Agenda

  • Simulating from distributions
  • Quantile transform method
  • Rejection sampling

Simulation

Why simulate?

  • We want to see what a probability model actually does
  • We want to understand how our procedure works on a test case
  • We want to use a partly-random procedure

All of these require drawing random variables from distributions

Simulation

We have seen R has built in distributions: beta, binom, cauchy, chisq, exp, f, gamma, geom, hyper, logis, lnorm, nbinom, norm, pois, t, tukey, unif, weibull, wilcox, signrank

Every distribution that R handles has four functions.

  • p for "probability", the cumulative distribution function (c. d. f.)
  • q for "quantile", the inverse c. d. f.
  • d for "density", the density function (p. f. or p. d. f.)
  • r for "random", a random variable having the specified distribution

Simulation

  • Usually, R gets Uniform\((0,1)\) random variates via a pseudorandom generator, e.g. the linear congruential generator
  • Uses a sequence of Uniform\((0,1)\) random variates to generate other distributions
  • How?

Example: Binomial

  • Suppose we want to generate a Binomial\((1,1/3)\) using a \(U \sim \text{Uniform}(0,1)\)
  • Consider the function \(X^* = I(0<u<1/3)\), then \[ P(X^* = 1) = P( I(0<u<1/3 = 1) = P( u \in (0,1/3)) = 1/3 \] and \(P(X^* = 0) = 2/3\)
  • Hence, \(X^* \sim \text{Binomial}(1,1/3)\)
  • Two ways to extend this to Binomial\((n,1/3)\)

Example: Binomial

my.binom.1 <- function(n=1, p=1/3){
  u <- runif(n)
  binom <- sum(u<p)
  return(binom)
}

my.binom.1(1000)
## [1] 354
my.binom.1(1000, .5)
## [1] 525

Example: Binomial

my.binom.2 <- function(n=1, p=1/3){
  u <- runif(1)
  binom <- qbinom(u, size=n, prob=p)
  return(binom)
}

my.binom.2(1000)
## [1] 349
my.binom.2(1000, .5)
## [1] 493

Quantile transform method

Given \(U \sim \text{Uniform}(0,1)\) and CDF \(F\) from a continuous distribution. Then \(X = F^{-1}(U)\) is a random variable with CDF \(F\).

Proof: \[ P(X\le a) = P (F^{-1}(U) \le a) = P ( U \le F(a)) = F(a) \]

  • \(F^{-1}\) is the quantile function
  • If we can generate uniforms and calculate quantiles, we can generate non-uniforms
  • Also known as the Probability Integral Transform Method

Example: Exponential

Suppose \(X \sim \text{Exp}(\beta)\). Then we have density \[ f(x) = \beta^{-1} e^{-x/\beta} I(0<x<\infty) \] and CDF \[ F(x) = 1 - e^{-x/\beta} \] Also \[ y = 1 - e^{-x/\beta} \text{ iff } -x/\beta = \log (1-y) \text{ iff } x = -\beta \log (1-y). \] Thus, \(F^{-1} (y) = -\beta \log(1-y)\).

So if \(U \sim \text{Uniform}(0,1)\), then \(F^{-1} (u) = -\beta \log(1-u) \sim \text{Exp}(\beta)\).

Example: Exponential

x <- runif(10000)
y <- - 3 * log(1-x)
hist(y)

mean(y)
## [1] 2.98428

Example: Exponential

true.x <- seq(0,30, .5)
true.y <- dexp(true.x, 1/3)
hist(y, freq=F, breaks=30)
points(true.x, true.y, type="l", col="red", lw=2)

Example: Gamma

  • Remember that if \(X_1, \dots, X_n\) are IID \(\text{Exp}(\beta)\), then \(\sum_{i=1}^n X_i \sim \Gamma(n, \beta)\)
  • Hence if we need a \(\Gamma(\alpha, \beta)\) random variate and \(\alpha \in \{ 1, 2, \dots \}\), then take \(U_1, \dots, U_{\alpha}\) IID \(\text{Uniform}(0,1)\) and set \[ \sum_{i=1}^{\alpha} -\beta \log(1-u_i) \sim \Gamma(\alpha, \beta) \]
  • What if \(\alpha\) is not an integer?

Quantile transform method

  • Quantile functions often don’t have closed form solutions or even nice numerical solutions
  • But we know the probability density function — can we use that?

Rejection sampling

  • The accept-reject algorithm is an indirect method of simulation
  • Uses draws from a density \(f_y(y)\) to get draws from \(f_x(x)\)
  • Sampling from the wrong distribution and correcting it

Rejection sampling

Theorem: Let \(X \sim f_x\) and \(Y \sim f_y\) where the two densities have common support. Define \[ M = \sup_{x} \frac{f_x(x)}{f_y(x)}. \] If \(M< \infty\) then we can generate \(X \sim f_x\) as follows,

  1. Generate \(Y \sim f_y\) and independently draw \(U \sim \text{Uniform}(0,1)\)
  2. If \[ u < \frac{f_x(y)}{M f_y(y)} \] set \(X=Y\); otherwise return to 1.

