Statistics for Data Scientists:
 Monte Carlo and MCMC Simulations

James M. Flegal
University of California, Riverside, CA

February 12, 2016

Introduction

- Monte Carlo Simulations
- Introduction and Motivation
- Examples
- Bayesian Statistics
- Markov chain Monte Carlo Simulations
- Metropolis Hastings and Gibbs Sampling
- Examples
- Output Analysis and Stopping Rules

Monte Carlo Integration

Monte Carlo Integration

Example: Let $X \sim \Gamma(3 / 2,1)$, i.e.

$$
f(x)=\frac{2}{\sqrt{\pi}} \sqrt{x} e^{-x} I(x>0)
$$

Suppose we want to find

$$
\begin{aligned}
\theta & =\mathrm{E}\left[\frac{1}{(X+1) \log (X+3)}\right] \\
& =\int_{0}^{\infty} \frac{1}{(x+1) \log (x+3)} \frac{2}{\sqrt{\pi}} \sqrt{x} e^{-x} d x
\end{aligned}
$$

The expectation (or integral) θ is intractable, we don't know how to compute it analytically.

Monte Carlo Integration

One possible solution is to approximate θ using Monte Carlo integration. If Y_{1}, Y_{2}, \ldots are i.i.d. with $\mathrm{E}\left|Y_{1}\right|<\infty$ then

$$
\bar{y}=\sum_{i=1}^{n} Y_{i} \xrightarrow{\text { a.s. }} E Y_{1} \quad(\mathrm{SLLN}) .
$$

Suppose X_{1}, X_{2}, \ldots are i.i.d $\Gamma(3 / 2,1)$ and define $Y_{i}=\left[\left(X_{i}+1\right) \log \left(X_{i}+3\right)\right]^{-1}$. Then since $\mathrm{E}\left|Y_{1}\right|<\infty$ we have

$$
\sum_{i=1}^{n}\left[\left(X_{i}+1\right) \log \left(X_{i}+3\right)\right]^{-1} \xrightarrow{\text { a.s. }} \mathrm{E}\left[\frac{1}{(X+1) \log (X+3)}\right]=\theta .
$$

Monte Carlo Integration

Thus is we had a way to "generate" or "simulate" or "draw" $\Gamma(3 / 2,1)$ random variables, we could obtain a large number of them and claim

$$
\sum_{i=1}^{n}\left[\left(X_{i}+1\right) \log \left(X_{i}+3\right)\right]^{-1} \approx \theta
$$

An obvious question is how good is this approximation?

Monte Carlo Standard Error

Suppose Y_{1}, Y_{2}, \ldots are i.i.d. with $\mathrm{E}\left|Y_{1}^{2}\right|<\infty$ then the CLT says

$$
\frac{\sqrt{n}\left(\bar{y}_{n}-\mathrm{E} Y_{1}\right)}{\sigma} \xrightarrow{d} \mathrm{~N}(0,1) .
$$

That is, for sufficiently large n,

$$
\bar{y}_{n} \sim \mathrm{~N}\left(\mathrm{E} Y_{1}, \sigma^{2} / n\right)
$$

Further, we can estimate the standard error σ / \sqrt{n} with s_{n} / \sqrt{n} where s_{n} is the sample standard deviation.

Monte Carlo Standard Error

We can also use the CLT form a confidence interval with

$$
\operatorname{Pr}\left(\bar{y}_{n}-1.96 s_{n} / \sqrt{n}<\mathrm{E} Y_{1}<\bar{y}_{n}+1.96 s_{n} / \sqrt{n}\right) \approx 0.95
$$

Or we could simulate until a half-width (or width) of this confidence interval is sufficiently small, say less than $\epsilon>0$. That is, simulate until

$$
1.96 s_{n} / \sqrt{n}<\epsilon
$$

Toy Example

Example: Let $X \sim \Gamma(3 / 2,1)$, i.e.

$$
f(x)=\frac{2}{\sqrt{\pi}} \sqrt{x} e^{-x} I(x>0) .
$$

Suppose we want to find

$$
\begin{aligned}
\theta & =\mathrm{E}\left[\frac{1}{(X+1) \log (X+3)}\right] \\
& =\int_{0}^{\infty} \frac{1}{(x+1) \log (x+3)} \frac{2}{\sqrt{\pi}} \sqrt{x} e^{-x} d x .
\end{aligned}
$$

Further, suppose we want to estimate this quantity such that a $95 \% \mathrm{Cl}$ length is less than 0.002 .

