeared relatively frequently in our sequences or are repres-
ented by more loci in the genome, as these may have relatively
high expression and thus more amenable for detection.

The northern analysis revealed that most of the 30 siRNAs
tested are expressed at very low abundance and could not be
detected on the small RNA blots. However, we could detect a
signal at the appropriate sizes for six of the siRNAs (P16-C3,
P4-D6, P88-A11, P98-A9, P108-A7 and P107-E1) (Figure 3).
Two of the siRNAs are expressed relatively abundantly
(P16-C3 and P107-E1). Some show tissue- or developmental

Table 2. siRNAs that are antisense to protein-coding genes

siRNA Accession number Protein class Position in gene

P1-C04 9638.m03532 Flavanone 3-hydroxylase 30-UTR
9632.m05823 Tubulin-folding co-factor B 30-UTR

P7-E5 9640.m04164 Unknown protein ORF
P8-G3 9636.m01529 DNA-directed RNA polymerase ORF
P56-H4 9639.m01348; 9638.m03362; 9638.m01465 Unknown proteins ORF

9635.m02201; 9635.m01014; 9634.m01827 Unknown proteins ORF
9629.m04919; 9636.m02666; 9635.m02202 Unknown protein ORF
9633.m00440; 9631.m02402 Unknown protein ORF
9639.m03577 Leucine-rich repeat ORF

P78-E8 9640.m00107 Unknown protein ORF
9640.m00111 Unknown protein ORF

P83-D5 9640.m00279 Receptor protein kinase ORF
P108-B7 9632.m02934 Unknown protein ORF
P109-D12 9639.m00201 Auxin transport protein-like ORF

Table 3. siRNAs originating from antisense orientations to transposons

siRNA Id Accession number Transposon annotation Position in gene

P33-D12 9633.m01157 Gag-pol precursor ORF
P40-H12 9633.m00737 Retrotransposon, Ty3-gypsy sub-class ORF
P56-H4 9640.m00740; 9629.m02858; 9631.m04579 MuDR family transposases ORF

9632.m00690 Retrotransposon, Ty3-gypsy sub-class ORF
9640.m02844; 9638.m02247; 9638.m00643 Transposons, mariner sub-class ORF
9634.m00741; 9633.m03362; 9633.m02293 Transposons, mariner sub-class ORF
9631.m01776; 9629.m04738; 9629.m02757 Transposons, mariner sub-class ORF
9636.m02871; 9634.m02781;9632.m01127 Transposons, mariner sub-class ORF
9632.m02179 Transposons, mariner sub-class ORF

P90-B8 9637.m00782; 9635.m02300 Retrotransposons, unclassified ORF
9635.m01634; 9633.m01299 Retrotransposons, Ty3-gypsy sub-class ORF

P107-E1 9633.m01299; 9635.m01634 Retrotransposons, Ty3-gypsy ORF
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stage-specific expression patterns (P88-A11, P98-A9,
P108-A7 and P107-E1). P16-C3 and P4-D6 appear to be uni-
formly expressed in all rice tissues examined (Figure 3A and
B). In addition to the expected signal at 21 nt, the P16-C3
probe also detected a weaker signal at a lower size of
�18–19 nt in all tissues examined. The lower sized signal
may represent smaller sized siRNA rather than a degradation
product of P16-C3. Furthermore, this small band was stronger
in the leaf tissue than in other tissues. P16-C3 has multiple
loci, and thus the smaller molecule might have originated from
a different locus than the larger one. P98-A9 displayed mod-
erate expression in leaves and young seedlings (Figure 3C).
The expression of P88-A11 was moderate in inflorescence and
seedlings but very weak in leaf and root tissues (Figure 3D).
P108-A7 was expressed in all tissues tested, but the levels
were higher in inflorescence and young seedlings
(Figure 3E). The expression of P107-E1 was strong in leaves
and young seedlings but almost below the detection limit in the
root tissue (Figure 3F).

Furthermore, using an RT–PCR approach we were able to
detect the expression of 16 additional siRNAs out of 65 tested
(Figure 4). Some of these siRNAs, P8-E2, P86-H10, P88-A8,
P91-A10, appear to be ubiquitously expressed, while others
such as P108-D3, P103-B2, P65-B7, P104-G7 and P94-H11
are preferentially expressed in the inflorescence (Figure 4).
The rest were expressed in at least one of the tissues tested
(Figure 4). These results show that some endogenous siRNAs
in rice are differentially expressed in different tissues and/or
developmental stages.

