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Single-State Systems:
The Complexity of Control

The basic building block of all systems dynamics models is a single-state
variable (the “level™) and the expression describing the causes of over-
time variation in the state (the “rate”). A surprisingly large number of
social science theories are concerned with the dynamics of systems that
are composed of very few states and, in many cases have only a single
“dependent variable.” Such theories, however, are not necessarily
simple, as they often specify quite complex hypotheses about the causes
of variation in rates of change.

One theorist might, for example, be concerned with the dynamics of
attitudinal intensity (as in the study of the strength of support for
political candidates). The intensity of belief might be conceived of as a
continuous (and conserved) state that changes over time at rates
determined by the timing and intensity of propaganda, the subject’s
perceptions of the attitudes of members of their reference groups, and
other factors. In this case, the system has essentially a single dependent
state (attitudinal intensity), but this state may change over time at rates
that are governed by quite complicated combinations of exogenous
variables.

Another theorist might be concerned with the analysis of characteris-
tics of aggregates, such as the number of organizations of a certain type
existing in a given geographical space over time. In this case too, the
theory is concerned with dynamics that are “simple” in one sense: There
is a single dependent variable (the number of organizations). But,
hypotheses that might be specified concerning the causes of increases in
the organizational population (that is, the rate of organizational
formation) and the causes of decreases in the organizational population
(that is, the rate of failure) might be extremely complex.

There are many problems in each of the social sciences that may be
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usefully conceptualized as systems involving few states but complex
rates. As the examples above illustrate, these problems are “simple” in
the systems sense of the word, but hardly trivial. The dynamic behavior
of “simple” systems is also not so easy to comprehend as one might
expect. Depending on the complexity of the relationships expressed in
the equations for the rates of change, and on the time paths of the
exogenous variables, virtually any form of over-time behavior can be
displayed by even the “simplest” of systems.

Systems analysis and systems theory provide an extremely powerful
set of tools for describing and examining the complexity of the
expressions for rates of change: “control structures.” The expressions
describing the causes of rates of change in states can be thought of as
“mechanisms” controlling the speed at which processes that increase or
decrease the level are occurring. These mechanisms can themselves be
quite simple or quite complicated, and we can think about them in this
way.! Some of the mechanisms governing change in patterns of social
action and interaction may be quite “dumb” or simple, involving little
more than responses to external stimuli. Other patterns of social action
and interaction may be thought of as processes controlled by “self-
referencing” mechanisms of “feedback” and “feedforward”. Still more
complicated control structures involve referencing goals, or even setting
goals as part of the processes controlling action. As the complexity of
the control structures that govern rates of change in a single-state
increase, the range of possible behavioral responses increase as well.
Systems with very simple control structures are capable of only a limited
range of over-time behaviors, systems with complex control structures
are capable of much more complex patterns.

In the remainder of this chapter we will examine “control structures”
ofincreasing complexity, and look at some of the behavioral tendencies
of single-state systems governed by such control structures. As will
quickly become apparent, most theories of the dynamics of social action
and interaction tend to use quite simple specifications of control
structures. In most cases this is entirely appropriate, as many very
important problems from all social science disciplines can be very effec-
tively modeled as being relatively “dumb.” An exposure to the range of
possible control structures of greater complexity, however, should
stimulate interest in the utility of more complicated specifications.

Types of Control Systems

In thinking about the ways in which the dynamic behavior of a
variable might be generated or controlled, it is useful to keep in mind our
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carlier definition of complexity. The same ideas can be applied in
discussing the complexity of the “control structures” of theories, as well
as in discussing whole systems. A more complex control system is one
that makes reference to more pieces oi information about the system,
utilizes more of this information simultaneously (i.e. the control system
has high connectivity), and combines information according to func-
tional and time forms of high order.?

It is possible to envision a continuum of control system types from
less to more complex. At the simple end, the “control structure”
governing the rate of change in some variable Y might consist of a single
qualitative relation: If X, then Y. Rather nearer the other end or the
possible spectrum of control system complexity are homeostatic
mechanisms like thermostats: the “control system” here monitors the
room temperature, compares its “perception” of the temperature to a
“goal,” and increases the rate of heating if the actual temperature is less
than the goal.

For constructing theories about human social action and interaction,
it is most useful to divide control systems into classes according to the
complexity of the connections among pieces of information, rather than
the number of pieces of information involved. The “simplest” control
structures are describe patterns of action that are of a “stimulus-
response” or “dumb” type. A DYNAMO diagram showing the basic
structure of such a control structure is shown in Figure 6.1.

Control mechanisms of this simplest type receive stimuli from the
environment (X1 and X2), which may be noise, constants, or functions
of other variables, and produce automatic responses of increase (B1) or
decrease (B2) with respect to time. A good deal of highly socialized human
behavior can be effectively understood as involving only such simple
mechanisms. Such dynamic models are often used, as well, to approxi-
mate more complex processes—as in the case of simple linear equations
in exogeneous variables describing the behavior of aggregates.

A slightly “smarter” form of control system involves “self-refer-
encing.” Stimulus-response type control structures produce fixed
responses to stimuli, regardless of the state of the system. Self-
referencing systems’ responses to stimuli depend on external stimuli and
the current state of the system. The diagram in Figure 6.2 shows a
prototype of a simple “self-referencing” control systems with feedback
and feedforward.