Toy Example Code

```
set.seed(500)
########################################
## Monte Carlo Toy Example
########################################
n <- 1000
x <- rgamma(n, 3/2, scale=1)
mean(x)
y <- 1/((x+1)*log}(x+3)
est <- mean(y)
est
mcse <- sd(y) / sqrt(length(y))
interval <- est + c(-1,1)*1.96*mcse
interval
```


Toy Example Code

```
## Implementing the sequential stopping rule
eps <- 0.002
len <- diff(interval)
plotting.var <- c(est, interval)
while(len > eps){
new.x <- rgamma(n, 3/2, scale=1)
new.y<- 1/((new.x+1)*log(new.x+3))
y <- cbind(y, new.y)
est <- mean(y)
mcse <- sd(y) / sqrt(length(y))
interval <- est + c(-1,1)*1.96*mcse
len <- diff(interval)
plotting.var <- rbind(plotting.var, c(est, interval))
}
```


Toy Example Code

\#\# Plotting the results
temp <- seq(1000, length (y), 1000)
plot(temp, plotting.var[,1], type="l", ylim=c(min(plotting.var), $\max (\mathrm{plotting} . v a r))$, main="Estimates of the Mean", xlab="Iterations", ylab="Estimate")
points(temp, plotting.var[,2], type="l", col="red")
points(temp, plotting.var[,3], type="l", col="red")
legend("topright", legend=c("CI", "Estimate"), lty=c(1,1), col=c(2,1))

Toy Example

Figure: Results from one simulation using a cut-off of $\epsilon=0.002$.

High-Dimensional Examples

CLink FiveThirtyEight's NBA Predictions

- Link Vanguard's Retirement Nest Egg Calculator
- Link Minitab's Monte Carlo Simulation Software for Manufacturing Engineers
Link Fisher's Exact Test in R

Bayesian Statistics

Bayesian Statistics

- Suppose X has a distribution parameterized by θ.
- Let $f(\theta)$ be a density assigned to θ before observing any data. This density is call the prior distribution.
- Bayesian inference is driven by the likelihood, $L(\theta \mid x)$.

Bayesian Statistics

Starting with our prior, after observing data we can update our beliefs to form a posterior distribution (via Bayes Rule), i.e.

$$
f(\theta \mid x)=c f(\theta) L(\theta \mid x)
$$

where

$$
c=\frac{1}{\int f(\theta) L(\theta \mid x) d \theta} \quad \text { (which is often difficult to compute). }
$$

The posterior, $f(\theta \mid x)$ is used for Bayesian inference on θ.

Bayesian Statistics

Example: Suppose X_{1}, \ldots, X_{n} are i.i.d. $N\left(\theta, \sigma^{2}\right)$ where σ^{2} is known. Suppose further we have a prior $\theta \sim N\left(\mu, \tau^{2}\right)$. Then the posterior can be obtained as follows,

$$
\begin{aligned}
f(\theta \mid x) & \propto f(\theta) \prod_{i=1}^{n} f\left(x_{i} \mid \theta\right) \\
& \propto \exp \left\{-\frac{1}{2}\left(\frac{(\theta-\mu)^{2}}{\tau^{2}}+\frac{\sum_{i=1}^{n}\left(x_{i}-\theta\right)^{2}}{\sigma^{2}}\right)\right\} \\
& \propto \exp \left\{-\frac{1}{2} \frac{\left(\theta-\frac{\mu / \tau^{2}+n \bar{x} / \sigma^{2}}{1 / \tau^{2}+n / \sigma^{2}}\right)^{2}}{\frac{1}{1 / \tau^{2}+n / \sigma^{2}}}\right\}
\end{aligned}
$$

Bayesian Statistics

Or $f(\theta \mid x) \sim N\left(\mu_{n}, \tau_{n}^{2}\right)$ where

$$
\mu_{n}=\left(\frac{\mu}{\tau^{2}}+\frac{n \bar{x}}{\sigma^{2}}\right) \tau_{n}^{2} \quad \text { and } \quad \tau_{n}^{2}=\frac{1}{1 / \tau^{2}+n / \sigma^{2}}
$$

Notice, this is a conjugate Bayes model. Also note a 95% credible region for θ is given by (this is also the HPD, highest posterior density)

$$
\left(\mu_{n}-1.96 \tau_{n}, \mu_{n}+1.96 \tau_{n}\right)
$$

For large n, the data will overwhelm the prior.

Bayesian Statistics

- If $f(\theta) \propto 1$, an improper prior, then a 95% credible region for θ is the same as a 95% confidence interval since $f(\theta \mid x) \sim N\left(\bar{x}, \sigma^{2} / n\right)$ (try to show this at home).
- Usually, we specify a prior and likelihood that result in an posterior that is intractable. That is, we can't work with it analytically or even calculate the appropriate normalizing constant c.
- However, it is often easy to simulate a Markov chain with $f(\theta \mid x)$ as its stationary distribution.