Predicted targets

To identify potential trans mRNA targets for the endogenous
siRNAs, we searched rice mRNAs for antisense hits with three

or fewer mismatches and no mismatch was allowed between
positions 10 and 11 from the 50 end of the siRNA. Arabidopsis
miRNA and tasiRNAs targets are known to exhibit up to three
or even four mismatches to their target sites. The number of
mismatches is typically lower in the 50 region of the small
RNA (16,17,37,38). By allowing a maximum of three
mismatches, we were able to predict 111 trans-targets for
44 of the siRNAs (Table 4). Targets could not be predicted
for the remaining siRNAs by applying these criteria. miRNA
target sites in plants are usually found in the open reading
frames (ORFs) of the target genes (15,39), although some
target sites are in the UTR of target genes (15). Similarly,
the endogenous tasiRNAs in Arabidopsis appear to have
their target sites in the ORFs of the target genes (16,17).
Most (87) of our predicted trans-target genes in rice have
target sites in the ORFs. Eighteen have predicted target
sites in 30-UTRs and six in 50-UTRs.

Some of the siRNAs are perfectly complementary to the
protein-coding genes and transposable elements (Tables 2 and
3). These siRNAs are possibly involved in the cis-silencing of
those protein-coding genes and transposons. In addition,
some transposable elements were predicted as trans-targets
for some of the siRNAs. A total of 51 of the 111 predicted
trans-targets are transposons, and these are targeted by 16
siRNAs (Table 4). In all the cases, the target sites are located
in ORFs of the transposons. These include mariner and En/
Spm type transposons, retrotransposons (Ty3-gypsy,
Ty1-copia), MuDR transposases and some other unclassified
transposable elements.

The remaining predicted targets appear to have roles in a
broad range of physiological processes (Table 4). These
include genes encoding protein kinases, F-box proteins, Zn-
finger proteins, disease-related proteins, lipase and another 45
proteins with unknown functions (Table 4). The predicted
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Figure 4. PCR-based detection of endogenous siRNAs. PCR amplification was performed using a 50 primer for the 50 adapter sequence and a 30 primer specific for the
candidate siRNAs.
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Table 4. Predicted trans-targets of endogenous siRNAs from rice

siRNA Predicted trans-target ORF/UTR protein class MFGO

p1-C04 9639.m03698 (1); 9631.m01833 (1);
9633.m04353 (2); 9631.m03852 (2)

ORF Unknown proteins n.a.

P6-A9 9631.m05051 (2) 50-UTR Homeobox 1 protein OSH1 DNA binding
P8-C12 9635.m03442 (2) ORF Unknown protein n.a.
P9-F11 9630.m04448 (1); 9636.m03634 (1);

9638.m01327 (1)
ORF Unknown proteins n.a.

9632.m00040 (2) ORF Transposon n.a.
9634.m03300 (2) ORF Unknown protein n.a.

P31-G9 9631.m02155 (1) ORF Protein kinase C-terminal domain Kinase activity
P33-D12 9633.m01156 (1) ORF Unknown protein n.a.
P40-H12 9633.m01657 (1); 9635.m01160 (1);

9640.m02569 (1); 9639.m02516 (1)
ORF Retrotransposon proteins, Ty3-gypsy n.a.

9629.m02836 (2); 9630.m02869 (2);
9632.m01522 (2); 9633.m01553 (2)

ORF Retrotransposon protein, Ty3-gypsy n.a.

9634.m01523 (2); 9638.m00819 (2);
9638.m01484 (2); 9639.mo2508 (2)

ORF Retrotransposon protein, Ty3-gypsy n.a.

9632.m01381 (2); 9632.m05483 (2);
9633.m02072 (3); 9635.m00231 (3)

ORF Retrotransposon protein, Ty3-gypsy n.a.

9636.m01098(3); 9633.m02207 (2);
9640.m01398 (2); 9635.m00348 (3)

ORF Retrotransposon protein, Ty3-gypsy n.a.

9636.m02070 (3); 9633.m01607 (2) ORF Retrotransposon proteins, unclassified n.a.
9636.m01059 (2) ORF Transposon protein, CACTA, En/Spm n.a.

