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1.1 Introduction

Our goal is to introduce some of the tools useful for analyzing the output of a Markov

chain Monte Carlo (MCMC) simulation. In particular, we focus on methods which allow

the practitioner (and others!) to have confidence in the claims put forward. The following

are the main issues we will address: (1) initial graphical assessment of MCMC output; (2)

using the output for estimation; (3) assessing the Monte Carlo error of estimation; and (4)

terminating the simulation.

Let π be a probability function with support X ⊆ Rd (most often π will be a probability

mass function or a probability density function) about which we wish to make an inference.

This inference often is based on some feature of π. For example, if g : X → R a common
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goal is the calculation of1

Eπg =

∫
X

g(x)π(dx) . (1.1.1)

We will typically want the value of several features such as mean and variance parameters

along with quantiles and so on. As a result, the features of interest form a p-dimensional

vector which we call θπ. Unfortunately, in practically relevant settings we often cannot

calculate any of the components of θπ analytically or even numerically. Thus we are faced

with a classical statistical problem; given a probability distribution π we want to estimate

several fixed, unknown features of it. For ease of exposition we focus on the case where θπ

is univariate but we will come back to the general case at various points throughout.

Consider estimating an expectation as in (1.1.1). The basic MCMC method entails con-

structing a Markov chain X = {X0, X1, X2, . . .} on X having π as its invariant distribution.

(See Geyer (2010) for an introduction to MCMC algorithms.) Then we simulate X for a

finite number of steps, say n, and use the observed values to estimate Eπg with a sample

average

ḡn :=
1

n

n−1∑
i=0

g(xi) . (1.1.2)

The use of this estimator is justified through the Markov chain strong law of large numbers

(SLLN)2: If Eπ|g| <∞, then ḡn → Eπg almost surely as n→∞. From a practical point of

view this means we can obtain an accurate estimate of Eπg with a sufficiently long simulation.

Outside of toy examples, no matter how long our simulation, there will be an unknown

Monte Carlo error, ḡn − Eπg. While it is impossible to assess this error directly, we can

obtain its approximate sampling distribution if a Markov chain central limit theorem (CLT)

holds. That is, if
√
n(ḡn − Eπg)

d→ N(0, σ2
g) (1.1.3)

as n→∞ where σ2
g ∈ (0,∞). It is important to note that due to the correlation present in a

Markov chain σ2
g 6= varπg except in trivial cases. For now, suppose we have an estimator such

that σ̂2
n → σ2

g almost surely as n → ∞ (see Section 1.4 for some suitable techniques). This

1The notation in (1.1.1) avoids having separate formulas for the discrete case where it denotes∑
x∈X

g(x)π(x) and the continuous case where it denotes

∫
X

g(x)π(x) dx.

2This is a special case of the Birkhoff Ergodic Theorem (p. 558 Fristedt and Gray, 1997).
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allows construction of an asymptotically valid confidence interval for Eπg with half-width

t∗
σ̂n√
n

(1.1.4)

where t∗ is an appropriate quantile.

Most importantly, calculating and reporting the Monte Carlo standard error (MCSE),

σ̂n/
√
n, allows everyone to judge the reliability of the estimates. In practice this is done

in the following way. Suppose after n simulations our estimate of Eπg is ḡn = 1.3. Let hα

denote the half-width given in (1.1.4) of a (1− α)100% interval. We can be confident in the

“3” in our estimate if 1.3 ± hα ⊆ [1.25, 1.35). Otherwise, reasonable values such as 1.2 or

1.4 could be obtained by rounding. If the interval is too wide for our purposes, then more

simulation should be conducted. Of course, we would be satisfied with a wider interval if we

only wanted to trust the “1” or the sign of our estimate. Thus the interval estimator (1.1.4)

allows us to describe the confidence in the reported estimate, and moreover, including an

MCSE with the point estimate allows others to assess its reliability. Unfortunately, this is

not currently standard practice in MCMC (Flegal et al., 2008).

The rest of this chapter is organized as follows. In Section 1.2 we consider some basic

techniques for graphical assessment of MCMC output then Section 1.3 contains a discussion

of various point estimators of θπ. Next, Section 1.4 introduces techniques for constructing

interval estimators of θπ. Then Section 1.5 considers estimating marginal densities associated

with π and Section 1.6 further considers stopping rules for MCMC simulations. Finally, in

Section 1.7 we give conditions for ensuring the CLT at (1.1.3). The computations presented

in our examples were carried out using the R language. See Flegal and Jones (2010c) for an

Sweave file from which the reader can reproduce all of our calculations.

1.2 Initial Examination of Output

As a first step it pays to examine the empirical finite-sample properties of the Markov chain

being simulated. A few simple graphical methods are often used in the initial assessment

of the simulation output. These include scatterplots, histograms, time series plots, autocor-

relation plots and plots of sample means. We will content ourselves with an illustration of

some of these techniques; see Geyer (2010) for further discussion. Consider the following toy

example which we will return to several times.
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Example 1 (Normal AR(1) Markov chains). The normal AR(1) time series is defined by

Xn+1 = ρXn + εn (1.2.1)

where the εn are i.i.d. N(0,1) and ρ < 1. This Markov chain has invariant distribution

N (0, 1/(1− ρ2)).

As a simple numerical example, consider simulating the chain (1.2.1) in order to estimate

the mean of the invariant distribution, that is EπX = 0. While this is a toy example, it is

quite useful because ρ plays a crucial role in the behavior of this chain. Figure 1.1 contains

plots based on single sample path realizations starting at X1 = 1 with ρ = 0.5 and ρ = 0.95.

In each figure the top plot is a time series plot of the observed sample path. The mean of the

target distribution is 0 and the horizontal lines are 2 standard deviations above and below

the mean. Comparing the time series plots it is apparent that while we may be getting a

representative sample from the invariant distribution, when ρ = 0.95 the sample is highly

correlated. This is also apparent from the autocorrelation (middle) plots in both figures.