Markov Chain Basics

Consider discrete time, discrete state space Markov chains. If

$$
P\left(X_{t+1}=j \mid X_{0}=x_{0}, \ldots, X_{t}=i\right)=P\left(X_{t+1}=j \mid X_{t}=i\right)=p_{i j}
$$

for all $t, x_{0}, \ldots, x_{n} \in S, i, j \in S$, then $\left\{X_{t}\right\}$ is a Markov chain (time homogeneous). This is governed by a Markov transition matrix

$$
P=\left[\begin{array}{ccccc}
p_{00} & p_{01} & p_{02} & \cdots & p_{0 n} \\
p_{10} & p_{11} & p_{12} & \cdots & p_{1 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
p_{n 0} & p_{n 1} & p_{n 3} & \cdots & p_{n n}
\end{array}\right] \quad \text { (rows sum to one). }
$$

Markov Chain Basics

Limit theory of Markov chains is important.

- A state the chain returns to w.p. 1 is recurrent.
- If the expected time to return is finite, then non null.
- If the expected time to return is infinite, then null recurrent.
- A chain is irreducible if for all i, j pairs there exists $m>0$ such that $P\left(X_{m+n}=i \mid X_{n}=j\right)>0$.
- A chain is periodic if it can only visit portions of the state space at regular intervals, d is the smallest divisor of the times.
- A chain is aperiodic if $d=1$.

Markov Chain Basics

- A Markov chain is ergodic if it is irreducible, aperiodic, and all its states are non null and recurrent.
- Suppose π is such that $\pi P=\pi$, then π is the stationary (or invariant) distribution for P.
- If $\left\{X_{t}\right\}$ is irreducible and aperiodic, then π is unique and

$$
\lim _{n \rightarrow \infty} P\left(X_{t+n}=j \mid X_{t}=i\right)=\pi_{j}
$$

- And for any function h

$$
\frac{1}{n} \sum_{i=1}^{n} h\left(x_{i}\right) \xrightarrow{\text { a.s. }} E_{\pi}[h(X)] .
$$

This is the ergodic theorem, a generalization of the SLLN.

Markov Chain Monte Carlo

Markov Chain Monte Carlo

MCMC methods are used most often in Bayesian inference where f or π is a posterior distribution. Challenge lies in construction of a suitable Markov chain with f as its stationary distribution. A key problem is we only get to observe t observations from $\left\{X_{t}\right\}$, which are serially dependent.

Questions to Consider:

How good are my MCMC estimators?
How long to run my Markov chain simulation?
How to compare MCMC samplers?
What to do in high-dimensional settings?

Metropolis-Hastings Algorithm

Setting $X_{0}=x_{0}$ (somehow), the Metropolis-Hastings algorithm generates X_{t+1} given $X_{t}=x_{t}$ as follows:
(1) Sample a candidate value $X^{*} \sim g\left(\cdot \mid x_{t}\right)$ where g is the proposal distribution.
(2) Compute the MH ratio $R\left(x_{t}, X^{*}\right)$, where

$$
R\left(x_{t}, X^{*}\right)=\frac{f\left(x^{*}\right) g\left(x_{t} \mid x^{*}\right)}{f\left(x_{t}\right) g\left(x^{*} \mid x_{t}\right)}
$$

(3) Set

$$
X_{t+1}=\left\{\begin{array}{l}
x^{*} \text { w.p. } \min \left\{R\left(x_{t}, X^{*}\right), 1\right\} \\
x_{t} \text { otherwise. }
\end{array}\right.
$$

Metropolis-Hastings Algorithm

- Irreducibility and aperiodicity depend on the choice of g, these must be checked.
- Performance (finite sample) depends on the choice of g also, be careful.

Independence MH Chains

Suppose $g\left(x^{*} \mid x_{t}\right)=g\left(x^{*}\right)$, this yields an independence chain since the proposal does not depend on the current state. In this case, the MH ratio is

$$
R\left(x_{t}, X^{*}\right)=\frac{f\left(x^{*}\right) g\left(x_{t}\right)}{f\left(x_{t}\right) g\left(x^{*}\right)}
$$

and the resulting Markov chain will be irreducible and aperiodic if $g>0$ where $f>0$.

A good envelope function g should resemble f, but should cover f in the tails.