P49-E4 9632.m05379 (2) 50-UTR G10 protein Nucleus
P56-H4 9635.m04625 (1); 9637.m00162 (1);

9635.m04145 (1); 9629.m01794 (1)
ORF Transposon proteins, mariner n.a.

9630.m02898 (1) ORF MuDR family transposases n.a.
9635.m02910 (1); 9635.m04732 (1) ORF Zinc finger proteins n.a.
9631.m00145 (1); 9631.m04466 (1) ORF Unknown proteins n.a.

P71-G7 9636.m03978 (1) ORF b 1,2-xylosyltransferase n.a.
9629.m01388 (1) 50-UTR BT1 family Transporter activity

P75-D3 9632.m00807 (1) ORF Retrotransposon protein, Ty1-copia n.a.
P77-H6 9631.m03009 (2); 9632.m02240 (2);

9629.m02778 (2); 9629.m02218 (2)
ORF Retrotransposon proteins, Ty3-gypsy n.a.

9631.m03445 (2) ORF Polyprotein n.a.
P79-H4 9639.m02976 (1) 30-UTR Unknown protein n.a.

9638.m03532 (1) 30-UTR Flavanone 3-hydroxylase Catalytic activity
9632.m05823 (1) 30-UTR Tubulin folding co-factor B Cell organization and biogenesis
9631.m01833 (2) 30-UTR Ribosomal protein S7e Structural molecule activity
9639.m03698 (2); 9633.m04353 (3) ORF Unknown proteins n.a.

P81-B6 9630.m05360 (2) 30-UTR Unknown protein n.a.
P81-F4 9630.m00799 (2) 30-UTR Chorismate mutase Catalytic activity
P83-G5 9632.m04071 (1) 30-UTR Polyadenylate binding protein family RNA binding
P84-C2 9634.m04235 (2); 9640.m03178 (2) ORF Unknown proteins n.a.
P86-F9 9640.m03178 (2); 9639.m01190 (2);

9637.m00219 (2); 9635.m00791 (2)
ORF Unknown proteins n.a.

9634.m02637 (2) ORF Retrotransposon protein, Ty1-copia n.a.
P86-G10 9637.m01993 (2) 50-UTR Unknown protein n.a.
P86-H10 9636.m00899 (3) ORF N7 like-protein Catalytic activity
P87-A3 9634.m02242 (2) ORF Unknown protein n.a.

9633.m01814 (2) ORF Transposon protein, CACTA, En/Spm n.a.
P87-H6 9640.m01018 (2) ORF Transposon protein, CACTA, En/Spm n.a.
P88-A11 9630.m00104 (2) 50-UTR Probable protein kinase Kinase activity

9634.m00364 (3) 30-UTR Unknown protein n.a.
P88-H6 9629.m01127 (1) 30-UTR Lipase/acylhydrolase Hydrolase activity
P89-B12 9629.m01463 (3) ORF Unknown protein n.a.
P89-G12 9639.m01787 (2); 9634.m02818 (2);

9634.m02252 (3)
ORF Transposon proteins, CACTA, En/Spm n.a.

P89-H4 9629.m01059 (2) 30-UTR WH2 motif containing protein n.a.
9634.m02256 (2) 50-UTR Similar to Xet3 protein Hydrolase activity

P91-E4 9640.m02704 (2) 30-UTR MLA12 Response to biotic stimuli
P92-A9 9631.m00634 (2) ORF Retrotransposon protein, unclassified n.a.
P94-D12 9631.m04248 (3) 30-UTR Unknown protein n.a.
P96-E12 9635.m01047 (3) ORF Cellulose synthase Transferase activity

9629.m00460 (3) ORF Retrotransposon protein, Ty1-copia n.a.
P98-A9 9636.m02299 (1) ORF Unknown protein n.a.

9633.m01348 (2) ORF Retrotransposon protein, Ty3-gypsy n.a.
P98-G5 9632.m01377 (3) ORF BURP domain-containing protein Hydrolase activity

9630.m01508 (3) ORF Xa1-like (bacterial blight resistance protein) Response to biotic stimulus
P102-C12 9638.m00293 (1) 30-UTR F-box protein n.a.