Consider, as an example of such a “self-referencing” control system,
the number of departments and hierarchical levels in a bureaucracy.
One theory might hold that the “differentiation” (that is, the numbers of
vertical and horizontally specialized units) of the organization increases
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Figure 6.1: Stimulus-response control.

in direct proportion to the “carrying capacity” of the environment. This
is a “stimulus-response” type of control. An alternative theory might
suggest that the rate of addition of new units to a bureaucracy depends
not only on the carrying capacity of the environment, but also on the
existing level of differentiation: In the same environment with slack
carrying capacity, it might be argued, organizations that are highly
differentiated will increase their differentiation more rapidly than those
that are less differentiated. In this example, the response to an
environmental stimulus (slack carrying capacity in the environment)
depends on the current state of the systems (how differentiated the
organization already is). The behavior of the system might be said to be
“self-referencing.™

Such simple mechanisms though, are often not sufficient to represent
the control structures of many dynamic social processes. Many patterns
of human social action and interaction are more usefully thought of as
oriented toward the attainment of goals. Control systems in which
information about goals as well as the state of the exogenous variables
and the system itself are taken into account are, in some sense, “smart”
systems. In goal-seeking control structures, the response of the system to
astimulus is contingent on the relationship between the current state of
the system and some “desired” or goal state. A prototypical example of a
goal-secking control system structure is shown in Figure 6.3.

To return to our organizational differentiation example, suppose
that the profitability of the organization depended on the “fit” between
the carrying capacity of the environment and the differentiation of the
organization. In a theory involving “goal-oriented” control, the organi-
zation’s behavior in the face of an environment that has slack might be
theorized to follow this process: The organization has a goal of
increasing profit, and in each period of time the rate of addition (or
elimination) of organizational units depends upon the level of current
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Figure 6.2: Self-referencing control.

profits. If profits are positive, organizational units are added; if profits
are negative, organizational units are eliminated. In this control system,
the rate of change in the number of organizational units is contingent
upon a comparison between the current state of the system and a goal
state. Rather than simply responding, or responding in a way that is
conditioned by the current state of the system, the response is generated
here by a much more complex process of comparisons to goals.

The next step up in the increasing complexity of control mechanisms
should be rather easy to anticipate. Beyond “goal-seeking” mechanisms,
we can readily imagine that much human social action and interaction
can be usefully thought of as being governed by “goal-setting” or
“adaptive” control. Such processes involve not only comparisons of the
state of the system to goals, but also dynamic modification of the goals.
A prototype of such a control structure is shown as Figure 6.4.

We can modify our theory of organizational behavior to make it
“intelligent” (in the sense of goal setting) rather than simply rather
“smart” (in the sense of goal referencing). Suppose that our organiza-
tion’s leadership monitors the environment and uses this information to
set profit goals. The rate of addition or elimination of organizational
units depend, as in the previous model, on the ratio of profits to profit
goals. However, as the environment changes the goal for profitability is
modified, and the organization is responding to environmental change
both behaviorally and in the processes that set the goals that govern
behavioral responses. .

One could go on to consider even more intelligent mechanisms of
control, but such mechanisms are beyond the scope of the current
work—and are very rarely utilized in contemporary social science
theorizing about the dynamics of systems. In fact, most theories of social
action, in properly striving for parsimony, specify quite simple control
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structures. In the third section, we will have some opportunity to look at
more complicated forms.

Often the mechanisms that govern the dynamics of social action and
interaction are quite complex, but can be approximated by simpler and
hence more analyzable models. These “simple” control mechanisms
themselves are capable of very complicated-appearing responses to
stimuli, and are a good place to start in building theories of social
dynamics.

The Dynamics of “Dumb” Control Structures

The dynamics of a very wide range of forms of social action can be
very effectively described and analyzed as systems with quite simple
control structures. Whether we are talking about an individual person,
some other social actor, or the average tendency of a homogeneous
aggregate of actors, many forms of social dynamics seem to be quite
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Figure 6.4: Adaptive control.

interpretable as governed by “stimulus-response” types of control.

Because theories using such control structures are so common, and
because such structures are the bases for more complex ones, it is useful
to spend a bit of time becoming comfortable with the kinds of over-time
behavior that these control systems can produce.

In Figure 6.1, in the section above, we presented a diagram of a simple
stimulus-response control system. In this example, the single dependent
system state is incremented over time and decremented over time at
certain rates. In the DYNAMO language, this can be expressed as:

L  Y.K=Y.JH{DTYRLIK-RD.JK)
R RLKL =fl
R RD.KL = f2

where Y is the “level” of the state variable, and “RI and RD are arbitrary
names used to refer to the “rate of increase” and “rate of decrease”in Y.
The terms fl1 and f2 are any logical or mathematical expressions
involving any number of exogenous variables (that is, Y does not appear
in f1 or 2, else the system would be “self-referencing”).