Random Walk MH Chains

Generate X^{*} such that $\epsilon \sim h(\cdot)$ and set $X^{*}=X_{t}+\epsilon$. Then $g\left(x^{*} \mid x_{t}\right)=h\left(x^{*}-x_{t}\right)$. Common choices of $h(\cdot)$ are symmetric zero mean random variables with a scale parameter, e.g. a Uniform($-a, a$), Normal $\left(0, \sigma^{2}\right), c * T_{\nu}, \ldots$

For symmetric zero mean random variables, the MH ratio is

$$
R\left(x_{t}, X^{*}\right)=\frac{f\left(x^{*}\right)}{f\left(x_{t}\right)}
$$

If the support of f is connected and h is positive in a neighborhood of 0 , then the chain is irreducible and aperiodic.

Markov Chain Basics

Exercise: Suppose $f \sim \operatorname{Exp}(1)$.
(1) Write an independence MH sampler with $g \sim \operatorname{Exp}(\theta)$.
(2) Show $R\left(x_{t}, X^{*}\right)=\exp \left\{\left(x_{t}-x^{*}\right)(1-\theta)\right\}$.
(3) Generate 1000 draws from f with $\theta \in\{1 / 2,1,2\}$.
(4) Write a random walk MH sampler with $h \sim N\left(0, \sigma^{2}\right)$.
(5) Show $R\left(x_{t}, X^{*}\right)=\exp \left\{x_{t}-x^{*}\right\} I\left(x^{*}>0\right)$.
(6) Generate 1000 draws from f with $\sigma \in\{.2,1,5\}$.
(7) In general, do you prefer an independence chain or a random walk MH sampler? Why?

Metropolis Hastings Code

```
########################################
## Introduction to MH Samplers
########################################
## Independence Metropolis sampler with Exp(theta) proposal.
ind.chain <- function(x, n, theta = 1) {
    ## if theta = 1, then this is an iid sampler
    m <- length(x)
    x <- append(x, double(n))
    for(i in (m+1):length(x)){
        x.prime <- rexp(1, rate=theta)
        u <- exp((x[(i-1)]-x.prime)*(1-theta))
        if(runif(1) < u)
            x[i] <- x.prime
        else
            x[i] <- x[(i-1)]
    }
    return(x)
}
```


Metropolis Hastings Code

```
## Random Walk Metropolis sampler with N(0,sigma) proposal.
rw.chain <- function(x, n, sigma = 1) {
    m <- length(x)
    x <- append(x, double(n))
    for(i in (m+1):length(x)){
        x.prime <- x[(i-1)] + rnorm(1, sd = sigma)
        u <- exp((x[(i-1)]-x.prime))
        u
        if(runif(1) < u && x.prime > 0)
            x[i] <- x.prime
        else
            x[i] <- x[(i-1)]
    }
    return(x)
}
```


Metropolis Hastings Code

\#\# Simulations

```
trial0 <- ind.chain(1, 200, 1)
trial1 <- ind.chain(1, 200, 2)
trial2 <- ind.chain(1, 200, 1/2)
rw1 <- rw.chain(1, 200, .2)
rw2 <- rw.chain(1, 200, 1)
rw3 <- rw.chain(1, 200, 5)
```

\#\# Plotting
$\operatorname{par}(m f r o w=c(2,3))$
plot.ts(trial0, ylim=c $(0,6)$, main="IID Draws")
plot.ts(trial1, ylim=c(0,6), main="Independence with 1/2")
plot.ts(trial2, ylim=c $(0,6)$, main="Independence with 2")
plot.ts (rw1, ylim=c $(0,6)$, main="Random Walk with .2")
plot.ts(rw2, ylim=c(0,6), main="Random Walk with 1")
plot.ts(rw3, ylim=c $(0,6)$, main="Random Walk with 5")
$\operatorname{par}(m f r o w=c(1,1))$

Metropolis Hastings Code

```
## Writing out a plot
pdf("MHPlot.pdf")
par(mfrow=c(2,3))
plot.ts(trial0, ylim=c(0,6), main="IID Draws")
plot.ts(trial1, ylim=c(0,6), main="Indepdence with 1/2")
plot.ts(trial2, ylim=c(0,6), main="Indepdence with 2")
plot.ts(rw1, ylim=c(0,6), main="Random Walk with .2")
plot.ts(rw2, ylim=c(0,6), main="Random Walk with 1")
plot.ts(rw3, ylim=c(0,6), main="Random Walk with 5")
par(mfrow=c(1,1))
dev.off()
```


Sampler Comparison

Gibbs Sampling

Works with a univariate (or blocks) conditional distribution, which are often available in closed form. Consider the following notation

$$
\begin{aligned}
X & =\left(X^{(1)}, \ldots, X^{(p)}\right)^{T} \text { and } \\
X^{(-i)} & =\left(X^{(1)}, \ldots, X^{(i-1)}, X^{(i+1)}, \ldots, X^{(p)}\right)^{T} .
\end{aligned}
$$

If $f\left(x^{(i)} \mid x^{(-i)}\right)$ is available in closed form, then the Gibbs sampler is as follows.