9629.m07044 (1) 30-UTR Unknown protein n.a.
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target of siRNA 109-D12 is 9629.m00201, a PIN1-like gene,
which has two complementary sites within the ORF
(Figure 5A). The two target sites correspond to positions
362–383 and 1397–1418, with zero mismatches (Figure 5A).
P109-D12 has two genomic loci corresponding to the two
target sites in 9629.m00201, which indicates that P109-D12
siRNA originates possibly by antisense transcription.

P1-C04 and P79-H4 are of the same size (24 nt) and differs
by 1 nt and the origins were different. P1C04 is perfectly
complementary to the 30-UTR of flavanone 3-hydroxylase.
P79-H4 is predicted to target the same site but with a mismatch
at the position 11 from the 50 end of the siRNA.

Endogenous rice siRNAs can direct the cleavage
of target mRNAs

The cleavage of target mRNAs appears to be the predominant
mode of gene regulation of miRNAs in plants. In addition to

miRNAs, tasiRNAs in Arabidopsis have also been shown to
direct the cleavage of the predicted target transcripts (16,17).
Target mRNA fragments resulting from siRNA-guided cleav-
age are characterized by having a 50 phosphate group, and
cleavage occurs near the middle of the base pair interaction
region. To examine whether some of the predicted siRNA
targets are true targets and whether these siRNAs can direct
the cleavage of predicted targets, we used a RNA ligase-
mediated 50 RACE procedure to map the cleavage site of
siRNA targets. Using this procedure, we were able to detect
and clone the cleaved fragments of 9629.m00201 (PIN1-like
gene) targeted by P109-D12 (Figure 5A). Interestingly, this
gene has two target sites in its ORF, and the cleaved fragments
corresponded to both of the target sites. This observation
provides an example of cis-silencing by endogenous siRNAs.
We have also found evidence for siRNA-mediated trans-
targeting in rice. For example, P98-A9 targets the unknown
protein 9636.m02299 and P75-D3 targets the retrotransposon

Table 4. Continued

siRNA Predicted trans-target ORF/UTR protein class MFGO

P102-F3 9629.m00936 (1) 30-UTR Zinc finger, C2H2 type Nucleic acid binding
P105-G11 9630.m04940 (2); 9636.m01694 (2) ORF Unknown proteins n.a.
P106-F8 9632.m02318 (2) 30-UTR Unknown protein n.a.
P107-E1 9637.m00211 (1); 9633.m01405 (2);

9634.m02637 (2)
ORF Retrotransposon proteins, Ty3-gypsy n.a.

P107-E2 9633.m03971 (2) ORF Unknown protein n.a.
9633.m03923 (3) 30-UTR Unknown protein n.a.

P107-H3 9629.m04373 (2) ORF Retrotransposon protein, unclassified n.a.
9633.m03827 (2) ORF Unknown protein n.a.

P108-A7 9639.m02094 (2) ORF Retrotransposon protein, Ty3-gypsy n.a.
9639.m03271 (2) ORF Transposon protein, CACTA, En/Spm n.a.

P108-H5 9638.m02410 (2) ORF Unknown protein n.a.
P108-H10 9629.m05975 (2) ORF Transposon protein, unclassified n.a.
P109-E3 9631.m01773 (2) 30-UTR Leucoanthocyanidin dioxygenase Catalytic activity

MFGO, molecular function gene ontology; n.a., not available.

B 2/10 8/10

9636.m02299   5’ AUUCACGAUCUUCGGAUGUCUCA 3’

P98-A9   3’ UAUGUGCUAGAAGCCUACAGAGU 5’

C
9632.m00807   5’ GUCCCUCACCGCAUUUAAUGUAG 3’

P75-D3   3’ CAGGGAGUGGCGUAAAUUACGUC 5’

7/10

A

9639.m00201   362 UUCUCUUGCGUCACUCACCAA 383… 1397 UUCUCUUGCGUCACUCACCAA 1418

P109-D12      3’ AAGAGAACGCAGUGAGUGGUU 5’ 3’ AAGAGAACGCAGUGAGUGGUU 5’

(7/10) (10/10)