When ρ = 0.5 the autocorrelation is negligible after about lag 4 but when ρ = 0.95 there is a

substantial autocorrelation until about lag 30. The impact of this correlation is apparent in the

bottom two plots which plot the running estimates of the mean versus iterations in the chain.

The true value is displayed as the horizontal line at 0. Clearly, the more correlated sequence

requires many more iterations to achieve a reasonable estimate. From these plots, we can see

that the simulation with ρ = 0.5 may have been run long enough while the simulation with

ρ = 0.95 likely hasn’t.

In the example, the plots were informative because we were able to draw horizontal

lines depicting the true values. In practically relevant MCMC settings—where the truth

is unavailable—it is hard to know when to trust these plots. Nevertheless, they can still

be useful since a Markov chain that is mixing well would tend to have time series and

autocorrelation plots that look like Figure 1.1a while time series and autocorrelation plots

like the one in Figure 1.1b would indicate a potentially problematic simulation. Also, plots

of current parameter estimates (with no reference to a standard error) versus iteration are

not as helpful since they provide little information as to the quality of estimation.

In simulating a d-dimensional Markov chain to simultaneously estimate the p-dimensional

vector θπ of features of π, p can be either greater than or less than d. When either d or p

are large, the standard graphical techniques are obviously problematic. That is, even if each

component’s time series plot indicates good mixing one should not necessarily infer that the
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Figure 1.1: Initial output examination for AR(1) model.

chain has converged to its joint target distribution. In addition, if either d or p is large it

will be impractical to look at plots of each component. These issues have received very little

attention in the MCMC literature.

1.3 Point Estimates of θπ

In this section, we consider two specific cases of θπ, estimating a univariate expectation Eπg

and estimating a quantile of one of the univariate marginal distributions from π.

1.3.1 Expectations

Suppose θπ = Eπg and assume Eπ|g| < ∞. Recall from Section 1.1 that there is a SLLN

and hence it is natural to use the sample average ḡn to estimate θπ. Alternatively, we

could use point estimates of θπ obtained through the use of burn-in or averaging conditional

expectations.

Consider the use of burn-in. Usually, the simulation is not started with a draw from π

since otherwise we would just do ordinary Monte Carlo. It follows that marginally each

Xi � π and Eπg 6= E[g(Xi)]. Thus ḡn is a biased estimator of Eπg. In the current setting,
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we have that Xn
d→ π as n → ∞ so, in order to diminish the effect of this “initialization

bias” an alternative estimator may be employed

ḡn,B =
1

n

n+B−1∑
i=B

g(xi)

where B denotes the burn-in or amount of simulation discarded. By keeping only the draws

obtained after B − 1 we are effectively choosing a new initial distribution that is “closer”

to π. The SLLN still applies to ḡn,B since if it holds for any initial distribution it holds for

every initial distribution. Of course, one possible (maybe even likely) consequence of using

burn-in is that var(ḡn,B) ≥ var(ḡn+B,0), that is, the bias decreases but the variance increases

for the same total simulation effort. Obviously, this means that using burn-in could result

in an estimator having larger mean-squared error than one without burn-in. Moreover,

without some potentially difficult theoretical work (Jones and Hobert, 2001; Latuszynski

and Niemiro, 2009; Rosenthal, 1995; Rudolf, 2009) it is not clear what value of B should be

chosen. Popular approaches to determining B include simply discarding a fraction of the

total run length (see e.g. Gelman and Rubin, 1992) or are based on convergence diagnostics

(for a review see Cowles and Carlin, 1996). Unfortunately, there simply is no guarantee that

any of these diagnostics will detect a problem with the simulation and, in fact, using them

can introduce bias (Cowles et al., 1999).

Now consider the estimator obtained by averaging conditional expectations. To moti-

vate this discussion, suppose the target is a function of two variables π(x, y) and we are

interested in estimating the expectation of a function of only one of the variables, say g(x).

Let (X, Y ) = {(X0, Y0) , (X1, Y1) , (X2, Y2) , . . .} denote the Markov chain, mY (y) denote the

marginal density, and fX|Y (x|y) denote the conditional density. Notice

Eπg =

∫ ∫
g(x)π(x, y)dxdy =

∫ [∫
g(x)fX|Y (x|y)dx

]
mY (y)dy

so by letting

h(y) =

∫
g(x)fX|Y (x|y)dx

we can appeal to the SLLN again to see that as n→∞

h̄n =
1

n

n−1∑
i=0

h(yi) =
1

n

n−1∑
i=0

∫
g(x)fX|Y (x|yi)dx

a.s.→ Eπg .
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This estimator is conceptually the same as ḡn in the sense that both are sample averages

and the Markov chain SLLN applies to both. The estimator h̄n is often called the Rao-

Blackwellised (RB) estimator3 of Eπg (Casella and Robert, 1996). A natural question is

which of ḡn, the sample average, or h̄n, the Rao-Blackwellised estimator, is better? It is

obvious that h̄n will sometimes be impossible to use if fX|Y (x|y) is not available in closed form

or if the integral is intractable. Hence h̄n will not be as generally practical as ḡn. However,

there are settings, such as in data augmentation (Hobert, 2010) where h̄n is theoretically and

empirically superior to ḡn; see Liu et al. (1994) and Geyer (1995) for theoretical investigation

of these two estimators.

Example 2. This example is also considered in Hobert (2010). Suppose our goal is to

estimate the first two moments of a Students t distribution with 4 degrees of freedom and

having density

m(x) =
3

8

(
1 +

x2

4

)−5/2

.