Gibbs Sampling

(1) Select starting values x_{0} and set $t=0$.
(2) Generate in turn (deterministic scan Gibbs sampler)

$$
\begin{aligned}
& x_{t+1}^{(1)} \sim f\left(x^{(1)} \mid x_{t}^{(-1)}\right) \\
& x_{t+1}^{(2)} \sim f\left(x^{(2)} \mid x_{t+1}^{(1)}, x_{t}^{(3)}, \ldots, x_{t}^{(p)}\right) \\
& x_{t+1}^{(3)} \sim f\left(x^{(3)} \mid x_{t+1}^{(1)}, x_{t+1}^{(2)}, x_{t}^{(4)}, \ldots, x_{t}^{(p)}\right)
\end{aligned}
$$

$$
\ddot{x_{t+1}^{(p)}} \sim f\left(x^{(p)} \mid x_{t+1}^{(-p)}\right) .
$$

(3) Increment t and go to Step 2.

Gibbs Sampling

- Common to have one or more components not available in closed form. Then one can just use a MH sampler for those components known as a Metropolis within Gibbs or Hybrid Gibbs sampling.
- Common to "block" groups of random variables.

Capture-recapture Study

Exercise: Data from a fur seal pup capture-recapture study. Goal is to estimate the number of pups in a fur seal colony using a capture-recapture study.

		1	2	3	4	5	6	7
Captured	c_{i}	30	22	29	26	31	32	35
Newly Caught	m_{i}	30	8	17	7	9	8	5

Table: Count of fur seal pup capture-recapture study for $i=7$ census attempts.

Capture-recapture Study

Let N be the population size, I be the number of census attempts where c_{i} were captured ($I=7$ in our case), and r be the total number captured $\left(r=\sum_{i=1}^{l} m_{i}=84\right)$.

We consider a separate unknown capture probability for each census $\left(\alpha_{1}, \ldots, \alpha_{l}\right)$ where the animals are equally "catchable". Then

$$
L(N, \alpha \mid c, r) \propto \frac{N!}{(N-r)!} \prod_{i=1}^{l} \alpha_{i}^{c_{i}}\left(1-\alpha_{i}\right)^{N-c_{i}}
$$

Capture-recapture Study

Assume N and α are apriori independent with

$$
f(N) \propto 1 \text { and } f\left(\alpha_{i} \mid \theta_{1}, \theta_{2}\right) \stackrel{i . i . d .}{\sim} \operatorname{Beta}\left(\theta_{1}, \theta_{2}\right) .
$$

We use $\theta_{1}=\theta_{2}=1 / 2$, which is the Jeffrey's Prior. The resulting posterior is proper when $I>2$ and recommended when $I>5$.

Capture-recapture Study

Then it is easy to show the posterior is

$$
f(N, \alpha \mid c, r) \propto \frac{N!}{(N-r)!} \prod_{i=1}^{l} \alpha_{i}^{c_{i}}\left(1-\alpha_{i}\right)^{N-c_{i}} \prod_{i=1}^{l} \alpha_{i}^{-1 / 2}\left(1-\alpha_{i}\right)^{-1 / 2}
$$

Further, one can show

$$
\begin{aligned}
N-84 \mid \alpha & \sim \operatorname{NB}\left(85,1-\prod_{i=1}^{l}\left(1-\alpha_{i}\right)\right) \text { and } \\
\alpha_{i} \mid N & \sim \operatorname{Beta}\left(c_{i}+1 / 2, N-c_{i}+1 / 2\right) \text { for all } i
\end{aligned}
$$

Capture-recapture Study

Then we can consider the chain

$$
(N, \alpha) \rightarrow\left(N^{\prime}, \alpha\right) \rightarrow\left(N^{\prime}, \alpha^{\prime}\right)
$$

or

$$
(N, \alpha) \rightarrow\left(N, \alpha^{\prime}\right) \rightarrow\left(N^{\prime}, \alpha^{\prime}\right),
$$

where both involve a "block" update of α.
The following R code implements the Gibbs sampler above along with some measures of uncertainty for the resulting estimators.