With sufficient cleverness, any pattern of over-time behavior of Y can
be produced by varying the expressions for f1 and f2. And, indeed, a
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very wide range of theories about the time path (or more accurately, the
rate of change) of Y can be expressed with this simple model. The
expressions for fl and/or f2 might consist of pure white noise—
expressing the idea that change in Y was produced by random action (a
very useful baseline model in many cases). The expressions might
consist of expressions of the familiar form: f1 = a + bi(X1) + bz (X2) +
by(X3) + NOISE(). That is, the rate of increase and/or decrease is the
result of the linear addition of the effects of a number of simultaneously
operating exogeneous variables. The expressions might consist of
equations of the increasingly familiar form: f2 = aeb!(X)*b2X2); that is,
the log-linear or multiplicative interaction of several variables. Or the
expressions could consist of sets of logical tests and hierarchically nested
relations.

Inorder to get a good sense of how “dumb” systems behave over time,
however, it is useful first to explore their response to simple stimuli. To
do this we will perform three sets of simulation experiments. First we
will subject our very simple integrating system (i.e., the one that we
described in the DYNAMO equations above) to a variety of signals.
This experiment is important in itself to reveal how the static-looking
expressions produce imply dynamic behavior. The second and third
experiments will look at the less common and obvious dynamics of
simple integrating systems that have “delayed” effects: that is, time
forms of relations that are not linear. ¢

Experiment: Simple Integration

Let us begin with the most obvious of all dynamic formulations. In
our first experiment we have a dependent variable (Y) that is incremented
(we could, of course, run these processes in reverse, decrementing the
level) over time at rates (RI) that are functions of (a) a constant, (b)
white noise, (c) normally distributed noise, (d) a steadily increasing
stimulus (RAMP), (¢) a change from one level of stimulus to another
(STEP), and (f) a set of timed PULSEs. Simulations showing each of
these stimuli, and the over-time level of the response state Y are shown in
Figure 6.5.

In the first panel of the figure, the response variable (shown with the
asterisk) is subjected to a constant input (the input signal is shown with
the plus sign). It is hardly surprising, but nonetheless is quite important,
thatin “conserved” states the incoming signal continuously accumulates,
generating a pattern of linear growth. Any slope can be produced by
altering the sign and magnitude of the constant input. If, for example,
the effect of the independent variable on the rate of change in Y were
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Figure 6.5: Stimulus-response experiments.

negative, the response of Y would be linear, but with negative slope with
respect to time. Differing slopes (but always linear shapes) of the
response could also be produced by the action of multiple constants on
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Y. A process that was described by the following equation, for example,
would produce an absolutely flat time response, despite the complex
equation (so long as each X is a constant of unit value or the Xs change
in exactly compensating fashions with respect to time):

Y.K=Y.J+DT(5+.3(X1) +.2(X2) - 1.0 (X3))

Itis worth noting at this point, as we shall again and again, that a given
time path of response variable can be produced by a very wide variety of
alternative underlying mechanisms. A pattern of constant change, for
example, may reflect the action of one constant, a combination of many
constants, compensating changes among multiple causes, or the action
of afeedback control mechanism. The data do not speak for themselves.
Itis up to the theorist to offer convincing reasons for supposing that one
underlying mechanism or another is producing a given response pattern.

In panel b of the figure white noise is used as the stimulus to our
simple control system, The integration of white noise should, in the long
run, have an expected value of zero. As the time trace shows, however, it
is possible for a purely random process to display what appears to be
consistent trends for some periods of time. This process is called “drift.”
The important point to note about the responses of simple integrating
control systems to white noise is that integration dampens the “jagged”
over-time behavior of the “independent variable” into a smoother-
appearing response and that this response may display substantial short
run orderliness, despite the purely random causal process.

In the third panel (c), our “dumb” control system has been subjected
to a stimulus that is normally distributed with an expected value of a
positive constant. The stimulus in panel c combines the constant trend

_of panel a with the “noise™ of panel b. The response of the system is also

the sum of the previous two patterns: linear trend in response to the
constant part of the stimulus, and random variation around the trend as
aresult of the noise component. Where the rate of change in the stimulus
is a constant, then, mtegratlon produces a linear trend in the response;
where the stimulus is random, integration produces a dampened
response with an expected value of zero.

When the independent or causal variables are themselves displaying

trends (unlike the cases of noise or constant input), how does a simple

integrating system respond? In panel d the stimulus is set to a constant of
zero for a period of time and then increases at a constant rate (that is, the
independent variable begins a lincar upward trend). Since our response
variable accumulates or integrates these increasingly large values of the
stimulus, a pattern of exponential growth is produced. Many systems
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with more complex control structures (i.c., feedback) also produce
exponential over-time behavior. The importance of the experimenit in
panel d is that it demonstrates that a simple system can also produce
exponential responses when stimulus variables display trends. This fact
again suggests that it may be dangerous to “reason backwards” from an
observed behavior pattern to a hypothesis about the process that
produced it.

In panel e of the figure another experiment with a trending
independent variable is shown (a step function). For the first several
time periods the stimulus is constant at zero, then shifts to a constant
positive number. In both periods, the response is linear (because the
stimulus is a constant), but the slope of the response changes when the
stimulus takes on a positive value. Finally, in panel f we experiment with
the “transient response” of our “dumb” control structure. The system is
subjected to shocks (pulses) that occur at regular intervals. Each of these
signals is absorbed by the response state, which changes in a stepwise
fashion as it does so.

