Description of ‘bayesplot’

- Plotting functions for posterior analysis, model checking, and MCMC diagnostics.

Packages I will use for this tutorial

```r
library("bayesplot")
library("ggplot2")
# install.packages("rstanarm")
library("rstanarm")
library("mcmcse")
```

0. Outline

1. Simulate the data
 - `stan_glm`
2. Visualize statistic information of the chain
 - MCMC-intervals: mean, median, quantiles, 95% confidence interval
 - MCMC-recover: compare MCMC estimate with “true”
 - MCMC-distribution: histogram, density estimation
3. MCMC-diagnostics
 - mcmc_trace: trace
 - mcmc_acf: autocorrelation
 - mcmc_rhat: \(\hat{R} \) statistic
 - mcmc_neff: effective sample size

1. Simulate the data

`stan_glm`: Solve Bayesian generalized linear models via MCMC

```r
data(mtcars)
mtcars <- mtcars[,1:4]
head(mtcars)
```

```
##       mpg cyl disp  hp
## Mazda RX4 21.0   6 160 110
## Mazda RX4 Wag 21.0   6 160 110
## Datsun 710 22.8   4 108 93
## Hornet 4 Drive 21.4   6 258 110
```
```r
fit <- stan_glm(mpg ~ ., data = mtcars, seed = 1)
```

```
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 1).
##
## Gradient evaluation took 0 seconds
## 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Adjust your expectations accordingly!
##
## Iteration: 1 / 2000 [ 0%] (Warmup)
## Iteration: 200 / 2000 [10%] (Warmup)
## Iteration: 400 / 2000 [20%] (Warmup)
## Iteration: 600 / 2000 [30%] (Warmup)
## Iteration: 800 / 2000 [40%] (Warmup)
## Iteration: 1000 / 2000 [50%] (Warmup)
## Iteration: 1001 / 2000 [50%] (Sampling)
## Iteration: 1200 / 2000 [60%] (Sampling)
## Iteration: 1400 / 2000 [70%] (Sampling)
## Iteration: 1600 / 2000 [80%] (Sampling)
## Iteration: 1800 / 2000 [90%] (Sampling)
## Iteration: 2000 / 2000 [100%] (Sampling)
##
## Elapsed Time: 0.127 seconds (Warm-up)
## 0.149 seconds (Sampling)
## 0.276 seconds (Total)
##
## SAMPLING FOR MODEL 'continuous' NOW (CHAIN 2).
##
## Gradient evaluation took 0 seconds
## 1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
## Adjust your expectations accordingly!
##
## Iteration: 1 / 2000 [ 0%] (Warmup)
## Iteration: 200 / 2000 [10%] (Warmup)
## Iteration: 400 / 2000 [20%] (Warmup)
## Iteration: 600 / 2000 [30%] (Warmup)
## Iteration: 800 / 2000 [40%] (Warmup)
## Iteration: 1000 / 2000 [50%] (Warmup)
## Iteration: 1001 / 2000 [50%] (Sampling)
## Iteration: 1200 / 2000 [60%] (Sampling)
## Iteration: 1400 / 2000 [70%] (Sampling)
## Iteration: 1600 / 2000 [80%] (Sampling)
## Iteration: 1800 / 2000 [90%] (Sampling)
## Iteration: 2000 / 2000 [100%] (Sampling)
##
## Elapsed Time: 0.129 seconds (Warm-up)
## 0.097 seconds (Sampling)
## 0.226 seconds (Total)
```
Sampling for model 'continuous' now (chain 3).

Gradient evaluation took 0 seconds
1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
Adjust your expectations accordingly!

Iteration: 1 / 2000 [0%] (Warmup)
Iteration: 200 / 2000 [10%] (Warmup)
Iteration: 400 / 2000 [20%] (Warmup)
Iteration: 600 / 2000 [30%] (Warmup)
Iteration: 800 / 2000 [40%] (Warmup)
Iteration: 1000 / 2000 [50%] (Warmup)
Iteration: 1001 / 2000 [50%] (Sampling)
Iteration: 1200 / 2000 [60%] (Sampling)
Iteration: 1400 / 2000 [70%] (Sampling)
Iteration: 1600 / 2000 [80%] (Sampling)
Iteration: 1800 / 2000 [90%] (Sampling)
Iteration: 2000 / 2000 [100%] (Sampling)

Elapsed Time: 0.126 seconds (Warm-up)
0.097 seconds (Sampling)
0.223 seconds (Total)

Sampling for model 'continuous' now (chain 4).