There is nothing about this that requires MCMC since we can easily calculate that EmX = 0

and EmX
2 = 2. Nevertheless, we will use a data augmentation algorithm based on the joint

density

π(x, y) =
4√
2π
y

3
2 e−y(2+x2/2)

so that the full conditionals are X|Y ∼ N(0, y−1) and Y |X ∼ Gamma(5/2, 2 + x2/2). Con-

sider the Gibbs sampler that updates X then Y so that a one-step transition looks like

(x′, y′)→ (x, y′)→ (x, y). Suppose we have obtained n observations {xi, yi ; i = 0, . . . , n−1}
from running the Gibbs sampler. Then the standard sample average estimates of EmX and

EmX
2 are

1

n

n−1∑
i=0

xi and
1

n

n−1∑
i=0

x2
i , respectively.

Further, the Rao-Blackwellised estimates are easily computed. Since X|Y ∼ N(0, y−1) the

Rao-Blackwellised estimate of EmX is 0! On the other hand, the RB estimate of EmX
2 is

1

n

n−1∑
i=0

y−1
i .

As an illustration of these estimators we simulated 2000 iterations of the Gibbs sampler and

3This as an unfortunate name since it is only indirectly related to the Rao-Blackwell Theorem, but the
name has stuck in the literature.
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Figure 1.2: Estimators of the first two moments for Example 2. The horizontal line denotes
the truth, the solid curves are the running sample averages while the dotted curves are the
running RB sample averages.

plotted the running values of the estimators in Figure 1.2. In this example, the RB averages

are less variable than the standard sample averages.

It is not the case that RB estimators are always better than sample means. Whether

they are better depends on the expectation being estimated as well as the properties of the

MCMC sampler. In fact, Liu et al. (1994) and Geyer (1995) give an example where the RB

estimator is provably worse than the sample average. RB estimators are more general than

our presentation suggests. Let h be any function and set

f(x) = E[g(X)|h(X) = h(x)]

so that Eπg = Eπf . Thus, by the Markov chain SLLN with probability 1 as n→∞,

1

n

n∑
i=1

f(Xi) =
1

n

n∑
i=1

E[g(X)|h(Xi) = h(xi)]→ Eπg .

As long as the conditional distribution X|h(x) is tractable, RB estimators are available.
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1.3.2 Quantiles

It is common to report estimated quantiles in addition to estimated expectations. Actually,

what is nearly always reported is not a multivariate quantile but rather quantiles of the

univariate marginal distributions associated with π. This is the only setting we consider.

Let F be a marginal distribution function associated with π. Then the qth quantile of F is

φq = F−1(q) = inf{x : F (x) ≥ q}, 0 < q < 1 . (1.3.1)

There are many potential estimates of φq but we consider only the inverse of the empirical

distribution function from the observed sequence. First define {X(1), . . . , X(n)} as the order

statistics of {X0, . . . , Xn−1}, then the estimator of φq is given by

φ̂q,n = X(j+1) where
j

n
≤ q <

j + 1

n
. (1.3.2)

Example 3 (Normal AR(1) Markov chains). Consider again the time series defined at

(1.2.1). Our goal in this example is to illustrate estimating the first and third quartiles,

denoted Q1 and Q3. The true values of Q1 and Q3 are ±Φ−1(0.75)/
√

1− ρ2 where Φ is the

cumulative distribution function of a standard normal distribution.

Using the same realization of the chain as in Example 1, Figures 1.3a and 1.3b show

plots of the running quartiles versus iteration when ρ = 0.5 and ρ = 0.95 respectively.

It is immediately apparent that estimation is more difficult when ρ = 0.95 and hence the

simulation should continue. Also, without the horizontal lines, these plots would not be as

useful. Recall a similar conclusion was reached for estimating the mean.

1.4 Interval Estimates of θπ

In our examples we have known the truth, enabling us to draw the horizontal lines on the

plots which allow us to gauge the quality of estimation. Obviously, the true parameter value

is unknown in practical settings and hence the size of the Monte Carlo error is unknown.

For this reason, when reporting a point estimate of θπ, a Monte Carlo standard error should

be included so that the reader can assess the quality of the reported point estimates. In

this section we address how to calculate MCSEs and construct asymptotically valid interval

estimates of θπ.
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Figure 1.3: Plots for AR(1) model of running estimates of Q1 and Q3. The horizontal lines
are the true quartiles.

1.4.1 Expectations

Suppose θπ = Eπg which will be estimated with ḡn = ḡn,0, that is with no burn-in. However,

using burn-in presents no theoretical difficulties since, as with the SLLN, if the CLT holds

for any initial distribution then it holds for every initial distribution. Thus the use of burn-

in does not affect the existence of a CLT, but it may affect the quality of the asymptotic

approximation. If σ̂2
n is an estimate of σ2

g , then one can form a confidence interval for Eπg

with half-width

t∗
σ̂n√
n

(1.4.1)

where t∗ is an appropriate quantile. Thus the difficulty in finding interval estimates is in

estimating σ2
g which requires specialized techniques to account for correlation in the Markov

chain. We restrict attention to strongly consistent estimators of σ2
g . Some interval estima-

tion techniques do not require consistent estimation of σ2
g (see Schruben, 1983) but we need

it for the methods presented later in Section 1.6. The methods yielding strongly consis-

tent estimators include batch means methods, spectral variance methods and regenerative

simulation. Alternatives include the initial sequence methods of Geyer (1992), however the

theoretical properties of Geyer’s estimators are not well understood. We will focus on batch

means as it is the most generally applicable method; for more on spectral methods see Flegal
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and Jones (2010a) while Hobert et al. (2002) and Mykland et al. (1995) study regenerative

simulation. There are many variants of batch means, here we emphasize overlapping batch

means (OLBM).