Exercise: Why is \(M\ge 1\)?

Rejection sampling

Proof: \[ \begin{aligned} P(X \le x) & = P \left( Y \le x \; \middle| \; \text{STOP} \right)\\ & = P \left( Y \le x \; \middle| \; u \le \frac{f_x(y)}{M f_y(y)} \right) \\ & = \frac{P \left( Y \le x , u \le \frac{f_x(y)}{M f_y(y)} \right)}{P \left( u \le \frac{f_x(y)}{M f_y(y)} \right)} \\ & = \frac{A}{B} \end{aligned} \]

Rejection sampling

Now, we have \[ \begin{aligned} A & = P \left( Y \le x , u \le \frac{f_x(y)}{M f_y(y)} \right) \\ & = E \left[ P \left( Y \le x , u \le \frac{f_x(y)}{M f_y(y)} \right) \; \middle| \; y \right] \\ & = E \left[ I (y \le x) \frac{f_x(y)}{M f_y(y)} \right] \\ & = \int_{-\infty}^{\infty} I (y \le x) \frac{f_x(y)}{M f_y(y)} f_y(y) dy \\ & = \frac{1}{M} \int_{-\infty}^{x} f_x(y) dy = \frac{F_x(x)}{M} \end{aligned} \]

Rejection sampling

Similarly, we have \[ \begin{aligned} B & = P \left( u \le \frac{f_x(y)}{M f_y(y)} \right) \\ & = E \left[ P \left( u \le \frac{f_x(y)}{M f_y(y)} \right) \; \middle| \; y \right] \\ & = E \left[ \frac{f_x(y)}{M f_y(y)} \right] \\ & = \int_{-\infty}^{\infty} \frac{f_x(y)}{M f_y(y)} f_y(y) dy \\ & = \frac{1}{M} \int_{-\infty}^{\infty} f_x(y) dy = \frac{1}{M} \end{aligned} \]

Rejection sampling

Hence, \[ \begin{aligned} P(X \le x) & = \frac{A}{B} \\ & = \frac{\frac{F_x(x)}{M}}{\frac{1}{M}} = F_x(x) \end{aligned} \] And the proof is complete. That is, \(X \sim f_x\).

Rejection sampling

  • Notice, \[ P(\text{STOP}) = B = P \left( u \le \frac{f_x(y)}{M f_y(y)} \right) = \frac{1}{M} \]
  • Thus the number of iterations until the algorithm stops is Geometric(\(1/M\))
  • Hence, the expected number of iterations until acceptance is \(M\).

Example: Gamma

  • Suppose we want to simulate \(X \sim \Gamma(3/2, 1)\) with density \[ f_x(x) = \frac{2}{\pi} \sqrt{x} e^{-x} I(0<x<\infty). \]
  • Can use the accept-reject algorithm with a \(\Gamma(n,1)\) and \(n \in \{ 1, 2, \dots \}\) since we know how to simulate this

Example: Gamma

  • Then we have \[ \begin{aligned} M & = \sup_{x>0} \frac{f_x(x)}{f_y(x)}\\ & = \sup_{x>0} \frac{\frac{2}{\pi} \sqrt{x} e^{-x}}{\frac{1}{(n-1)!} x^{n-1} e^{-x}}\\ & = c \sup_{x>0} x^{-n+3/2} = \infty \end{aligned} \] since \[ n < 3/2 \text{ implies } x^{-n+3/2} \to \infty \text{ as } x \to \infty \] and \[ n > 3/2 \text{ implies } x^{-n+3/2} \to \infty \text{ as } x \to 0 \]

Example: Gamma

  • Hence, we need to be a little more creative with our proposal distribution
  • We could consider a mixture distribution. That is, if \(f_1(z)\) and \(f_2(z)\) are both densities and \(p \in [0,1]\). Then \[ p f_1(z) + (1-p) f_2(z) \] is also a density
  • Consider a proposal that is a mixture of a \(\Gamma(1,1) = \text{Exp}(1)\) and a \(\Gamma(2,1)\), i.e. \[ f_y(y) = \left[ p e^{-y} + (1-p) y e^{-y} \right] I(0 < y < \infty) \]

Example: Gamma

Now, we have \[ \begin{aligned} M & = \sup_{x>0} \frac{f_x(x)}{f_y(x)}\\ & = \sup_{x>0} \frac{\frac{2}{\pi} \sqrt{x} e^{-x}}{p e^{-x} + (1-p) x e^{-x}}\\ & = \frac{2}{\pi} \sup_{x>0} \frac{ \sqrt{x}}{p + (1-p) x} \\ & = \frac{2}{\pi} \frac{1}{2 \sqrt{p(1-p)}} \end{aligned} \] Exercise: Prove the last line, i.e. maximize \(h(x) = \frac{ \sqrt{x}}{p + (1-p) x}\) for \(x>0\) or \(\log h(x)\).