Figure 5. Identification of siRNA-guided cleavage products of target mRNAs in rice. (A) mRNA 9639.m00201, (B) mRNA 9636.m02299 and (C) mRNA
9632.m00807. Mapping of cleavage sites was performed by RLM-50 RACE. Partial mRNA sequences from target genes were aligned with siRNAs. Numbers
indicate the fraction of cloned PCR products terminating at different positions.
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9632.m00807. Both are examples of trans-targeting by
siRNAs (Figure 5B and C). In both the cases, the most com-
mon 50 end of the mRNA fragment is mapped to the nucleotide
that pairs to the 10th nucleotide of the siRNA from its 50 end.
In this study, a substantial number of endogenous siRNAs
were predicted to target protein-coding transcripts, and even
if a small portion of these transcripts are genuine targets, the
potential of siRNA regulation could be vast.

DISCUSSION

Endogenous siRNAs in plants can be divided into two classes
on the basis of size and function: the 21 nt siRNAs that direct
post-transcriptional silencing via mRNA degradation and the
24 nt siRNAs that trigger methylation of homologous DNA
leading to TGS (10). Endogenous siRNAs in rice may be
grouped into similar size and functional categories. A total
of 284 unique putative siRNA sequences corresponding to 942
genomic loci have been identified in this study. The expression
of some of the siRNAs is tissue specific or developmental
stage specific. We predicted a large number of mRNA targets
for the siRNAs. Importantly, we validated three of the
predicted targets and provided evidence for both cis-silencing
and trans-silencing of target mRNAs by rice siRNA-guided
cleavage. Most of the siRNAs (225 of 284) were identified
from an inflorescence library. The reason for the high number
of endogenous siRNAs from inflorescence tissues is unknown,
but may implicate an involvement of siRNAs in active
meristematic/cell division or developmental processes. A
large number of the siRNA loci (729) map to intergenic
regions. It is unknown how the siRNAs mapped to intergenic
regions are regulated, but they likely have their own regulatory
sequences. Our results suggest that endogenous siRNAs in rice
is very diverse.

The endogenous siRNAs differ in their 50 end nucleotide
preference from NOS promoter-driven transgenic siRNAs.
Arabidopsis NOS promoter-expressing plants generate
siRNAs of both 21 and 24 nt size classes (13). Two major
differences were observed with respect to preferences for 50 nt
in rice endogenous siRNAs. Most of the endogenous siRNAs
of the 21 nt size class begin with 50 U, whereas 50 nt of the 21 nt
size class from transgenic siRNAs show an even distribution in
nucleotides (13). The preference in the rice endogenous
siRNAs could reflect a specific DCL activity in rice. Some
siRNAs of this size class could still be miRNAs but cannot be
defined as such, because they may be generated from atypical
hairpin structures. With respect to the 24 nt size class, 50 A was
the predominant nucleotide for the endogenous siRNAs in
rice, whereas C was the major 50 nt in transgene-derived
siRNAs. Although the 50 A bias for the 24 nt size class was
known from previous findings in Arabidopsis (9), our study
confirms this striking difference in vivo in rice. It is interesting
that this distinct feature is not apparent in the 24 nt size class of
endogenous siRNAs from the lower plant moss (Polytrichum
juniperinum) (40). This observation raises the possibility that
the DCL responsible for processing the 24 nt size class with 50

adenine may be absent in lower plants. Further studies with
individual DCL knock-out mutants may verify the role of
different DCLs in conferring the 50 nt preference of endogen-
ous siRNAs in rice.

The expression of several tncRNAs from C.elegans was
shown to be constitutive and ubiquitous, whereas many
other tncRNAs exhibit preferential expression in a temporal
or tissue-specific manner (28). Our northern and RT–PCR
results suggest that some of the rice endogenous siRNAs
are expressed in a tissue-specific and/or developmental
stage-dependent manner. The differential expression pattern
supports a regulatory role of these siRNAs in specific tissues or
in development.

Many siRNAs are expected to act on the same locus from
which they originate. Presumably, these siRNAs are derived
from the same loci as their targets, through antisense transcrip-
tion or RdRP activity. Some of the rice endogenous siRNAs
originate from the antisense strands of protein- or transposon-
coding genes and might mediate the post-transcriptional
silencing of these genes.