The over-time behavior of a single dependent state governed by a
“dumb” or simple stimulus-response control structure is not difficult to
anticipate with a few moments’ thought. Despite this simplicity, there
are several important basic lessons in this exercise. Where the causal
effect of one variable (the stimulus) on the other is a constant, the
response variable displays linear trend with respect to time. Constant
causal pressures then produce trends, not absence of change in
dependent states. Where causal variables are trending linearly, accumu-
lating systems display exponential trending. Episodic “shocks” are
accumulated as well by systems governed by such simple control
structures. If the shocks are purely random, they may produce short-
term “drift” in the level of the system; if they contain a “bias” (as in the
case of panels ¢ and f), trend, as well as drift, can be produced by
seemingly random causal stimuli.

In a more general sense, it is most important to reahze that systems
governed by very simple control structures can produce quite complex
responses if the stimuli to which they are subjected are complex. We
have also only considered the simplest possible “ideal types” of stimulus-
response systems. Often a single state may be affected by a large number
of independent variables at the same time. The combined force of a
number of constants, trends, noises, and shocks can produce extremely
complex response patterns. These poscible “realizations” of very simple
“dumb” systems become even more complicated if we make more
realistic assumptions about the time-shapes of the relationships between
stimuli and responses.
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Experiment: Simple Integration with First-Order Delay

There are many cases in which it is unrealistic to assume that the
response to a stimulus is instantaneous and constant. A “first-order”
exponential delay assumes that the initial response to a stimulus is
strong, but that the response continues to occur at exponentially
declining rates thereafter. When a series of stimuli are received, first-
order “exponential delays” are equivalent to weighting the most recent
signal most heavily in formulating a response, but also using information
about the previous signal (assigning it less weight than the current one)
and the signal before that (again assigning less weight to it) and so on.’

First-order delays can occur in social systems in many ways. Suppose
that the management of an organization orders the production of 100
widgets. Because of resistance and friction between workers and
management, however, the production line will only produce 80% of the
unfilled orders from management in each time period. If there are no
new orders, 80 widgets will be produced in the first period after the order
is given and 16 in the second period after the order is given (that is 80%
or the remaining 20 widgets that were ordered but not yet delivered). By
the beginning of the third time period after the order is given, 96 widgets
have been produced and 80% of the remaining four are consequently
done in the third period. The original order of 100 widgets will
eventually be produced (actually not, as the process only approaches full
realization, and never actually gets there), but may do so after a
considerable time. The “friction,” “inertia,” and “resistance” of responses
to stimuli in social systems can often be effectively modeled as
exponential delays of various average lengths.

In the top panel of Figure 6.6 the transient response of our “dumb”
system to a PULSE (that is, one time shock) is shown under different
assumptions about the degree of friction and resistance (that is, the
average length or half-life of the DELAY 1 function). The figure shows
the response of the system to first-order delays of 1, 2, 5, and 9 time
periods. The responses shown are all of the same shape, but differ in how
long they take to be fully realized. The delay of “average length” of two
units reaches 50% of its final value at time point five—two time units
after the shock (which occurred at time-point three); the delay of
“average length” of five units reaches 50% of its final value after 5 time
units, etc.

Real social systems, of course, do not sit still while each stimulus is
translated with friction and delay into a response. Rather, continuous
streams of stimuli are occurring. In the bottom panel of Figure 6.6 we
show a very simple experiment to illustrate what happens when multiple
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stimuli are occurring in “dumb” systems with delay. In the experiments
shown in the bottom panel, a set of pulses occur at time points 3, 13, and
23. Control structures with first-order exponential delays of average

3 lengths of one, two, five, and nine time periods are shown responding to
~ this stimulus.

There are two interesting aspects of the results in the bottom panel of
the figure. The “delays” produce responses to the stimuli that are

progressively “smoother” as the average length of the delay increases.
i This is a fundamental and important characteristic of all delays, with

major implications for modeling the dynamics of social action: To the

| extent that relations among things operating over time involve resistance

and friction, “dependent” variables tend to be seen as sluggish and
smoothed reflections of the stimuli that generated them.

The second important aspect of the behavior of the simple stimulus-
response mechanism in the bottom panel of the figure is somewhat more
subtle. The delays of very short average length (that is, the curves one
and two) succeed in “catching up” between the stimuli—which occur
only every 10 time periods. The delays of greater average length (the
curves five and nine) have not completely closed the gap between the
original stimulus and their final response by the time that the new
stimulus occurs. As a consequence, the responses of states with lengthy
delays always lag behind the ongoing stimulus and never “catch up”
(actually the short delays never catch up either, but the gaps are so small
as to be, usually, of little importance). When the delays in a system are
relatively long compared to the frequency of stimuli—and they usually
are, as stimuli occur continuously—dynamic systems are never observed
“in equilibrium.” The status of the state space at any point in time in a
system with friction and delay is a reflection of stimuli in past periods, as
well as of immediately preceding stimuli. Where social action involves
delay and friction, then, responses are not only “smoothed” reactions to
stimuli, but are responses to past as well as to current stimuli.