Capture-recapture Code

```
set.seed(1)
```

\# \#\# Capture-recapture Data
\#
captured <- c $(30,22,29,26,31,32,35)$
new. captures <- $c(30,8,17,7,9,8,5)$
total.r <- sum(new.captures)

Capture-recapture Code

\#
\#\# Gibbs Sampler
\#

```
gibbs.chain <- function(n, N.start = 94, alpha.start = rep(.5,7)) {
output <- matrix(0, nrow=n, ncol=8)
for(i in 1:n){
neg.binom.prob <- 1 - prod(1-alpha.start)
N.new <- rnbinom(1, 85, neg.binom.prob) + total.r
beta1 <- captured + . 5
beta2 <- N.new - captured + . 5
alpha.new <- rbeta(7, beta1, beta2)
output[i,] <- c(N.new, alpha.new)
N.start <- N.new
alpha.start <- alpha.new
}
return(output)
}
```


Capture-recapture Code

```
########################################
## Preliminary Simulations
########################################
trial <- gibbs.chain(1000)
plot.ts(trial[,1], main = "Trace plot for N")
for(i in 1:7){
plot.ts(trial[,(i+1)], main = paste("Trace plot for Alpha", i))
readline("Press <return to continue")
}
acf(trial[,1], main = "Lag Correlation plot for N")
for(i in 1:7){
acf(trial[,(i+1)], main = paste("Lag Correlation plot for Alpha", i))
readline("Press <return to continue")
}
```


Capture-recapture Code

```
########################################
## Simulations
########################################
sim <- gibbs.chain(10000)
N <- sim[,1]
alpha1 <- sim[,2]
hist(N, freq=F, main="Estimated Marginal Posterior for N")
hist(alpha1, freq=F, main ="Estimating Marginal Posterior for Alpha 1")
library(mcmcse)
ess(N)
ess(alpha1)
estvssamp(N)
estvssamp(alpha1)
```


Capture-recapture Code

```
mcse(N)
mcse.q(N, .05)
mcse.q(N, .95)
mcse(alpha1)
mcse.q(alpha1, .05)
mcse.q(alpha1, .95)
```


Capture-recapture Code

```
current <- sim[10000,] # start from here is you need more simulations
sim <- rbind(sim, gibbs.chain(10000, N.start = current[1],
    alpha.start = current[2:8]))
N.big <- sim[,1]
hist(N.big, freq=F, main="Estimated Marginal Posterior for N")
ess(N)
ess(N.big)
estvssamp(N)
estvssamp(N.big)
mcse(N)
mcse(N.big)
mcse.q(N, .05)
mcse.q(N.big, .05)
mcse.q(N, .95)
mcse.q(N.big, .95)
```


MCMC Output Analysis

- Let π be a probability distribution having support $\mathcal{X} \subseteq \mathbb{R}^{d}$, $d \geq 1$ we want to explore.
- When i.i.d. observations are unavailable, a Markov chain with stationary distribution π can be utilized.
- Summarize π with expectations, quantiles, density plots ...

Target Features

- Consider estimating an expectation with respect to π denoted

$$
\theta=\mathbb{E}_{\pi} g=\int_{\mathcal{X}} g(x) \pi(d x)
$$

where $g: \mathcal{X} \rightarrow \mathbb{R}$.

- However, this expectation is often intractable.
- θ is an unknown quantity I would like to estimate using simulated data.
- Let $X=\left\{X^{(0)}, X^{(1)}, \ldots\right\}$ be a Markov chain.
- Usually, $X^{(j)} \sim F_{j} \neq \pi$ and $\operatorname{Cov}\left(g\left(X^{(j)}\right), g\left(X^{(j+1)}\right)\right)>0$.

Monte Carlo Error

- We can often find a consistent estimator of θ, say

$$
\theta_{n}=\bar{g}(n):=\frac{1}{n} \sum_{j=0}^{n-1} g\left(X^{(j)}\right)
$$

- Want $\theta_{n}-\theta$, the Monte Carlo error, to be small.
- Under regularity conditions, a Markov chain CLT holds,

$$
\begin{gathered}
\sqrt{n}\left(\theta_{n}-\theta\right) \xrightarrow{d} \mathrm{~N}\left(0, \sigma^{2}\right) \text { where } \\
\sigma^{2}=\operatorname{Var}_{\pi}[g]+2 \sum_{k=1}^{\infty} \operatorname{Cov}_{\pi}\left[g\left(X^{(0)}\right), g\left(X^{(0+k)}\right)\right] .
\end{gathered}
$$

Monte Carlo Error

- Let $\hat{\sigma}(n)$ denote an estimator of σ. Then the CLT allows construction of a $100(1-\delta) \%$ confidence interval with width

$$
w_{n}=2 z_{\delta / 2} \frac{\hat{\sigma}(n)}{\sqrt{n}}
$$

- Suppose $\epsilon>0$, then a fixed-width stopping rule terminates the simulation the first time $w_{n}<\epsilon$.