We also predicted 111 genes as potential trans-targets of 44
endogenous siRNAs in rice. Transposons represent �46% of
the predicted trans-targets of siRNAs in the present study. Our
analysis suggests that some of the retroelements that are pre-
dicted targets of siRNAs are whole. For example, out of the
31 gypsy type of retrotransposons that were predicted targets
of siRNAs, 13 appear to have all constituent proteins without
nonsense mutations, but the remaining 18 are truncated.
Similarly, one out of the four CACTA retrotransposons that
were predicted targets of siRNAs appears to be whole, whereas
the remaining three are truncated. Small RNAs corresponding
to transposon sequences have also been detected in
Arabidopsis (41,42). Transposable elements are DNA
sequences that can move and multiply within the genome
of an organism. Higher eukaryotic genomes contain a large
number of transposable elements, e.g. 45% of the human gen-
ome consists of remnants of transposon sequences. Twelve
percent of the C.elegans genome is transposon sequences.
Transposable elements make up 14% of the Arabidopsis
genome, in contrast to an estimated 50–80% of the maize
genome (43,44). The rice genome is populated by represent-
atives from all known transposon superfamilies, including
elements that cannot be easily classified into either Class I
or II (45). Present estimates of the transposon content of the
O.sativa ssp. Japonica genome is at least 35%. Transposon
activation can have a range of effects, including alterations in
gene expression, gene deletion and insertion, and chromosome
rearrangements, most of which are deleterious. Recent work in
plants and other organisms has revealed that both TGS and
PTGS are important for the silencing of transposons. In organ-
isms other than plants, PTGS is likely to be the primary path-
way of transposon silencing (46). Because siRNAs guide the
sequence-specific RNA degradation that occurs during RNAi,
transposon siRNAs might mediate the degradation of transpo-
son mRNAs to establish transposon silencing. rasiRNAs,
which are derived from every known type of transposon in
the Drosophila genome, could potentially regulate transposon
mobility and assembly of heterochromatin at transposon-rich
regions, such as telomeres and centromeres (27). In addition to
the endogenous siRNAs that correspond to transposons in
antisense orientations, our analysis predicted transposons as
likely trans-targets for several of the siRNAs. This result
implies a role for endogenous siRNAs in controlling the
proliferation of transposons in both auto- and trans-silencing
manners in rice.
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The remaining predicted targets appear to have roles in
diverse physiological processes and include both regulatory
as well as metabolism and cell structure-related genes
(Table 4). In addition, 45 unknown proteins are also predicted
targets for some of the siRNAs. The validated targets in this
study include 9629.m00201, which serves as an example for
cis-silencing by siRNA P109-D12. Two other validated targets
are examples of trans-targeting by siRNAs. Thus, our analysis
suggests that endogenous siRNAs in rice can guide mRNA
cleavage both in cis and in trans. Many of the siRNAs that
do not have predicted mRNA targets may target DNA for TGS
in rice.

The profile of naturally occurring siRNAs in rice provides
an important foundation to explore the potential roles of
these molecules in genome maintenance, genome expression
and defense. The large number of predicted targets and our
experimental evidence showing cis and trans silencing
of genes by siRNA-guided mRNA cleavage suggest that
endogenous siRNAs are important for the regulation of many
genes in rice.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.

ACKNOWLEDGEMENTS

The authors thank Rebecca Stevenson for assistance in growing
the rice plants. This work was supported by National Institutes
of Health grant R01GM0707501 and National Science
Foundation grant IBN-0212346 to J.-K.Z. Funding to pay
the Open Access publication charges for this article
was provided by National Institutes of Health grant
R01GM0707501.

Conflict of interest statement. None declared.

REFERENCES

1. Carrington,J.C. and Ambros,V. (2003) Role of microRNAs in plant and
animal development. Science, 301, 336–338.

2. Ambros,V. (2004) The functions of animal microRNAs. Nature,
431, 350–355.

3. Bartel,D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism
and function. Cell, 116, 281–297.

4. Baulcombe,D. (2004) RNA silencing in plants. Nature, 431, 356–363.
5. Hamilton,A.J. and Baulcombe,D.C. (1999) A species of small antisense

RNA in posttranscriptional gene silencing in plants. Science, 286,
950–952.

6. Hammond,S.M., Bernstein,E., Beach,D. and Hannon,G.J. (2000) An
RNA-directed nuclease mediates post-transcriptional gene silencing in
Drosophila cells. Nature, 404, 293–296.

