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Simple Multistate Systems:
Chain Models

The single-state models that we introduced in Chapter 7 are just a
starting point for a broader class of models involving simple “chains” of
closely coupled states. Even the simplest such models involving only two
states and unidirectional transitions are useful for representing many
important forms of social dynamics. And, if these models are made
slightly more complex by adding additional states and allowing flows to
move in both directions among states, an even wider variety of common
social processes can be represented and analyzed.

The kinds of processes that we will consider in this chapter and the
next are quite straightforward extensions of the simple “transitions”
models. They are more complex only because the chains of closely
coupled states involve more statuses and more possible transitions. For
example, a simple two-state chain of the type considered in the previous
chapter might be used to theorize about transitions between working
and retirement (a process that largely, though not always, goes in only
one direction between two statuses). If we sought to construct more
general theories of the work-career, however, we would have to consider
a wider variety of statuses, and possible bidirectional movements:
Individuals move among the statuses employed full time, employed part
time, unemployed, and retired. While they can occupy only one status at
atime (which makes the whole model a single chain of conserved states),
they may move in both directions among the statuses; that is, individuals
make transitions from unemployed to employed and back again, change
from unemployed to part-time work, from part time to full time and
back again, and so on. While this process is undeniably more complex
than the simple one-way transition, it is clearly a similar type of
theoretical problem.!

Processes that can be described by chains of closely coupled states,
like the sequence of moves in the work career, are the central theoretical
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problems in many areas of social sciences. Some obvious applications
are in building theories of the movements of persons among social
statuses: the life-cycles of individual’s movements through the economic
market place, through levels in hierarchies such as professions or
organizations, through family statuses, and from involvement to
noninvolvement in voluntary organizations and social movements. But
multistate transition processes are not restricted to individual persons;
economic, political, educational, and religious organizations are born
and die, change form, move from one ecological niche to another,
merge, and separate.

Changes in the statuses of individuals, groups, organizations, and
larger patterns of social organization are not the only kinds of
“conserved flows” that are of interest. The movements of goods through
a manufacturing or distribution process can be seen as a conserved flow,
and may be of interest in itself, or as a part of a more complex model.?
The movement of units of income and wealth among income and wealth
holders, or networks of exchanges of any discrete and conserved
commodities (e.g., honorific positions or network ties, if these are fixed
and conserved) are also processes of multistate transitions.3

Like the simple one-way transition processes we examined previously,
multiway, multistate transition processes are a “family” or “class” of
related models, with near-infinite possible variations. Because of their
generality we cannot set out general rules that will describe all of the
possible dynamic behaviors of such models. Complex chains, however,
are composed of simple chains coupled together in various ways, and
can be partially understood by examining their structure in light of what
we already know about the general behavior of simpler processes.
Because of the tremendous variety of “chain” models it is useful to think
about the variations in their structures as a way of approaching the
understanding of their behaviors. We will spend this brief chapter on
this issue before turning to some exemplary applications in the next
chapter. This will help us to gain a sense of the range of possible
applications and to try to grasp the ways that such systems behave.

Varieties of Chain Models

We can classify variations in the forms of chain models using the
same concepts that are useful for discussing the complexity of theories in
general. That is, theories are more complex than others to the extent
that they involve more states (that is, have larger state spaces), to the
extent that these states are connected to one another, and to the degree
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that the control structures governing action are themselves complex,
involving many variables and forms of relations among variables and
over time that require many rather than few parameters to specify.

From this general definition it follows that chains that have more
states are more complex (hence having greater “degrees of freedom” of
alternative possible behavior and being less easily analyzed) than those
that have fewer states. Chains in which more states are more closely
coupled to one another (that is, have higher connectivity) are less
determinant and more flexible than those with less connectivity. Chains
in which flows are governed by self-referencing, goal-referencing, and
adaptive feedback display greater degrees of freedom than those
governed by stimulus-response control structures. Where the control
structures involve complicated interactions of many variables and are
nonlinear in variables or with respect to time, behavioral possibilities of
chains are greater and analyzability less.