Gradient evaluation took 0 seconds
1000 transitions using 10 leapfrog steps per transition would take 0 seconds.
Adjust your expectations accordingly!

Iteration: 1 / 2000 [0%] (Warmup)
Iteration: 200 / 2000 [10%] (Warmup)
Iteration: 400 / 2000 [20%] (Warmup)
Iteration: 600 / 2000 [30%] (Warmup)
Iteration: 800 / 2000 [40%] (Warmup)
Iteration: 1000 / 2000 [50%] (Warmup)
Iteration: 1001 / 2000 [50%] (Sampling)
Iteration: 1200 / 2000 [60%] (Sampling)
Iteration: 1400 / 2000 [70%] (Sampling)
Iteration: 1600 / 2000 [80%] (Sampling)
Iteration: 1800 / 2000 [90%] (Sampling)
Iteration: 2000 / 2000 [100%] (Sampling)

Elapsed Time: 0.122 seconds (Warm-up)
0.095 seconds (Sampling)
0.217 seconds (Total)

Posterior MCMC draws with 4 chains
posterior <- as.array(fit)

Take 1st chain as example
chain <- posterior[,1,]

Gibbs Sampler will give us a 1000*5 matrix
1000 = # of iterations
5 = # of parameters
head(chain)

parameters
iterations (Intercept) cyl disp hp sigma
[1,] 37.54211 -1.5953525 -0.003410527 -0.047285674 3.133655
[2,] 36.62432 -1.4035704 0.005143233 -0.058735576 3.940134
[3,] 40.48507 -2.8354804 0.009227668 -0.032918983 3.562376
[4,] 32.20719 -0.3396091 -0.008391830 -0.056087074 3.518481
[5,] 32.28238 -0.4483917 -0.017487522 -0.037144416 3.301781
[6,] 35.09456 -2.3206253 -0.006683100 0.003948312 2.945567

summary(fit)

Model Info:
##
function: stan_glm
family: gaussian [identity]
formula: mpg ~ .
algorithm: sampling
priors: see help('prior_summary')
sample: 4000 (posterior sample size)
observations: 32
predictors: 4

Estimates:
mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat mcse
(Intercept) 34.2 2.7 32.4 34.2 36.0 39.5
cyl -1.2 0.8 -2.9 -1.8 -1.2 -0.7 0.5
disp 0.0 0.0 0.0 0.0 0.0 0.0 0.0
hp 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sigma 3.2 0.4 2.8 3.1 3.4 4.1

Diagnostics:
mcse Rhat n_eff
(Intercept) 0.1 1.0 2616
cyl 0.0 1.0 2105
disp 0.0 1.0 2479
hp 0.0 1.0 2855
sigma 0.0 1.0 3209
mean_PPD 0.0 1.0 3720

For each parameter, mcse is Monte Carlo standard error, n_eff is a crude measure of effective sample

Parameters we are interested in
mypara <- chain[,c("cyl","sigma")]

mymodel <- stan_glm(mpg ~ ., data = mtcars, family = gaussian, chains = 4, iter = 4000, cores = 4)
As a conclusion

- fit: Bayesian generalized linear regression by MCMC along with Stan method
- posterior: 3-D matrix, [# of iterations, # of chains, # of parameters]
- chain: 2-D matrix / 1st chain of posterior, [# of iterations, # of parameters]
- mypara: 2-D matrix / subset of chain, [# of iterations, # of parameters we are interested in]

2. Visualize statistic information of the chain

MCMC-intervals: Plot interval estimates from MCMC draws.

Description

- mcmc_intervals: Plot central (quantile-based) posterior interval estimates from MCMC draws.
- mcmc_areas: To show the uncertainty intervals as shaded areas under the estimated posterior density curves.

Usage

```r
mcmc_intervals(x,pars = character(),prob = 0.5,prob_outer = 0.9,point_est = c("median", "mean", "none"))
```

Arguments

- x: A 2-D matrix / data frame of MCMC draws.
- par: Parameters you are interested in.
- prob: The probability mass to include in the inner interval (for mcmc_intervals) or in the shaded region (for mcmc_areas). The default is 0.5 (50% interval).
- prob_outer: The probability mass to include in the outer interval. The default is 0.9 for mcmc_intervals (90% interval) and 1 for mcmc_areas.
- point_est: The point estimate to show. Either “median” (the default), “mean”, or “none”.

```r
head(mypara)
```

```r
## parameters
## iterations  cyl  sigma
## [1,] -1.5953525 3.133655
## [2,] -1.4035704 3.940134
## [3,] -2.8354804 3.562376
## [4,] -0.3396091 3.518481
## [5,] -0.4483917 3.301781
## [6,] -2.3206253 2.945567
```
color_scheme_set("brightblue")
#
mcmc_intervals(mypara, pars = c("cyl","sigma"))