Experiment: Simple Integration with Third-Order Delay

Simple “friction” resulting in the smoothing of responses to stimuli is
very common in social systems. In many cases, however, the delay in
responding to stimuli takes the form of a “higher order” function of
time. The DYNAMO language provides as a convenient tool the third-
order delay as a built-in function, and the time shape of this curve is
sufficiently complex to capture a very interesting and important class of
responses: those with “latency.” In Figure 6.7 we show the results of the
same sets of experiments that we discussed at some length in the
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Figure 6.7: Third-order delay.
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previous section, this time repeated with “third-order” delays (DY-
NAMO’s functions DELAY3 or DLINF3).

Third-order delays, by their definition, produce an “S-shaped”
pattern of response to a stimulus—as can be seen in the bottom panel of
the figure. One can think about such delays as responses with a certain

. “latency.” That is, it takes some time for any significant response to
. occur. Once response begins to occur, it accelerates up to the halfway
& point, then slows until the response is completed (again, the response is
. never really completed, but this rarely is of any importance). This kind
. of time-shape is more complex than the first-order delay, and may be

more realistic for modeling the dynamics of many forms of social action

- in which the “resistance” or “inertia” is not constant, but is rather
- stronger at first and declines later.

The top panel of the figure repeats the experiment of subjecting our
“dumb” control structure with delay to a series of timed shocks. As
before, the important lessons are that delay tends to “smooth” response
(albeit the “smoothing” is more complicated in higher-order delays) and
that, in the presence of delays of substantial magnitude, the system never
“catches up” in its responses to the string of incoming stimuli.

Summary: The Behavior of “Dumb” Control Structures

In this section we have examined some of the possible configurations
and responses of the simplest of dynamic systems. The results themselves
are somewhat complex, and it is probably helpful if we repeat some of
the main points before turning to more complicated structures.

Systems with control structures that are of the simplest type,
“stimulus-response,” as opposed to the more complex “self-referencing,”
“smart,” and “adaptive” types, are nonetheless capable of producing
extremely complicated behavior patterns. The range of possible behavior
of such systems is limited only by the complexity of the stimuli that it is
subjected to and by the form of its response (i.e., whether the response
involves simple integration or some nonlinear “delay” pattern of
response).

We have examined the responsiveness of a simple system to a variety
of abstract and ideal typical kinds of stimuli (constants, white and
normal noise, pulses, steps, and ramps) that are the building blocks of
the more complex and compound stimuli that occur in social systems.
Among the most important results here are that the responses to
constant stimuli are linear trends and that the responses to trending
stimuli are exponential.



120 Computer-Assisted Theory Building

We have also taken a brief look at what happens when the time shape
of responses to stimuli take somewhat more complex forms in “dumb
systems.” (The consequences are not the same in systems with more
complex control structures.) Two types of “delays” (or “resistances” or
“frictions”) in responses were examined, corresponding to simple
resistance and response with latency. The general lessons here are that
such delays in response “dampen” and “smooth” the response of the
system to stimuli, and that in the presence of such “delayed” responses
systems never fully “catch up” in their responses to changes in their
environments.

The Dynamics of Self-Referencing Systems

In the previous section we considered the behavior of systems that
simply responded in a mechanical “stimulus-response” fashion to
environmental changes. A large number of important phenomena can
be be effectively represented by systems with such simple control
structures, and virtually any pattern of observed trends over time can be
reproduced by such models. Theories about the dynamics of social
action, however, often suggest that actors or variables do not simply
respond to external stimuli. Conceptions of the “control” systems
governing the dynamics of action that allow actors to make reference to
their own current status (“self-referencing”), as well as to external
stimuli, are the next step up in the complexity of control structures.

Stimulus-response control structures take into account only changes
in the environment and accumulate the past history of these events to
generate the current status of the system. “Self-referencing” control
structures take into account not only external events, but also the
current status of the system in determining rates of change. That is, the
current state of the system is one cause of change in the system. In the
language of systems analysis, such control structures are characterized
by “loops” of “feedback” and/or “feedforward,” as is illustrated in the
idealized diagram in Figure 6.2, shown earlier.

The dynamics of self-referencing systems, or systems with feedback,
are quite different from those of the simpler stimulus-response type. We
will spend a bit of time examining these dynamics in the abstract, just as
we did with stimulus-response systems, because the “loops” in such
systems are a basic building block of more complicated control
structures. Once we have a feeling for the behavior of systems with
simple “feedback” loops, the behavior of more complex “goal-seeking”
and “adaptive” systems becomes quite easy to anticipate.