These general-systems principles applied to varieties of chain models
are of some utility in understanding the range of possibilities for
modeling theories and for comparing them in terms of their structures
and complexity. The principles are probably too abstract and general,
however, to fire the imagination. In order to illustrate the general
principles, but more importantly to get a better sense of the range and
kinds of problems that are usefully conceptualized as multistate chains,
let’s examine in more detail some of the variations on the theme of
increasing complexity within the family of such models.

More States in the Chain

The first models that we examined involved a single dependent
variable or state and (implicitly) a source or sink. Such models are quite
common, and very useful for many problems, as we saw in the previous
chapter. It is often the case that we have no immediate interest in where
the quantity in a level comes from or where it goes when it leaves a level.

One might, for example, build a theory of the level of the material
standard of living of a society that does not explicitly take natural
resource constraints (natural resources being the “source” of material
wealth), or waste disposal constraints (waste being the “sink” for
material wealth) into account. Within limited ranges, at least, such a
model with a single level is plausible and useful. Similarly, if we were
interested in the dynamics of attitudes or beliefs, our interest focuses
almost exclusively on the current “level” of the process, and we usually
pay no attention to where the attitude or belief comes from (in the sense
of a movement of “psychic energy” from one use to another) or where it
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goes when the attitude or belief is reduced or disappears. One could
readily expand the list of examples of important applications of models
with one active state. In all theories of this type there is a single level of
interest, and the sources and sinks associated with the level play no
causal role in the dynamics of the system.

Models of transitions, diffusion, bounded growth and decline, and
analogous processes involve two (or sometimes more) simultaneous
dependent states. In diffusion models, for example, it is common to
divide the population into two groups, those who “know” of a message
or have adopted an innovation and those who “don’t know.” It might at
first seem that there is really only one level here—for if a person does not
fall into one category, they must fall into the other, so that there is only
one “degree of freedom.” In most such theories, however, the number of
knowers and the number of nonknowers play different causal roles in
the theory, and hence must be considered as separate states. In our
diffusion-process theories, the number of knowers has an effect on the
rate of change when knowers become tellers. The number of nonknowers
plays a causal role in determining the rate of change by affecting the
probability that a given telling reaches a person who is still at risk of
making the transition from not knowing to knowing. Where the levels of
the variables enter the theory as causal factors, the process needs to be
considered as a multistate process (even if some of the states are
“absorbing states”), rather than as a single state with implicit sources
and sinks.

One might wish to reconceptualize a theory of levels of material
well-being as a three-state chain, rather than as a single state with
implicit sources and sinks, in light of this discussion. Rather than
thinking of the level of wealth as coming from an unspecified and
unlimited source and disappearing into an unspecified and unlimited
sink, a more complex theory might treat natural resources as a causal
factor affecting the rate of transition from natural resources to material
wealth. In this case, the level of natural resources must be treated
explicitly as a state in the model. Similarly, if we supposed that the level
of waste had effects on the rates of wealth creation or of wealth use, it
could not be treated as a simple implicit sink. Thus, a slightly more
complicated conceptualization of the problem of material wealth leads
to a model with the structure of several levels linked in a simple chain
(natural resources flow into material wealth flows into waste), rather
than a single state model with implicit sources and sinks.

From this simple illustration, it can easily be seen how chain models
with larger numbers of states develop. We might choose, for example, to
create a still more complex model of material wealth by dividing
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resources into different kinds, identifying different production processes,
different resulting products with differing survival or depreciation rates,
and multiple kinds of waste. Input-output matricies, and large scale
econometric models follow this line of development, often including
hundreds or even thousands of different connected states to model the
flows of materials through production and consumption processes.*

Sociologists often use models of individual’s “event histories” that are
qQuite elaborate in their numbers of closely coupled states. The
movements of individuals among economic statuses, for example, could
be treated with more or fewer levels. For some purposes it might be
adequate to see the problem as one of flows from prelabor market status
toon the labor market to postlabor market. But for other purposes more
detail might be necessary. One might include educational statuses as
levels in models of the work career, occupational, industrial, and
sectorial distinctions of job types, and other “levels” such as unemploy-
ment, and voluntary withdrawal from the labor market. While such a
model could easily include hundreds or even thousands of such statuses,
its fundamental character is quite straightforward; each individual (or
dollar, or resource unit, or quanta of attitudinal intensity, or whatever)
may occupy one and only one of the states at a time, and must occupy
one of the states at all times.