Overlapping Batch Means

As the name suggests, in OLBM we divide the simulation into overlapping batches of length

bn say. For example, if bn = 3, then {X0, X1, X2} and {X1, X2, X3} would be the first two

overlapping batches. In general, there are n − bn + 1 batches of length bn, indexed by j

running from 0 to n − bn. Let Ȳj(bn) := b−1
n

∑bn−1
i=0 g(Xj+i) for j = 0, . . . , n − bn. Then the

OLBM estimator of σ2
g is

σ̂2
OLBM =

nbn
(n− bn)(n− bn + 1)

n−bn∑
j=0

(Ȳj(bn)− ḡn)2 . (1.4.2)

Batch means estimators are not generally consistent for σ2
g (Glynn and Whitt, 1991). How-

ever, roughly speaking, Flegal and Jones (2010a) show that if the Markov chain mixes quickly

and bn is allowed to increase as the overall length of the simulation does, then σ̂2
OLBM is a

strongly consistent estimator of σ2
g . It is often convenient to take bn = bnνc for some

0 < ν < 3/4, and ν = 1/2 may be a reasonable default. However, ν values yielding strongly

consistent estimators are dependent on the number of finite moments of g with respect to

the target π and the mixing conditions of the Markov chain. These conditions are similar

to those required for a Markov chain CLT, see Flegal and Jones (2010a); Jones (2004); and

Jones et al. (2006). Finally, when constructing the interval (1.4.1), t∗ is a quantile from a

Student’s t distribution with n− bn degrees of freedom.

Example 4 (Normal AR(1) Markov chains). Recall the AR(1) model defined at (1.2.1).

Using the same realization of the chain as in Example 1, that is, 2000 iterations with

ρ ∈ {0.5, 0.95} starting from X1 = 1, we consider estimating the mean of the invariant

distribution, i.e. EπX = 0. Utilizing OLBM with bn = bn1/2c, we calculated an MCSE and

resulting 80% confidence interval. Figures 1.4a and 1.4b show the running means versus

iteration for ρ = 0.5 and ρ = 0.95 respectively. The dashed lines correspond to upper and

lower 80% confidence bounds. Notice that for the larger value of ρ it takes longer for the

MCSE to stabilize and begin decreasing. After 2000 iterations for ρ = 0.5 we obtained an

interval of −0.034± 0.056 while for ρ = 0.95 the interval is −0.507± 0.451.

Many of our plots are based on simulating only 2000 iterations. We chose this value
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Figure 1.4: Plots for AR(1) model of running estimates of the mean along with confidence
intervals calculated via OLBM. the horizontal line denotes the truth.

strictly for illustration purposes. An obvious question is has the simulation been run long

enough? That is, are the interval estimates sufficiently narrow after 2000 iterations? In the

ρ = .5 case, the answer is ’maybe’ while in the ρ = .95 case it is clearly ’no’. Consider the

final interval estimate of the mean with ρ = 0.5, that is, −0.034 ± 0.056 = (−0.090, 0.022).

If the user is satisfied with this level of precision, then 2000 iterations is sufficient. On

the other hand, when ρ = .95 our interval estimate is −0.507 ± 0.451 = (−0.958,−0.056),

indicating we cannot trust any of the significant figures reported in the point estimate.

Recall the RB estimators of Section 1.3.1. It is straightforward to use OLBM to calculate

the MCSE for these estimators since the conditional expectations being averaged define the

sequence of batch means Ȳj(bn).

Example 5. Recall Example 2 where the first two moments of a Students t distribution with

4 degrees of freedom were estimated using sample average and RB estimators. Using the

same Markov chain, an 80% CI is calculated via OLBM with bn = bn1/2c at each iteration.

Figure 1.5a shows the running estimate of EπX versus iteration and includes confidence

bounds for the sample average estimator. Recall, the RB estimator is exact so there is no

uncertainty in this estimate. Figure 1.5b shows the running estimate of EπX versus iteration

with confidence bounds for both estimates. Here it is provable that the RB estimator has a
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Figure 1.5: Estimators of the first two moments from a t distribution with 4 degrees of
freedom. The horizontal line denotes the truth, the solid curves are the running sample
averages with confidence bounds while the dotted curves are the running RB sample averages
with confidence bounds.

smaller asymptotic variance than the sample average estimator (Geyer, 1995). This is clearly

reflected by the narrower interval estimates.

Parallel Chains

To this point, our recipe seems straightforward: given a sampler, pick a starting value and

run the simulation for a sufficiently long time using the SLLN and the CLT to produce a

point estimate and a measure of its uncertainty. A variation of this procedure relies on

simulating multiple independent, or parallel, chains. Debate between a single long run and

parallel chains began in the early statistics literature on MCMC (see e.g. Gelman and Rubin,

1992; Geyer, 1992), even earlier in the operations research and physics literature (see e.g.

Bratley et al., 1987; Fosdick, 1959; Kelton and Law, 1984), and continues today (Alexopoulos

et al., 2006; Alexopoulos and Goldsman, 2004). The main idea of parallel chains is to run r

independent chains using different starting values where each chain is the same length using

the same burn-in. This yields r independent estimates of Eπg, namely ḡn,B,1, ḡn,B,2, . . . , ḡn,B,r.

The grand mean would then estimate Eπg—although Glynn and Heidelberger (1991) have

shown that an alternative estimator may be superior—and our estimate of its performance,
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i.e. σ2
g , would be the usual sample variance of the ḡn,B,i.