7. Zamore,P.D., Tuschl,T., Sharp,P.A. and Bartel,D.P. (2000) RNAi:
double-stranded RNA directs the ATP-dependent cleavage of mRNA
at 21 to 23 nucleotide intervals. Cell, 101, 25–33.

8. Billy,E., Brondani,V., Zhang,H., Muller,U. and Filipowicz,W. (2001)
Specific interference with gene expression induced by long, double-
stranded RNA in mouse embryonal teratocarcinoma cell lines. Proc. Natl
Acad. Sci. USA, 98, 14428–14433.

9. Tang,G., Reinhart,B.J., Bartel,D.P. and Zamore,P.D. (2003) A
biochemical framework for RNA silencing in plants. Genes Dev.,
17, 49–63.

10. Hamilton,A., Voinnet,O., Chappell,L. and Baulcombe,D. (2002) Two
classes of short interfering RNA in RNA silencing. EMBO J., 21,
4671–4679.

11. Mallory,A., Reinahrt,B., Bartel,D., Vance,V. and Bowman,L. (2002)
A viral suppressor of RNA silencing differentially regulates the
accumulation of short interfering RNAs and micro-RNAs in tobacco.
Proc. Natl Acad. Sci. USA, 99, 15228–15233.

12. Llave,C., Kasschau,K.D., Rector,M. and Carrington,J.C. (2002)
Endogenous and silencing-associated small RNAs in plants. Plant
Cell, 14, 1605–1619.

13. Papp,I., Mette,M.F., Aufsatz,W., Daxinger,L., Schauer,S.E., Ray,A.,
van der Winden,J., Matzke,M. and Matzke,A.J.M. (2003) Evidence for
nuclear processing of plant micro RNA and short interfering RNA
precursors. Plant Physiol., 132, 1382–1390.

14. Nicolás,F.E., Torres-Martı́nez,S. and Ruiz-Vázquez,R.M. (2003) Two
classes of small antisense RNAs in fungal RNA silencing triggered
by non-integrative transgenes. EMBO J., 22, 3983–3991.

15. Sunkar,R. and Zhu,J.K. (2004) Novel and stress regulated microRNAs
and other small RNAs from Arabidopsis. Plant Cell, 16, 2001–2019.

16. Vazquez,F., Vaucheret,H., Rajagopalan,R., Lepers,C., Gasciolli,V.,
Mallory,A.C., Hilbert,J.L., Bartel,D.P. and Crete,P. (2004) Endogenous
trans-acting siRNAs regulate the accumulation of Arabidopsis
mRNAs. Mol. Cell, 16, 69–79.

17. Peragine,A., Yoshikawa,M., Wu,G., Albrecht,H.L. and Poethig,R.S.
(2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile
development and the production of trans-acting siRNAs in Arabidopsis.
Genes Dev., 18, 2368–2379.

18. Zilberman,D., Cao,X. and Jacobsen,S.E. (2003) ARGONAUTE4 control
of locus-specific siRNA accumulation and DNA and histone methylation.
Science, 299, 716–719.

19. Xie,Z., Kasschau,K.D. and Carrington,J.C. (2003) Negative feedback
regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA
degradation. Curr. Biol., 13, 784–789.

20. Chan,S.W., Zilberman,D., Xie,Z., Johansen,L.K., Carrington,J.C. and
Jacobsen,S.E. (2004) RNA silencing genes control de novo DNA
methylation. Science, 303, 1336.

21. Park,W., Li,J., Song,R., Messing,J. and Chen,X. (2002) CARPEL
FACTORY, a Dicer homolog, and HEN1, a novel protein, act in
microRNA metabolism in Arabidopsis thaliana. Curr. Biol., 12,
1484–1495.

22. Reinhart,B.J., Weinstein,E.G., Rhoades,M.W., Bartel,B. and Bartel,D.P.
(2002) MicroRNAs in plants. Genes Dev., 16, 1616–1626.

23. Kurihara,Y. and Watanabe,Y. (2004) Arabidopsis micro-RNA biogenesis
through Dicer-like 1 protein functions. Proc. Natl Acad. Sci. USA,
101, 12753–12758.

24. Boutet,S., Vazquez,F., Liu,J., Béclin,C., Fagard,M., Gratias,A.,
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