Example: Gamma

  • Note that \(M\) is minimized when \(p=1/2\) so that \(M_{1/2} = 2 / \sqrt{\pi} \approx 1.1283\).
  • Then the accept-reject algorithm to simulate \(X \sim \Gamma(3/2, 1)\) is as follows
  1. Draw \(Y \sim f_y\) with \[ f_y(y) = \left[ p e^{-y} + (1-p) y e^{-y} \right] I(0 < y < \infty) \] and and independently draw \(U \sim \text{Uniform}(0,1)\)
  2. If \[ u < \frac{2}{\sqrt{\pi}} \frac{f_x(y)}{f_y(y)}=\frac{2 \sqrt{y}}{1+y} \] set \(X=Y\); otherwise return to 1

Simulating from mixtures

  • Write \(f(z) = p f_1(z) + (1-p) f_2(z)\) as the marginal of the joint given by \[ f(z | w) = f_1(z) I(w=1) + f_2(z) I(w=0) \] where \(W \sim \text{Binomial}(1,p)\)
  • Thus to simulate from \(f(z)\)
  1. Draw \(U \sim \text{Uniform}(0,1)\)
  2. If \(u < p\) take \(Z \sim f_1(z)\); otherwise take \(Z \sim f_2(z)\)
  • Exercise: Show \(Z \sim f(z)\)

Example: Gamma

ar.gamma <- function(n=100){
x <- double(n)
i <- 1
while(i < (n+1)) {
    u <- runif(1)
    if(u < .5){
        y <- -1 * log(1-runif(1))
    } else {
        y <- sum(-1 * log(1-runif(2)))
    }
    u <- runif(1)
    temp <- 2 * sqrt(y) / (1+y)
    if(u < temp){
        x[i] <- y
        i <- i+1
    }
}
return(x)
}

Example: Gamma

x <- ar.gamma(10000)
hist(x)

mean(x)
## [1] 1.482398

Example: Gamma

true.x <- seq(0,10, .1)
true.y <- dgamma(true.x, 3/2, 1)
hist(x, freq=F, breaks=30, xlab="x", ylab="f(x)", main="Histogram and Theoretical")
points(true.x, true.y, type="l", col="red", lw=2)

Example: Beta

Suppose the pdf \(f\) is zero outside an interval \([c,d]\), and \(\leq M\) on the interval.

Example: Beta

We know how to draw from uniform distributions in any dimension. Do it in two:

x1 <- runif(300, 0, 1); y1 <- runif(300, 0, 2.6); 
selected <- y1 < dbeta(x1, 3, 6)

Example: Beta

mean(selected)
## [1] 0.3833333
accepted.points <- x1[selected]
mean(accepted.points < 0.5)
## [1] 0.8521739
pbeta(0.5, 3, 6)
## [1] 0.8554688

Example: Beta

For this to work efficiently, we have to cover the target distribution with one that sits close to it.

x2 <- runif(100000, 0, 1); y2 <- runif(100000, 0, 10); 
selected <- y2 < dbeta(x2, 3, 6)
mean(selected)
## [1] 0.09907

Example: Beta

Alternatives

  • Squeezed rejection sampling may help if evaluating \(f\) is expensive
  • Adaptive rejection sampling may help generate an envelope

Box-Muller

  • Box-Muller transformation transform generates pairs of independent, standard normally distributed random numbers, given a source of uniformly distributed random numbers
  • Let \(U \sim \text{Uniform}(0,1)\) and \(V \sim \text{Uniform}(0,1)\) and set \[ R=\sqrt{-2\log U} \hspace{10mm} \textrm{ and } \hspace{10mm} \theta = 2\pi V \]
  • Then the following transformation yields two independent normal random variates \[ X=R\cos(\theta) \hspace{10mm} \textrm{ and } \hspace{10mm} Y=R\sin(\theta) \]

Summary

  • Can transform uniform draws into other distributions when we can compute the distribution function
  • Quantile method when we can invert the CDF
  • The rejection method if all we have is the density
  • Basic R commands encapsulate a lot of this for us
  • Optimized algorithms based on distribution and parameter values

Exercise: Box-Muller

  1. Write a function named bmnormal that simulates n draws from Normal random variable with mean mu and standard deviation sd using the Box-Muller transformation.
  2. Inputs to your function should be n, mu, and sd.
  3. Simulate 2000 draws from a Normal with mean 10 and standard deviation 3.
  4. Convince yourself with a plot your sampler is working correctly. Is there a test you could consider also?