WU | T e R T L, S P Y
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. Oneway to understand why the dynamic behavior of self-referencing

| systems is inherently different from dumb systems is to examine the

E- equations that describe the two types. The formal structure of the
. gimplest dumb system can be stated as:

E L . Y.K=Y.J+(DT)(RLJK)
"“'R RLKL=f(X)

- Thatis, the level of the variable Y at a later time is equal to its level at the
- previous time plus the effects of some function of exogenous variables
E’ X. The basic form of a simple self-referencing system can be stated as:

L YK=YJ+ (DT) (RLJK)
. R RLKL=f(X)+g(Y)

. Thatis, the rate of change in the dependent variable is a consequence of
¢ both exogenous factors (X), and the variable itself (Y).
| What kind of an effect the dependent variable has on itself over time
| (i, the g(Y) term), is up to the theorist to specify. In most models, this
. function is a simple constant. This is equivalent to hypothesizing that
| the rate of change is proportional to the level of the system. If the
? function is a negative number, increases in Y create decrements in the
| mate of change. This is what is known as “negative feedback.” If the
. function is a positive constant, the rate of change in Y increases as Y
 increases, and “positive feedback” exists.
- Let's suppose, for example, that we are interested in the dynamics of
vocabulary development in individuals. One theorist might propose that
- the number of new words learned in each period of time is a function of
the level of social interaction with adults (regarded as an exogenous X)
and a positive function of the existing level of vocabulary. That is, the
more vocabulary that exists, the more adult conversation is understood,
resulting in more rapid learning of new words. This hypothesis is one of
a positive feedback of the level of vocabulary on the rate of change in
vocabulary development. Alternatively, one might hypothesize that the
rate of change in vocabulary development is a function of interaction
with adults, but a negative function of the existing level. That is,
interaction gives rise to new vocabulary learning, but as learned
vocabulary increases the number of unknown words declines and
learning of new words slows. This theory proposes that there is negative
feedback between the level of the state (number of words known) and
the rate of change in vocabulary (new words learned per unit of time).
Systems governed by positive loops tend to display accelerating time
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trends. Since the current level of the system serves as a stimulus for
further change, positive feedback tends to “amplify” whatever tendencies
exist in the system. Systems governed by negative loops have the exact
opposite tendency. As the level of the system becomes higher, the rate of
change becomes more negative, creating a tendency to “dampen” the
impacts of stimuli.

The behavior of real systems with. feedback structures can, as with
dumb systems, be very complex. If the time paths of the stimuli
(exogenous variables) are complicated, and if there are numerous
independent variables and feedback loops having impacts of the same
dependent variable, the time path of the dependent variable can have
any shape. The complicated behavior of real systems, however, is made
up of combinations of several basic response patterns. We can get a
better grasp of the behavior of feedback systems by looking at some of
these “ideal typical” scenarios with simulation experiments.

Experiment: Positive Feedback

In a set of experiments, let’s subject a single state system governed by
positive feedback to several kinds of exogenous stimuli. In each of these
cases, the system is set initially at 0, and the positive feedback loop
operates to increment the rate of change by 10% of the current level of
the system. The system is first subjected to a constant stimulus, thentoa
randomly varying pattern, to a trending independent variable, and lastly
to episodic shocks (i.c., X is a STEP, NOISE, RAMP, and PULSE).
The separate components of the rate of change are shown in three of the
panels, with the impacts of the exogenous variable represented by +'s
and the impacts of the positive feedback represented by the #'s.

In the first panel we see that tie response of a positive feedback
system to a constant input is exponential. The explosive growth of the
system is generated by the effects of the feedback loop (the #), which
creates increasing change as the level of the system increases. When the
input stimulus is quite noisy, as it is in the experiment shown in the
second panel of the figure, exponential growth also occurs, and for the
same reason. The underlying process generating the pattern, however, is
far from clear in this experiment—typical of data in which the signal-to-
noise ratio is low (here the ratio is, on the average, about .2). In the third
scenario, our system is subjected to a linearly trending independent
variable (the +'s), and generates “super exponential” growth (that s, the
rate of change itself increases at an increasing rate) again as &
consequence of self-referencing. In the last experiment of the series, two
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Figure 6.8: Positive feedback.

exogenous shocks occur, with no external stimuli between these events.
The response of the system is again exponential, but the steepness of the
exponential changes increases with each shock (because each shock
increases the level of the system, hence increasing the power of the
feedback). '
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Experiment: Negative Feedback

To get a feeling for the differences in the dynamic consequences of
negative and positive feedback, we repeat the same set of experiments
with a negative feedback loop. The result of this set of experiments are
shown in Figure 6.9.

When a system is subjected to a constant exogenous stimulus without
feedback, it responds with linear trend; when the system is governed by
positive feedback, its response is accelerating growth; when it is
governed by negative feedback, as in the first panel of Figure 6.9, it
responds with decelerating growth. The impact of the exogenous
variables in this case (the +’s) would create a linear trend in the level (*).
However, as the level of the system increases the rate of change is
reduced by the operation of the negative feedback (#), resulting in
deceleration. In the presence of constant input then, systems with
negative feedback control structures tend toward a steady state.

The second experiment with negative feedback control subjects the
system to random stimuli. As with positive feedback in a noisy system, it
is very difficult to perceive any pattern in the time-shape of the response
variable here. In fact there is no trend, as the negative feedback acts to
dampen the effects of the exogenous shocks. In the third figure the
exogenous variable is trending linearly, and the system, being conserva-
tive, tends to respond exponentially. This response, however, is limited
by the increasing negative feedback (#). Our last experiment shows the
effects of shocks on systems governed by negative feedback. The
complex pattern of response here is generated by the accumulation of
rather large exogenous shocks (+) creating increasingly large negative
feedbacks (#) that are self~-dampening as the system tends to return to its
original state. The general tendency of the system over time is upward
because the magnitude of the shocks is far greater than the strength of
the feedback mechanisms acting to limit their impacts.