This approach has some intuitive appeal in that estimation avoids some of the serial

correlation inherent in MCMC and it is easily implemented when more than one processor

is available. Moreover, there is value in trying a variety of initial values for any MCMC

experiment. It has also been argued that by choosing the r starting points in a widely

dispersed manner there is a greater chance of encountering modes that one long run may

have missed. Thus, for example, some argue that using independent replications results

in “superior inferential validity” (Gelman and Rubin, 1992, p. 503). However, there is

no agreement on this issue, indeed, Bratley et al. (1987, p. 80) “are skeptical about [the]

rationale” of some proponents of independent replications. Notice that the total simulation

effort using independent replications is r(n+B). To obtain good estimates of σ2
g will require

r to be large which will require n+B to be small for a given computational effort. If we use

the same value of B as we would when using one long run this means that each ḡn,B,i will be

based on a comparatively small number n of observations. Using more than one chain will

also enhance the initialization bias so that a careful choice of B can be quite important to the

statistical efficiency of the estimator of Eπg (Glynn and Heidelberger, 1991). Moreover, since

each run will be comparatively short there is a reasonable chance that a given replication

will not move far from its starting value. Alexopoulos and Goldsman (2004) have shown

that this can result in much poorer estimates (in terms of mean square error) of Eπg than a

single long run. On the other hand, if we can find a variety of starting values that are from

a distribution very close to π, then independent replications may indeed be superior. This

should not be surprising since independent draws directly from π are clearly desirable.

There is an important caveat to the above analysis. There are settings (see e.g. Caffo

et al., 2010) where it is prohibitively difficult (or time-consuming) to produce a sufficiently

large Monte Carlo sample without parallel computing. This has received limited attention

in MCMC settings (Brockwell, 2006; Rosenthal, 2000) but perhaps deserves more.

1.4.2 Functions of Moments

Suppose we are interested in estimating φ(Eπg) where φ is some function. If φ is continuous,

then φ(ḡn) → φ(Eπg) with probability 1 as n → ∞ making estimation of φ(Eπg) straight-

forward. Also, a valid Monte Carlo error can be obtained via the delta method (Ferguson,

1996; van der Vaart, 1998). Assuming (1.1.3) the delta method says that if φ is continuously
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differentiable in a neighborhood of Eπg and φ′(Eπg) 6= 0, then as n→∞

√
n(φ(ḡn)− φ(Eπg))

d→ N(0, [φ′(Eπg)]2σ2
g) .

Thus if our estimator of σ2
g , say σ̂2

n is strongly consistent, then [φ′(ḡn)]2σ̂2
n is strongly consis-

tent for [φ′(Eπg)]2σ2
g .

Example 6. Consider estimating (EπX)2 with (X̄n)2. Let φ(x) = x2 and assume EπX 6= 0

and a CLT as in (1.1.3). Then as n→∞

√
n
(
(X̄n)2 − (EπX)2

) d→ N(0, 4(EπX)2σ2
x)

and we can use OLBM to consistently estimate σ2
x with σ̂2

n which means that 4(X̄n)2σ̂2
n is a

strongly consistent estimator of 4(EπX)2σ2
x.

From this example we see that the univariate delta method makes it straightforward

to handle powers of moments. The multivariate delta method allows us to handle more

complicated functions of moments. Let Tn denote a sequence of d-dimensional random

vectors and θ be a d-dimensional parameter. If as n→∞,

√
n(Tn − θ)

d→ N(µ,Σ)

and φ is continuously differentiable in a neighborhood of θ and φ′(θ) 6= 0, then as n→∞

√
n(φ(Tn)− φ(θ))

d→ N(φ′(θ)µ, φ′(θ)Σφ′(θ)T ) .

Example 7. Consider estimating varπg = Eπg
2 − (Eπg)2 with, setting h = g2,

1

n

n∑
i=1

h(Xi)−

(
1

n

n∑
i=1

g(Xi)

)2

:= v̂n .

Assume
√
n

((
ḡn

h̄n

)
−

(
Eπg

Eπg
2

))
d→ N

((
0

0

)
,

(
σ2
g c

c σ2
h

))
where c = Eπg

3 − EπgEπg2. Let φ(x, y) = y − x2. Then as n→∞

√
n(v̂n − varπg)

d→ N(0, 4(Eπg)(σ2
gEπg − Eπg3 + EπgEπg

2) + σ2
h) .
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Since it is easy to use OLBM to construct strongly consistent estimators of σ2
g and σ2

h the

following formula gives a strongly consistent estimator of the variance in the asymptotic

normal distribution for v̂n

4(ḡn)(σ̂2
g,n ḡn − j̄n + ḡnh̄n) + σ̂2

h,n

where j = g3.

1.4.3 Quantiles

Suppose our goal is to estimate φq with φ̂q,n defined at (1.3.1) and (1.3.2), respectively.

We now turn our attention to constructing an interval estimate of φq. It is tempting to

think that bootstrap methods would be appropriate for this problem. Indeed there has been

a substantial amount of research into bootstrap methods for stationary time series which

would be appropriate for MCMC settings (see e.g. Bertail and Clémençon, 2006; Bühlmann,

2002; Datta and McCormick, 1993; Politis, 2003). Unfortunately, our experience has been

that these methods are extremely computationally intensive and have inferior finite-sample

properties compared to the method presented below.

As above, we assume the existence of an asymptotic normal distribution for the Monte

Carlo error, that is, there is a constant γ2
q ∈ (0,∞) such that as n→∞

√
n(φ̂q,n − φq)

d→ N(0, γ2
q ) . (1.4.3)

Flegal and Jones (2010b) give conditions under which (1.4.3) obtains. Just as when we were

estimating an expectation, we find ourselves in the position of estimating a complicated

constant γ2
q . We focus on the use of the subsampling bootstrap method (SBM) in this context.

The reader should be aware that our use of the term “subsampling” is quite different than

the way it is often used in the context of MCMC in that we are not deleting any observations

of the Markov chain.

Subsampling Bootstrap

This section will provide a brief overview of SBM in the context of MCMC and illustrate

its use for calculating the MCSE of φ̂q,n. While this section focuses on quantiles, SBM

methods apply much more generally; the interested reader is encouraged to consult Politis
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et al. (1999).

The main idea for SBM is similar to OLBM in that we are taking overlapping batches

(or subsamples) of size bn from the first n observations of the chain {X0, X1, . . . , Xn−1}.
There are n − bn + 1 such subsamples. Let {Xi, . . . , Xi+bn−1} be the ith subsample with

corresponding ordered subsample {X∗(1), . . . , X
∗
(bn)}. Then define the quantile based on the

ith subsample as

φ∗i = X∗(j+1) where
j

bn
≤ q <

j + 1

bn
for i = 0, . . . , n− bn .