For many social processes, one could create models of chains of
connected states that involved very large number of levels. But most
problems can also be simplified by reducing finer distinctions to coarser
ones. The optimal level of complexity of this type is ultimately
determined by the needs for descriptive adequacy and theoretical
articulation. There is no single and final answer to this problem, but
there are some general rules for deciding how much complexity, by way
of additional state variables, to introduce. -

Simplicity is much to be desired over complexity in deciding how
many levels to use in conceptualizing chain processes. The dynamics of
chain models, as simple as they are, can become quite complicated and
difficult to understand if nonlinearities in the relations of either
variables or time are present. Reducing the number of states in the chain
to a minimum may aid the analyst both in understanding these dynamics
and in communicating the results coherently to others.

Simpler models are also to be preferred over more complex ones on
the grounds of parsimonious explanation. While models with more
levels may appear more elegant or provide fuller descriptions of social
processes, they do not necessarily represent more powerful explanations,
States that play no independent causal role in determining the dynamics
of systems can, and sometimes should, be eliminated from models. In
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the language of path analysis, for a parallel example, we do not include
variables that have no unique effects on dependent variables, and may
eliminate as redundant variables that have only indirect effects on
others. Similarly, in the analysis of flowgraphs, “loop reduction” is
commonly practiced to gather together several effects along pathways
into simpler, more compact statements, where such reductions do not
confound separate processes.’ One can, however, go too far. The
complex expressions resulting from completely valid reductions of
systems with many states to more abstract ones with fewer states may be
difficult to comprehend, and gather together factors that the theorist
would rather retain as descriptively separate.

There is yet another reason for preferring chain models with fewer
states over those with more states that has little to do with either the
descriptive or explanatory adequacy of the models. Models with more
states are simply more work to create and to analyze. If there is little to
be gained in terms of describing a process more realistically or in
understanding its causal texture by making the chains more elaborate, it
is inefficient to spend human and machine resources in formulating and
simulating more complicated models. Simulation methods for under-
standing theories are often quite intensive in both human and machine
time; models with many additional states that contribute little to
explanation or representation can be quite costly without much return.

The elaboration of theories of transitions or flows into more complex
expressions often occurs by the addition of more states to the “chain.”
Models with single “dependent” states can effectively represent many
important processes. Such models have contributed much to our
understanding of social dynamics, but it is also quite reasonable to
extend the modeling effort to consider, in a single integrated framework,
processes that involve the movements of people, data, and things among
large numbers of states.

More Connectivity Among the States

The dynamic processes that we considered in Chapter 7 were “simple”
chains in a second way. In addition to having only two (or at most three)
states, these states were connected in the simplest possible way:
Transitions or flows occurred in only one direction, and (where there
were three states, as in the model of an epidemic) in a single fixed
sequence, for example from well to ill to recovered, but never from well
to recovered without passing through the state of being ill. These
“chains” might be termed unidirectional, and (relative to the logically
possible alternatives for such systems) having low connectivity, with
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only one possible sequence of moves or flows. Systems of this type have
structures like those of the top panel of Figure 8.1.

As the examples of diffusion processes demonstrated, even the
simplest of chain models are adequate for constructing and testing
theories about important social processes. Obviously, though, many
other social dynamics cannot be very well approximated with such
models. Bidirectionality is very common in social dynamics. Individuals
move from being unemployed to employed and from employed to
unemployed. People migrate from the country to the city, but many also
return to the country from the city. Money flows from owners to
workers in the form of wages, but returns to owners in the form of
purchases of goods.