Self-referencing or feedback systems can produce extremely complex-
looking behavior. Their fundamental dynamic tendencies, however, are
quite apparent from our discussion and experiments. If the rate of
change of a system is a positive function of the level of the system
(positive feedback), the control structure tends to create accelerating
change that drives the system away from its original condition. If the
rate of change in the system is a negative function of the level of the
system (negative feedback), then the control structure tends to produce
decelerating change that drives the system toward its original state.

These insights about the basic dynamics of self-referencing systems
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Figure 6.9: Negative feedback.

are quite familiar,® but this familiarity should not lead us to ignore their
importance. The underlying dynamic tendencies of self-referencing
systems are quite different from those of systems with “dumb” control
structures that respond only to external stimuli. Unlike “dumb”
systems, sclf-referencing systems can produce self-generating and self-
limiting behavior and hence are frequently a more powerful analogy for
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theorizing about processes of social action and interaction than systems
with less complex control structures.

Smart Systems: The Dynamics of
Goal-Referencing Control

Many patterns of social action and interaction are regarded by
theorists as being governed by processes that are more complex than
stimulus-response and self-referencing feedback. It is often helpful to
think of social actors as making reference to goals, as well as to
exogenous factors and their own current status, in formulating acts.

The decision of an organization to change its formal structure, for
example, is probably best thought of as an act formulated with reference
to exogenous stimuli, the current state of the organizational structure,
and some goal. Organizations, as “intendedly rational” actors, change
their structure in an attempt to attain goals—greater profitability, better
insulation from competition, conformity with the value preferences of
important constituencies, or other factors. The streams of signifying
acts performed by persons in face-to-face interaction can be thought of
as the consequence of goal-referencing feedback as well. Individuals in
such situations perceive the behavior of others (that is, makes reference
to the environment), are aware of their own behavior, and have “goals”
for the interaction. These goals may be instrumental, expressive, or
both. The stream of acts is governed by the combination of information
about the environment and the actor and by the goals.

Control systems that take goals into account, as well as information
about the environment and current status of the system, could be called
“smart,” at least in comparison to stimulus-response and simple self-
referencing systems. In terms of their formal structure, however, smart
systems are simply feedback systems with a slightly more complex
structure, as can be seen by comparing the diagrams of the prototype in
Figure 6.3 with those in Figures 6.1 and 6.2. This similarity of formal
structure is matched by a similarity of fundamental dynamic behavior of
systems governed by simple self-referencing and goal-referencing control
structures. Self-referencing systems tend to amplify (where the feedback
is positive) or dampen (where the feedback is negative) stimuli received
from the environment. Goal-referencing systems behave in the same
fashion, but the effects of the feedback loop are proportional to the
discrepancy between the current state of the system and some goal,
rather than directly proportional to the current level of the system.
Goal-referencing systems have a tendency to approach or diverge from
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certain goal levels, in contrast to the tendency of simple self-referencing
systems to approach or diverge from their current levels.

To illustrate this behavior, let’s construct a simple goal referencing
system and examine its response to stimuli. Such a system is shown in
the DYNAMO equations:

Y.K = Y.JH(DT)RIJK)

RI.KL = ENVIRON.K+FEEDBACK.K
ENVIRON.K = f(X)

FEEDBACK .K = PARM*DISCREP.K
DISCREP.K = Y.K-GOAL

GOAL = constant

O>>>xrC

The first statement specifies that the dependent variable (Y) changes at
rates RI. The second statement says that RI has two component parts,
one a consequence of ENVIRONment, and the other a consequence of
FEEDBACK. The third statement defines the environmental impact on
rates of change in Y as an arbitrary function (f) of some variable or
variables X. The fourth statement specifies that the rate of change in Y is
proportional (either positively or negatively, and with some intensity) to
a “DISCREPancy.” The meaning of this discrepancy is defined in the
next statement as the simple difference between a GOAL (a “desired”
level of Y) and the current status of Y. Then in the last statement the
GOAL is set as a constant.

Experiment: Smart Feedback

To specify this theory into a particular model, we need to make some
further assumptions. The magic number in this system is the quantity
“PARM?" that defines the effect of the discrepancy between goal and
current status on future changes in status. For our simple example we
will assume that PARM is negative. That is, our system contains
negative feedback and attempts to close the gap between the goal and
the current status of the system. For our simple example we will also
assume that PARM is a number between zero and unity (in fact, we
assume PARM = - .25). If PARM were zero, the discrepancy would
have no effect on the rate of change; if PARM were unity, the
discrepancy would be completely eliminated in each period of time. A
value between zero and unity here is equivalent to assuming that the
system responds to, but does not completely eliminate, the discrepancy
in each period of time.
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Some alternative sets of assumptions could also be made, though
they do not seem to correspond readily to most kinds of dynamic
systems that we ordinarily seek to understand. The feedback parameter
could be set as a positive rather than a negative number. This positive
feedback is equivalent to saying that the system seeks to diverge from the
“goal” state. The feedback process could operate with an intensity of
greater than unity as well. This alternative assumption would cause the
system to “overshoot” or “overreact”to the discrepancy, creating either
an oscillatory pattern around the goal (if the control process were a
negative loop), or a pattern of “super-exponential” divergence from the
goal state (if the loop were positive). Since these alternative scenarios are
relatively rare in modeling real systems, we will bypass them and turn to
examining the responsiveness of our “smart” system to constant,
random, trending, and periodic environmental stimuli. The results are
shown as Figure 6.10.