The SBM estimate of γ2
q is then

γ̂2
q =

bn
n− bn + 1

n−bn+1∑
i=0

(φ∗i − φ̄∗)2 , (1.4.4)

where

φ̄∗ =
1

n− bn + 1

n−bn+1∑
i=0

φ∗i .

Politis et al. (1999) give conditions that ensure this estimator is strongly consistent but their

conditions could be difficult to check in practice. SBM implementation requires choosing bn

such that as n→∞ we have bn →∞ and bn/n→ 0. A natural choice is bn = b
√
nc.

Example 8 (Normal AR(1) Markov chains). Using the AR(1) model defined at (1.2.1) we

again consider estimating the first and third quartiles, denoted Q1 and Q3. Recall that the

true values for the quartiles are ±Φ−1(0.75)/
√

1− ρ2, respectively.

Figure 1.6 shows the output from the same realization of the chain used previously in

Example 3 but this time the plot includes an interval estimate of the quartiles. Figure 1.6a

shows a plot of the running quartiles versus iteration when ρ = 0.5. In addition, the dashed

lines show the 80% confidence interval bounds at each iteration. These intervals were pro-

duced with SBM using bn = b
√
nc. At around 200 iterations, the MCSE (and hence interval

estimates) seem to stabilize and begin to decrease. At 2000 iterations, the estimates for Q1

and Q3 are −0.817± 0.069 and 0.778± 0.065 respectively. Figure 1.6b shows the same plot

when ρ = 0.95. At 2000 iterations, the estimates for Q1 and Q3 are −2.74 ± 0.481 and

1.78± 0.466 respectively.

Are the intervals sufficiently narrow after 2000 iterations? In both cases (ρ = 0.5 and

ρ = .95) the answer is likely ’no’. Consider the narrowest interval which is the one for
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Figure 1.6: Plots for AR(1) model of running estimates of Q1 and Q3 along with 80%
pointwise confidence intervals calculated via SBM. The horizontal lines denote the true
values.

Q3 with ρ = .5, that is, 0.778 ± 0.065 = (0.713, 0.843) which indicates that we can at most

trust the sign and the leading 0 of the estimate, 0.778. On the other hand, certainly this is

evidence that the true quantile is between .71 and .85. Note that in a real problem we would

not have the horizontal line in the plot depicting the truth.

SBM is applicable much more generally than presented here and, in fact, essentially

generalizes the method of overlapping batch means previously discussed in the context of

estimating an expectation. The subsample mean is Ȳj(bn) and the resulting estimate of σ2
g

is

σ̂2
SBM =

bn
n− bn + 1

n−bn∑
j=0

(Ȳj(bn)− Ȳ ∗)2 (1.4.5)

where

Ȳ ∗ =
1

n− bn + 1

n−bn+1∑
i=0

Ȳj(bn) .

It is straightforward to establish that the OLBM estimate defined in (1.4.2) is asymptotically

equivalent to the SBM estimate defined at (1.4.5).
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1.4.4 Multivariate Estimation

While we have largely focused on the univariate setting, recall from Section 1.1 that a typical

MCMC experiment is conducted with the goal of estimating a p-dimensional vector of pa-

rameters, θπ, associated with the d-dimensional target π. Generally, θπ could be composed

of expectations, quantiles and so on and p could be either much larger or much smaller than

d. Suppose each component θπ,i can be estimated with θ̂n,i so that θ̂n = (θ̂n,1, . . . , θ̂n,1)→ θπ

almost surely as n → ∞. It is natural to seek to establish the existence of an asymptotic

distribution of the Monte Carlo error θ̂n − θπ and then use this distribution to construct

asymptotically valid confidence regions. To our knowledge this problem has not been in-

vestigated. However, it has received some attention in the case where θπ consists only of

expectations; we know of one paper in the statistics literature (Kosorok, 2000) and a few

more in operations research including Muñoz and Glynn (2001), Seila (1982), and Yang and

Nelson (1992). Currently, the most common approach is to ignore the multiplicity issue and

simply construct the MCSE for each component of the Monte Carlo error. If p isn’t too

large then a Bonferroni correction could be used but this is clearly less than optimal. This

is obviously an area in MCMC output analysis that could benefit from further research.

1.5 Estimating Marginal Densities

A common inferential goal is the production of a plot of a marginal density associated with

π. In this section we cover two methods for doing this. We begin with a simple graphical

method then introduce a clever method due to Wei and Tanner (1990) that reminds us of

the Rao-Blackwellisation methods of Section 1.3.

A histogram approximates the true marginal by the Markov chain SLLN. Moreover, be-

cause histograms are so easy to construct with existing software they are popular. Another

common approach is to report a nonparametric density estimate or smoothed histogram. It

is conceptually straightforward to construct pointwise interval estimates for the smoothed

histogram using SBM. However, outside of toy examples, the computational cost is typically

prohibitive.

Example 9. Suppose Yi|µ, θ ∼ N(µ, θ) independently for i = 1, . . . ,m where m ≥ 3 and

assume the standard invariant prior ν(µ, θ) ∝ θ−1/2. The resulting posterior density is

π(µ, θ|y) ∝ θ−(m+1)/2e−
m
2θ

(s2+(ȳ−µ)2)
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Figure 1.7: Histograms for estimating the marginal densities of Example 9.

where s2 is the usual biased sample variance. It is easy to see that µ|θ, y ∼ N(ȳ, θ/m) and

that θ|µ, y ∼ IG((m − 1)/2,m[s2 + (ȳ − µ)2]/2), and hence a Gibbs sampler is appropriate.