Combining the notion of bidirectional flows with the simplest form of
multistate models (the single sequence), a variety of relatively compli-
cated processes can be captured. A dynamic process with the structure
of the figure in the second panel of Figure 8.1, for example, might be
used to represent the process of career movements in a large organization.
This model proposes four possible statuses: entry level management,
line management, staff management, and executive. All movements
originate at the entry level in this model, and movements out of the entry
level are allowed only into line management. Line managers may
become staff managers, but may not directly become executives, who
are selected from among staff managers. Staff managers may rise to
executive positions, but they can also fall back into the line management—
creating a bidirectional flow among middle-level managers. This model
of the mobility dynamics within organizations is, of course, still quite
primitive, but serves to illustrate the point. The number of possible
sequences of flows or movements in this model is much greater than in
the simple chain. The levels of each of the states and the rates of
transition among the states at any point in time in this model can display
far more complicated over-time behavior than the simple unidirectional
flow models.

Many social processes do not display simple and fixed sequences of
possible moves or flows like the first two diagrams in Figure 8.1. In
many cases it is possible for flows to occur from a single “origin” to
many alternative “destinations”; and, for flows from many different
“origins” to flow into a single “destination.” One obvious example of
such processes is that of career-status mobility. The mobility matrix of
transitions from first job to final job, so common in studies of status
attainment, is a representation of such a process. In such a matrix, flows
occur over the careers of individuals in all possible directions. If we
considered a status hierarchy with only three levels (for simplicity), the
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Figure 8.1: Elaborated connectedness.

processes involved could be represented by a chain model like that in the
third panel of Figure 8.1. In this model, moves are possible back and
forth between each pair of states, giving rise to an unlimited number of
possible careers. This model has the maximum possible connectivity for
three states.

Complex transition processes not involving bidirectionality can also
be seen as generalizations of the simple chain model. In the last panel of
Figure 8.1, for example, a simple model of a multistate survival process
is shown. In this model there are two origin states (regimes come to
power either by legal-normative means or by military coup) and two
“destinations” (regimes leave power either by legal normative means or
by coup).¢ Flows, by definition, do not occur between the two origin
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states or between the two destinations, nor are flows bidirectional.
Regimes that enter by coup, however, may exit by either coup or
legal-normative means; as may regimes that came to power by legal-
normative means. Interest here focus on the rates of transition—that is,
the probability that a movement will occur in a period of time from a
given origin to a given destination. This model is a simpler one than the
full mobility matrix (though it has been simplified by the way that the
problem has been defined; just as the mobility matrix problem can be
simplified by notallowing bidirectional movements—as in “father-son”
models). Because the connectivity of the system is considerably less, the
number of possible sequences and number of rates of transition that are
occurring are less. It is, nonetheless, a very useful device for theorizing
about survival or transition processes that have multiple “hazards” (for
example, the risk of exiting power by normal means and the risk of
exiting power by coup) that apply differentially to different populations
(for example, those regimes that came to power by coup versus those
that came to power by normal means).

The notion of modeling “event histories” of transitions among
statuses can be extended to virtually any degree of complexity,
depending on the descriptive and theoretical objectives. The mobility
matrix, with its complete connectivity, and the two-state absorbing
process of regime survival with more limited and unidirectional flows,
are only two of the more interesting possibilities. Each of the social-science
disciplines have many major substantive problems that can be viewed
usefully as models with relatively few states but extensive connectivity. A
few more possibilities, drawn from the author’s “home” discipline of
sociology may suggest, by analogy, some further possibilities.

Individual’s economic careers and the structuring of labor markets
are central topics in contemporary studies of organizations, work, and
both micro and macro class stratification research. The representation
of quite complex opportunity structures and rates of movements across
positions in these structures are quite straightforward extensions of the
chains that we have examined above. An example of an elementary map
for such a model is shown"in Figure 8.2, and could profitably be
claborated still further. Such chains could easily be used to represent
and experiment with the effects of “internal versus external labor
markets,” “sectorial segmentation,” the “social distribution of employ-
ment and unemployment” and other phenomena of interest. Realistic
models of processes of these types are impressive in their bulk, but
relatively simple in their basic structure as chains of connected states
where most states display bidirectional movements.