AR(1) Model

Consider the Markov chain such that

$$
X_{i}=\rho X_{i-1}+\epsilon_{i}
$$

where $\epsilon_{i} \stackrel{i i d}{\sim} N(0,1)$.

- Consider $X_{1}=0, \rho=.95$, and estimating $E_{\pi} X=0$.
- Run until

$$
w_{n}=2 z .975 \frac{\hat{\sigma}(n)}{\sqrt{n}} \leq 0.2
$$

where $\hat{\sigma}(n)$ is calculated using batch means.

AR(1) Code

\# The following will provide an observation from the MC 1 step ahead

```
ar1 <- function(m, rho, tau) {
rho*m + rnorm(1, 0, tau)
}
# Next, we will add to this program so that we can give it a Markov
# chain and the result will be p observations from the Markov chain.
ar1.gen <- function(mc, p, rho, tau, q=1) {
loc <- length(mc)
junk <- double(p)
mc <- append(mc, junk)
for(i in 1:p){
j <- i+loc-1
mc[(j+1)] <- ar1(mc[j], rho, tau)
}
return(mc)
}
```


AR(1) Code

```
set.seed(20)
library(mcmcse)
tau <- 1
rho <- . . }9
out <- 0
eps <- 0.1
start <- 1000
r <- 1000
```


AR(1) Code

```
out <- ar1.gen(out, start, rho, tau)
MCSE <- mcse(out)$se
N <- length(out)
t <- qt(.975, (floor(sqrt(N) - 1)))
muhat <- mean(out)
check <- MCSE * t
while(eps < check) {
out <- ar1.gen(out, r, rho, tau)
MCSE <- append(MCSE, mcse(out)$se)
N <- length(out)
t <- qt(.975, (floor(sqrt(N) - 1)))
muhat <- append(muhat, mean(out))
check <- MCSE[length(MCSE)] * t
}
```


AR(1) Code

```
N <- seq(start, length(out), r)
t <- qt(.975, (floor(sqrt(N) - 1)))
half <- MCSE * t
sigmahat <- MCSE*sqrt(N)
N <- seq(start, length(out), r) / 1000
plot(N, muhat, main="Estimates of the Mean",
    xlab="Iterations (in 1000's)")
points(N, muhat, type="l", col="red")
abline(h=0, lwd=3)
legend("bottomright", legend=c("Observed", "Actual"),
    lty=c(1,1), col=c(2,1), lwd=c(1,3))
```


AR(1) Code

```
plot(N, sigmahat, main="Estimates of Sigma", xlab="Iterations (in 1000's)")
points(N, sigmahat, type="l", col="red")
abline(h=20, lwd=3)
legend("bottomright", legend=c("Observed", "Actual"), lty=c(1,1),
    col=c(2,1), lwd=c(1,3))
plot(N, 2*half, main="Calculated Interval Widths", xlab="Iterations
    (in 1000's)", ylab="Width", ylim=c(0, 1.8))
points(N, 2*half, type="l", col="red")
abline(h=0.2, lwd=3)
legend("topright", legend=c("Observed", "Cut-off"), lty=c(1,1), col=c(2,1),
    lwd=c(1,3))
```


AR(1) Model

Figure: Results from one simulation using a cut-off of $\epsilon=0.2$.

Asymptotically Valid Confidence Intervals

What requirements are necessary for asymptotically valid confidence intervals?
(1) Need a Markov chain CLT to hold.
(2) Need $\hat{\sigma}_{g}^{2}$ to be a strongly consistent estimator of σ_{g}^{2}. Does this work in practice with finite samples? How does it compare to other methods?

Asymptotically Valid Confidence Intervals

Need $\hat{\sigma}_{g}^{2}$ to be a strongly consistent estimator of σ_{g}^{2}.

- Batch Means
- Overlapping Batch Means (Subsampling)
- Spectral Variance Estimators
- Regeneration

Batch Means

- Batch Means produces a strongly consistent estimator of σ_{g}^{2}.
- Let b_{n} be the batch size, $a_{n}=n / b_{n}$ be the number of batches, and define a batch mean as

$$
\bar{Y}_{k}:=\frac{1}{b_{n}} \sum_{i=1}^{b_{n}} g\left(X_{k b_{n}+i}\right) \quad \text { for } k=0, \ldots, a_{n}-1
$$

Then

$$
\hat{\sigma}_{B M}^{2}=\frac{b_{n}}{a_{n}-1} \sum_{k=0}^{a_{n}-1}\left(\bar{Y}_{k}-\bar{g}_{n}\right)^{2}
$$

- Requires $b_{n} \rightarrow \infty$ and $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Gelman and Rubin Diagnostic

Gelman and Rubin Diagnostic - another stopping criteria.