We consider the Gibbs sampler that updates µ then θ so that a one-step transition is given

by (µ′, θ′) → (µ, θ′) → (µ, θ) and use this sampler to estimate the marginal densities of µ

and θ.

Now suppose m = 11, ȳ = 1 and s2 = 4. We simulated 2000 realizations of the Gibbs

sampler starting from (µ0, λ0) = (1, 1). The marginal density plots were created using the

default settings for the density function in R and are shown in Figure 1.7 while an estimated

bivariate density plot (created using R functions kde2d and persp) is given in Figure 1.8. It

is obvious from these figures that the posterior is simple, so it is no surprise that the Gibbs

sampler has been shown to converge in just a few iterations (Jones and Hobert, 2001).

A clever technique for estimating a marginal is based on the same idea as RB estimators

(Wei and Tanner, 1990). To keep the notation simple suppose the target is a function of

only two variables, π(x, y) and let mX and mY be the associated marginals. Then

mX(x) =

∫
π(x, y)dy =

∫
fX|Y (x|y)mY (y)dy = EmY fX|Y (x|y)

suggesting that, by the Markov chain SLLN, we can get a functional approximation to mX
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Figure 1.8: Estimated posterior density of Example 9.

since for each x as n→∞
1

n

n−1∑
i=0

fX|Y (x|yi)→ mX(x) . (1.5.1)

Of course, just as with RB estimators this will only be useful when the conditionals are

tractable. Note also, that it is straightforward to use OLBM to get pointwise confidence

intervals for the resulting curve; that is for each x we can calculate an MCSE of the sample

average in (1.5.1).

Example 10. Recall the setting of Example 9. We will focus on estimation of the marginal

posterior density of µ|y, i.e. π(µ|y). Note that

π(µ|y) =

∫
π(µ|θ, y)π(θ|y) dθ

so that by the Markov chain SLLN we can estimate π(µ|y) with

1

n

n−1∑
i=0

π(µ|θi, y)

which is straightforward to evaluate since µ|θi, y ∼ N(ȳ, θi/m). Note that the resulting

marginal estimate is a linear combination of normal densities. Using the same realization
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Figure 1.9: Estimates of the marginal density µ. The three estimates are based a histogram,
smoothed marginal densities (solid line), and the method of Wei and Tanner (1990) (dashed
line).

of the chain from Example 9 we estimated π(µ|y) using this method. Figure 1.9 shows the

results with our previous estimates. One can also calculate pointwise confidence intervals

using OLBM which results in a very small Monte Carlo error (and is therefore not included

in the plot). Notice the estimate based on (1.5.1) is a bit smoother than either the histogram

or the smoothed histogram estimate but is otherwise quite similar.

1.6 Terminating the Simulation

A common approach to stopping an MCMC experiment is to simulate for a fixed run length.

That is, the simulation is terminated using a fixed-time rule. Notice that this makes Monte

Carlo standard errors crucial to understanding the reliability of the resulting estimates.

There are settings where, due to the nearly prohibitive difficulty of the simulation, a fixed-

time rule may be the only practical approach. However, this is not the case for many MCMC

experiments.

Perhaps the most popular approach to terminating the simulation is to simulate an initial

Monte Carlo sample of size, say n0. The output is examined and if the results are found to be
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unsatisfactory, the simulation is continued for another n1 steps and the output reanalyzed.

If the results are still unsatisfactory, the process is repeated. Notice that this is a sequential

procedure that will result in a random total simulation effort.

When implementing this sequential procedure the examination of the output can take

many forms; it is often based on the use of graphical methods such as those described in

Section 1.2 or convergence diagnostics. We advocate terminating the simulation the first

time the MCSE is sufficiently small. Equivalently, the simulation is terminated the first time

the half-width of a confidence interval for θπ is sufficiently small, resulting in a fixed-width

rule. There is a substantial amount of research on fixed-width procedures in MCMC when

θπ is an expectation; see Flegal et al. (2008), Glynn and Whitt (1992) and Jones et al. (2006)

and the references therein, but none that we are aware of when θπ is not an expectation. Let

σ̂2
n be a strongly consistent estimator of σ2

g from (1.1.3). Given a desired half-width ε the

simulation terminates the first time

t∗
σ̂n√
n

+ p(n) ≤ ε (1.6.1)

where t∗ is the appropriate quantile and p(n) is a positive function such that p(n) = o(n−1/2)

as n → ∞. Letting n∗ be the desired minimum simulation effort, a reasonable default is

p(n) = εI(n ≤ n∗) + n−1. Glynn and Whitt (1992) established conditions ensuring the

interval at (1.6.1) is asymptotically valid4 in the sense that the desired coverage probability

is obtained as ε → 0. The use of these intervals in MCMC settings has been extensively

investigated and found to work well by Flegal et al. (2008), Flegal and Jones (2010a) and

Jones et al. (2006).

Example 11 (Normal AR(1) Markov chains). Consider the normal AR(1) time series de-

fined at (1.2.1). In Example 4 we simulated 2000 iterations from the chain with ρ = 0.95

starting from X0 = 1 and found that a 80% confidence interval for the mean of the invariant

distribution was −0.507± 0.451.

Suppose we wanted to continue our simulation until we were 80% confident our estimate

was within .1 of the true value after a minimum of 1000 iterations–a fixed-width procedure. If

we use OLBM to estimate the variance in the asymptotic distribution, then (1.6.1) becomes

t∗
σ̂n√
n

+ 0.1I(n ≤ 1000) + n−1 ≤ 0.1 .

4Glynn and Whitt (1992) also provide a counterexample to show that weak consistency of σ̂2
n for σ2

g is
not enough to achieve asymptotic validity.
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where t∗ is the appropriate quantile from a Student’s t distribution with n − bn degrees of

freedom. It would be computationally expensive to check this criterion after each iteration so

instead we added 1000 iterations before recalculating the half-width each time. In this case,

the simulation terminated after 6e4 iterations resulting in an interval estimate of −0.0442±
0.100. Notice that this simple example required a relatively large simulation effort compared

to what is often done in much more complicated settings but note that ρ is large. Further,

either narrowing the interval or increasing the desired confidence level will require a larger

simulation effort.