Some of the issues of interest to researchers and theorists in the
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Figure 8.2: Class-career flows.

“social networks” tradition can also be cast as questions of the dynamics
of chains of various degrees of connectivity.” Rates of exchange, sending
and receiving of social ties, the diffusion of information, and other
processes can be conceived as chains in which the actors are seen as
levels or states, and the relationships of connectivity, exchange, or
whatever among them are seen as flows. A simple schematic of one
possible network is shown as Figure 8.3, purely as an illustration of the
possibilities. Approached in this way, some of the classic questions of
sociometry—and their revised versions in “social networks”—can be
examined by means of formal models and simulation. “Structures” of
higher or lower degrees of connectivity, of any size (up to the limits of
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the software and hardware available), and of any configuration (e.g.,
wheels, stars, branching trees, etc.) can be represented and simulated.
The “systems™ of interest in social network applications are thus
representable as chain models of flows (relations) among states (actors)
in many cases; many of the questions of interest to network analysts,
such as the implications of the degree and form of connectivity in a
network are, when seen in this light, exactly the same issues as those of
the implications of increasing the “complexity” of systems by increasing
their “connectivity.”

More Complex Control

The dynamic behavior of chain systems depends not only on the
number of states and their connectivity but also on the control
structures that govern the rates of flow among the states. These control
structures can be thought of as varying in complexity by the same
definition of “complexity” as do the state spaces of models. Two theories
with the same number of states and degree of connectivity among the
states may still differ greatly in the range of behavior they produce if
they differ in the complexity of their control structures.

The simplest of chain-model control structures of any interest are
processes governed by constant rates or by control structures referencing
cither the origin state or the destination state. For example, a model
embodying the logic of a Markov process suggests that the probability
of atransition from an origin to a destination is a constant. Consequently,
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the number of transitions that occur in a period of time (for example, the
rate of flow from an origin to a destination) is equal to the transition
probability times the number of cases “at risk™ (for example, in the
origin status). This process is a simple “feed-forward” one that
references the origin state. Similarly, but at a somewhat higher level of
control structure complexity the rate of movement between an origin
and a destination might be seen as a constant function of the destination
state. In a vacancy chain model, for example, the rate of movement from
origin to destination is governed by the discrepancy between the level of
the destination state and a goal state (for example, the number of
unfilled positions at the destination status).

There is no necessity, of course, that the control structures governing
the rate of flow along a particular link in a chain model make reference
only to the states at the origin and/or destination. In our elementary
sketch of class-career flows (Figure 8.2), for example, the rate of
movements from midmanagerial positions to petty bourgeoisie might
very well be conditioned on the level of unemployment—as many such
moves are thought to be voluntary and are more likely to be undertaken
in “good times” than in bad.

By extension, we can see that some chains may have quite complex
control structures that may even approach attempts at full-information
monitoring and control. The production processes of continuous-flow
manufacturing can be seen as (usually) relatively simple chains of states
coupled by control structures that take into account information about
all other states in the system (or attempt to).8 Other highly rationalized
planning processes, such as personnel, money, and information flows in
bureaucracies may have the same flavor of relatively simple chains
governed by control structures that attempt full information monitoring
and rationalization. The “complexity” of a chain depends not only on
the numbers of states and their degree of direct connectedness but
primarily on the complexity of the information and control system.
Many systems representable as chains may be of relatively low
complexity in terms of the numbers of states and flows among them, but
be of considerable complexity in terms of the control structures
governing those flows.

Additional Complexities of Control

The behavioral tendencies of relatively complex chain models depend
most importantly on the considerations of the number of states and their
connectedness by means of direct flows and by information flows (i.e.,
their control structures). In attempting to mimic the behavior of real
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social action systems, however, even further complexity is usually called
for. Real systems usually involve considerable delay in the movement of
both material and informational quantities; signals are often “noisy” or
distorted; the production of a behavior by signals is probabilistic rather
than certain; and, there may be thresholds, resistances, ceilings, and
other nonlinearities in the flows of both the material and informational
quantities in chains.