- Most popular method for stopping the simulation, one of many convergence diagnostics.
- Simulates m independent parallel Markov chains.
- Considers a ratio of two different estimates of $\operatorname{Var}_{\pi} g$, not σ_{g}^{2} from the CLT.
- Argue the simulation should continue until the diagnostic $\left(\widehat{R}_{0.975}\right)$ is close to 1 .

Toy Example

- Let Y_{1}, \ldots, Y_{m} be i.i.d. $\mathrm{N}(\mu, \lambda)$ and let the prior for (μ, λ) be proportional to $1 / \sqrt{\lambda}$. The posterior density is characterized by

$$
\pi(\mu, \lambda \mid y) \propto \lambda^{-\frac{m+1}{2}} \exp \left\{-\frac{1}{2 \lambda} \sum_{j=1}^{m}\left(y_{j}-\mu\right)^{2}\right\}
$$

which is proper as long as $m \geq 3$.

- A Gibbs sampler requires the full conditionals:

$$
\left.\begin{array}{l}
\mu \mid \lambda, y \quad \mathrm{~N}(\bar{y}, \lambda / m) \\
\lambda \mid \mu, y
\end{array}\right) \mathrm{IG}\left(\frac{m-1}{2}, \frac{s^{2}+m(\bar{y}-\mu)^{2}}{2}\right), ~ l
$$

where \bar{y} is the sample mean and $s^{2}=\sum\left(y_{i}-\bar{y}\right)^{2}$.

Toy Example

$$
\pi(\mu, \lambda \mid y) \propto \lambda^{-\frac{m+1}{2}} \exp \left\{-\frac{1}{2 \lambda} \sum\left(y_{j}-\mu\right)^{2}\right\}
$$

Consider the Gibbs sampler that updates λ then μ.

$$
\left(\lambda^{\prime}, \mu^{\prime}\right) \rightarrow\left(\lambda, \mu^{\prime}\right) \rightarrow(\lambda, \mu)
$$

Jones and Hobert showed this sampler is geometrically ergodic.
(1) Suppose $m=11, \bar{y}=1$, and $s^{2}=14$.

- Then $E(\mu \mid y)=1$ and $E(\lambda \mid y)=2$.
(2) Consider estimating $E(\mu \mid y)$ and $E(\lambda \mid y)$ with $\bar{\mu}_{n}$ and $\bar{\lambda}_{n}$.
- CLT holds!
- Using $b=\left\lfloor n^{1 / 2}\right\rfloor$, BM Theorem holds!

Simulation Settings

Stopped the simulation when

$$
\begin{aligned}
& B M: \quad t_{.975,(a-1)} \frac{\hat{\sigma}_{B M}}{\sqrt{n}}+I(n<400)<0.04 \\
& G R D: \quad \hat{R}_{0.975}+I(n<400)<1.005
\end{aligned}
$$

(1) 1000 independent replications

- Starting from \bar{y} for BM.
- Starting from draws from π for GRD.
(2) Used 4 chains for GRD.

Simulation Results

Figure: Plots of $\bar{\mu}_{n}$ vs. n for both stopping methods.

Simulation Results

	BM	GRD
MSE for $E(\mu \mid y)$	$3.73 \mathrm{e}-05(1.8 \mathrm{e}-06)$	$0.000134(9.2 \mathrm{e}-06)$
MSE for $E(\lambda \mid y)$	$0.000393(1.8 \mathrm{e}-05)$	$0.00165(0.00012)$

Figure: Histograms of $\bar{\mu}_{n}$ for both stopping methods.

Summary

- Monte Carlo and MCMC Simulations
- Include uncertainty estimates, e.g. a MCSE
- Useful for interpretation (mcmcse R package)
- Finding a good MCMC sampler is critical
- momc R package is a good starting point, but there are others
- Other software available; OpenBUGS, Stan, JAGS, packages within Python ...

Other Topics in MCMC

- Convergence diagnostics, ESS, trace plots, ACF plots, ...
- Estimating quantiles, or endpoints of credible regions
- Fixed-width stopping rules
- Relative standard deviation fixed-width stopping rule equivalent to stopping when ESS is large enough
- Multivariate estimation and output analysis
- Slice sampling, reversible-jump Metropolis, adaptive random walk samplers, sequential Monte Carlo (particle filters), simulated annealing algorithms, ...