#
mcmc_areas(
 mypara,
 pars = c("cyl","sigma"),
 prob = 0.5,
 prob_outer = 0.9,
 point_est = "mean"
)
MCMC-recover: Compare MCMC estimates to “true” parameter values

Description

- Plots comparing MCMC estimates to “true” parameter values. Before fitting a model to real data it is useful to simulate data according to the model using known (fixed) parameter values and to check that these “true” parameter values are (approximately) recovered by fitting the model to the simulated data.

Usage

- `mcmc_recover_intervals(x, true, prob = 0.5, prob_outer = 0.9, point_est = c("median", "mean", "none"), size = 4, alpha = 1)`
- `mcmc_recover_scatter(x, true, point_est = c("median", "mean"), size = 3, alpha = 1)`

Arguments

- `x`: A 2-D matrix / data frame of MCMC draws.
- `true`: A numeric vector of “true” values of the parameters in `x`. There should be one value in `true` for each parameter included in `x` and the order of the parameters in `true` should be the same as the order of the parameters in `x`.
- `prob`: The probability mass to include in the inner interval for `mcmc_recover_intervals`. The default is 0.5 (50% interval).
- `prob_outer`: The probability mass to include in the outer interval. The default is 0.9 for `mcmc_recover_intervals` (90% interval).
- `point_est`: The point estimate to show. Either “median” (the default), “mean”, or “none”.
- `size, alpha`: Passed to `geom_point` to control the appearance of plotted points.

```r
true <- apply(mypara, 2, mean)
true
```

```
##         cyl   sigma
## -1.277434 3.158333
```

```r
color_scheme_set("red")
mcmc_recover_intervals(mypara, true,
prob_outer = 0.95,
size = 4, alpha = 0.3)
```

```
Showing 50% and 95% intervals
```

```r
cmc_recover_scatter(mypara, true,
size = 4, alpha = 0.3)
```
MCMC-distributions: Histograms and kernel density plots of MCMC draws

Description

- Various types of histograms and kernel density plots of MCMC draws.

```R
mcmc_hist(mypara)
```
mcmc_dens(mypara, pars = c("cyl", "sigma"))
mcmc_combo(mypara, c("dens", "hist"))
3. Whether or not my chain is good enough to use

MCMC-diagnostics: General MCMC diagnostics

mcmc_trace: Trace plot (time series plot) of MCMC draws

color_scheme_set("pink")
mcmc_trace(mypara,pars = c("cyl","sigma"),
 facet_args = list(ncol=1,strip.position="left"))
compare results with function 'plot.ts' from package 'mcmcsce'

plot.ts(mypara)
mymyara

mcmc_acf: Plots of autocorrelation of MCMC draws

bar plot
mcmc_acf_bar(mymyara,lags = 30)
line plot
mcmc_acf(mypara, pars = c("cyl","sigma"),
 # facet_args = list(ncol=1,strip.position="left"),
 lags = 30)
compare results with function 'acf' from package 'mcmcse'
par(mfrow=c(1,2))
acf(mypara[,"cyl"])
acf(mypara[,"sigma"])
One way to monitor whether a chain has converged to the equilibrium distribution is to compare its behavior to other randomly initialized chains. This is the motivation for the Gelman and Rubin (1992) potential scale reduction statistic, \hat{R}. The \hat{R} statistic measures the ratio of the average variance of samples within each chain to the variance of the pooled samples across chains; if all chains are at equilibrium, these will be the same and \hat{R} will be one. If the chains have not converged to a common distribution, the \hat{R} statistic will be greater than one.
cyl sigma
1.001245 1.001387

ratio of effective sample size to the total sample size by 'neff_ratio'

```r
ratio <- neff_ratio(fit)[c(2,5)]
ratio
```

cyl sigma
0.52625 0.80225

ratio of effective sample size to the total sample size by 'ess'

```r
ess(mypara)/1000
```

cyl sigma
0.7061574 0.9124397

color_scheme_set("brightblue")

```r
mcmc_rhat(rhat) + yaxis_text(hjust = 1)
mcmc_neff(ratio) + yaxis_text(hjust = 1)
```