Delay, distortion, and nonlinearity of flows of both material and
informational quantities interact with the structure of chains and their
control structures to produce even greater behavioral possibilities. By
their very nature as connected “systems,” the effects of noise, delay, and
nonlinearity multiply through the system over time. Errors in perception
in one part of a behavioral chain may result in inappropriate responses
in connected parts of the system that result in complete destabilization.
Small distortions of information or of material flows may prove to be
the “straw that breaks the camel’s back” in systems where responses are
nonlinear, resulting in “disaster” or in overresponse that further
destabilizes systems. Perhaps more commonly in many systems of social
action, responses to signals in chains are partial and delayed in such
ways that there is very little response to even rather great stimulus, or
strong stimuli produce outcomes other than those intended. Increasing
pressure for higher production, for example, may yield less production
and higher turnover, requiring new hiring of untrained personnel that
lowers productivity still further. The important point in these examples
is that noise, nonlinearity, and delay in “chains” multiply through the
system over time due to the interconnectedness of the system, producing
(potentially) very complex behavioral responses to rather simple
stimuli.

Conclusions

Inthis short chapter we have explored some of the ways that the very
simple systems considered previously can be expanded to represent
more complicated processes. Our primary concern has been with
increasing the complexity of the basic model by the addition of more
states. Rather than thinking about social action as a series of singular
changes from one state to another, the models we have considered in the
current chapter allow for multiple outcomes from multiple origins,
movements of people, information, and material quantities back and
forth between states all occurring simultaneously. While it is often
analytically useful to think about social dynamics in terms of single
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dependent variables or single states as in the previous chapters, there is
also a good bit to be gained by creating more elaborate dynamic theories
as sets of interconnected effects or transitions.

Models of single chains of states can be made more complex in a
variety of ways that serve to increase the range of phenomena that they
describe and increase the “degrees of freedom” in the behavior that they
can display. In this chapter, we have categorized these possibilities as
increasing the number of states, increasing the connectivity of the states,
and increasing the complexity of control systems governing rates of
change. In identifying chain models that display these forms of
increased system complexity, it has been our intent to show that many of
the core theoretical models in various areas of social science research
can be represented by such models.

To illustrate the utility of the strategy of formulating theories of the
dynamics of action in such structures, and to show how such formula-
tions can raise further questions for theoretical research, it is now time
to build and examine the behavior of a few such (slightly) elaborated
chain models. -

Notes

1. Work in statistical and mathematical approaches to multistate transition models has grown very
rapidly in the social sciences in the past several years, after a lengthy period in which only single-state
models were considered. For some introductions to mathematical and statistical approaches to models
with multiple qualitative outcomes, readers may Wwieh to examine Coleman (1981), Tuma and Hannan
(1984), and Allison (1984),

2. Jay W. Forrester's (1961) classic DYNAMO model of a business firm is an excellent example of
a very powerful model developed from a few simple chains.

3. The movements of discrete quantities among discrete states (usually actors) is clearly one of the
kinds of processes that we are considering in this chapter. Say, for example, the moves of armies across
territories. Such models could be developed within DYNAMO, but the language is relatively
inefficient for such purposes, and more event-oriented languages would be more appropriate,

4. For an interesting comparison of economic growth models that is sensitive to the conceptual
distinctions we are using in this volume, see Meadows and Robinson (1985).

5. On the problems attendant upon inclusion or exclusion of “redundant” variables in structural
equation models, any multivariate statistics text in the social sciences can be consulted. Heise (1975)
discusses the logic and techniques of loop reduction methods in flow diagram analysis,

6. Foranexample of the application of statistical methods to the regime transition problem, scean
example reported in Tuma and Hannan (1984, Ch, 10), :

7. Though languages other than DYNAMO may be preferable for building models of such
phenomena.

8. See particularly Perrow (1984) on the complexity of control structures.
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