1.7 Markov Chain Central Limit Theorems

Throughout we have assumed the existence of a Markov chain central limit theorem, see e.g.

(1.1.3) and (1.4.3). In this section we provide a brief discussion of the conditions required for

these claims; the reader can find much more detail in Chan and Geyer (1994), Jones (2004),

Meyn and Tweedie (1993), Roberts and Rosenthal (2004) and Tierney (1994).

Implicitly, we assumed that the Markov chain X is Harris ergodic, that is, Harris recurrent

and aperiodic. To fully explain these conditions would require a fair amount of Markov chain

theory so we will content ourselves with providing references; the interested reader should

consult Meyn and Tweedie (1993), Nummelin (1984) or Roberts and Rosenthal (2004).

However, it is frequently trivial to verify Harris ergodicity (see e.g. Hobert, 2010; Tan and

Hobert, 2009; Tierney, 1994).

Harris ergodicity alone is not sufficient for the Markov chain SLLN or a CLT. However, if

X is Harris ergodic and Eπ|g| < ∞, then the SLLN holds: ḡn → Eπg with probability 1 as

n→∞. A CLT requires stronger conditions. In fact, it is important to be aware that there

are simple non-pathological examples of Harris ergodic Markov chains which do not enjoy

a CLT (Roberts, 1999). Let the conditional distribution of Xn given X0 = x be denoted

P n(x, ·), that is,

P n(x,A) = Pr(Xn ∈ A |X0 = x) .

Then Harris ergodicity implies that for every starting point x ∈ X

‖P n(x, ·)− π(·)‖ ↓ 0 as n→∞ (1.7.1)

where ‖ · ‖ is the total variation norm. We will need to know the rate of the convergence in
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(1.7.1) to say something about the existence of a CLT. Let M(x) be a nonnegative function

on X and γ(n) be a nonnegative function on Z+ such that

‖P n(x, ·)− π(·)‖ ≤M(x)γ(n) . (1.7.2)

When X is geometrically ergodic γ(n) = tn for some t < 1 while uniform ergodicity means

X is geometrically ergodic and M is bounded. These are key sufficient conditions for the

existence of an asymptotic normal distribution of the Monte Carlo error but these are not

the only conditions guaranteeing a CLT. In particular, a CLT as at (1.1.3) holds if X is

geometrically ergodic and Eπg
2+δ < ∞ for some δ > 0 or if X is uniformly ergodic and

Eπg
2 <∞. Moreover, geometric ergodicity is a key sufficient condition for the strong consis-

tency of the estimators of σ2
g from (1.1.3). For example, Flegal and Jones (2010a) establish

that when X is geometrically ergodic and Eπg
2+δ <∞ for some δ > 0 the overlapping batch

means method produces a strongly consistent estimator of σ2
g . Geometric ergodicity is also

an important sufficient condition for establishing (1.4.3) when estimating a quantile (Flegal

and Jones, 2010b).

In general, establishing (1.7.2) directly is apparently daunting. However, if X is finite

(no matter how large), then a Harris ergodic Markov chain is uniformly ergodic. When X

is a general space there are constructive methods which can be used to establish geometric

or uniform ergodicity; see Hobert (2010) and Jones and Hobert (2001) for accessible in-

troductions. These techniques have been applied to many MCMC samplers. For example,

Metropolis-Hastings samplers with state-independent proposals can be uniformly ergodic

(Tierney, 1994). Standard random walk Metropolis-Hastings chains on Rd, d ≥ 1 cannot be

uniformly ergodic but may still be geometrically ergodic; see Mengersen and Tweedie (1996).

An incomplete list of other research on establishing convergence rates of Markov chains used

in MCMC is given by Atchade and Perron (2007), Christensen et al. (2001), Geyer (1999),

Jarner and Hansen (2000), Meyn and Tweedie (1994) and Neath and Jones (2009) who

considered Metropolis-Hastings algorithms and Doss and Hobert (2010), Hobert and Geyer

(1998), Hobert et al. (2002), Johnson and Jones (2010), Jones and Hobert (2004), Marchev

and Hobert (2004), Roberts and Polson (1994), Roberts and Rosenthal (1999), Rosenthal

(1995, 1996), Roy and Hobert (2007), Roy and Hobert (2010), Tan and Hobert (2009) and

Tierney (1994) who examined Gibbs samplers.
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1.8 Discussion

The main point of this chapter is that a Monte Carlo standard error should be reported

along with the point estimate obtained from an MCMC experiment. At some level this

probably seems obvious to most statisticians but it is not the case in the reporting of most

MCMC-based simulation experiments. In fact, Doss and Hobert (2010) recently wrote

Before the MCMC revolution, when classical Monte Carlo methods based on

i.i.d. samples were used to estimate intractable integrals, it would have been

deemed unacceptable to report a Monte Carlo estimate without an accompanying

asymptotic standard error (based on the CLT). Unfortunately, this seems to have

changed with the advent of MCMC.

While it is tempting to speculate on the reasons for this change, the fact remains that most

currently published work in MCMC reports point estimates while failing to even acknowledge

an associated MCSE; see also Flegal et al. (2008). Thus we have little ability to assess the

reliability of the reported results. This is especially unfortunate since it is straightforward

to compute a valid MCSE.

The only potentially difficult part of the method presented here is in establishing the

existence of a Markov chain CLT. In essence this means simulating a Markov chain known

to be geometrically ergodic and checking a moment condition. Given the amount of work

that has been done on establishing geometric ergodicity for standard algorithms in common

statistical settings, this is not the obstacle it was in the past. However, this remains an area

rich with important open research questions.
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