In the first panel of the figure we see a “smart” system striving to
attain the goal of a level of 50 in the presence of a constant
environmental stimulus of 5 units per unit of time. Since the system
began at a level of zero, the initial discrepancy between the goal and the
current status of the system is large. The feedback process (#) operates to
increase the level of the system at rates that decrease as the discrepancy is
narrowed. In the presence of the constant environmental stimulus (+)
that begins at the third time point, however, the system “overshoots” its
goal of 50 units. As this occurs, the effect of the feedback (#) becomes
negative, attempting (unsuccessfully in this case, because the feedback
has insufficient intensity relative to the continuing environmental
pressure) to drive the level of the system back down to the goal level. As
is fairly clear from the diagram, this particular process does approach a
stable equilibrium, but the equilibrium level is not equal to the goal
level.

In the second panel of the figure, our smart system is subjected to
random stimuli from the environment. As before, the feedback process
(#) initially operates strongly to raise the system from its initial level of 0
toward the goal state of 50. As the level approaches the goal, the
discrepancy becomes less and the effect of the feedback approaches 0,
except for its operation to smooth away the disruptive effects of the
random shocks being received from the environment (+). In this case,
since the effects of the environment have neither a positive nor a
negative effect (on the average), the equilibrium level of the process is
equal to the goal state, though the goal is never exactly attained.

In our third test of the behavior of this system the environment sends
a strong upwardly trending stimulus beginning at the third time point.
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Flgure 6.10: Goal-referencing control.

As in our first test, this environmental stimulus is too strong for the
feedback process to fully control, and the level of the system (which
reaches its goal of 50 by the ninth time point) continues to grow. The rate
of increase in the system as a consequence of the steadily increasing
environmental stimulus (+) is substantially reduced by the feedback
process (#) and becomes increasingly negative as the system grows
further and further away from the goal state. This particular process
never reaches a steady state, despite the negative feedback loop, because
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the rate of increase in the environmental stimulus is greater than the
intensity of the feedback process.

In the final experiment we have subjected the system to shocks (of a
peak magnitude of 10 units) at the third and thirteenth time points. Asin
the second experiment with a series of random shocks, disruption of the
goal-seeking behavior of the feedback loop (#) is only temporary, and
the system approaches equilibrium at the goal level of 50 units.
Although the figure is a bit too crude to demonstrate the point, the
negative feedback loop exponentially smooths each of the disruptions.

The fundamental dynamic tendencies of systems with goal-referencing
control systems are very similar to those of simple self-referencing
systems. Indeed, both kinds of control structures are special cases of
feedback systems, and produce similar-looking behavior in most cases.
The notion that rates of change in variables may depend upon the
discrepancy between the current state of the system and some goal state,
however, is a powerful tool for thinking about the dynamics of social
action. In some ways, however, systems that are “smart” in the sense of
being goal referencing are still not smart enough to provide good
analogs to many patterns of human social action and interaction.

The Dynamics of Goal-Setting Control Structures

Beyond goal-referencing control structures are still more complex
ones in which the goals themselves are responsive to environmental and
system status factors. Control systems of this level of complexity are
sometimes termed “intelligent” or “adaptive” feedback systems. In
building theories about human behavior, social scientists often have
models of this complexity in mind. Such theories have normally been
expressed only in everyday language, however, as their statistical and
mathematical versions do not have desirable properties.’

A moment’s thought suggests that “intelligent” or “adaptive” control
is a very helpful imagery for describing many patterns of social action
and interaction. Suppose, for example, that we have two actors playing
a competitive game. Each actor may have the fixed goal of winning, but
must formulate narrower strategic goals that change as a function of the
unfolding interaction. At some points the actor may (if the rules of the
game allow such complexities) attempt to maximize the accumulation
of resources by making defensive moves; at other points the actor may
attempt to attack. The strategic goals change over time as a consequence
of the actor’s own status, the behavior of the opponent, and the ways
that these factors are related to the general goal of winning. More
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generally, many forms of human social action may be seen as governed
by control structures that have several levels of goals that are more or
less responsive to change over time originating from various sources.

In a formal systems analysis sense, goal-setting or adaptive control
structures are simple elaborations of the goal-referencing structures that
we have examined above. The difference between the structure of our
prototypical goal-referencing system (Figure 6.3) and our prototypical
goal-setting system (Figure 6.4) is straightforward. In both control
structures the self-referencing or feedback effect is governed by a
comparison of the existing state of the system and a desired or goal state.
In the simpler goal-referencing system, the goals are regarded as fixed.
Inthe goal-setting control structure, the goals are regarded as variables,
and change over time as a consequence of other factors.

There are a number of interesting possibilities raised by making the
goals of the system variable rather than fixed. The goals of the system
may vary as a function of exogenous factors. For example, an
adolescent male’s desired (goal level) of “toughness” may change over
time as a function of the expectations of the groups with whom he
interacts. Of course, this process could be made even more complex by
supposing that differential association is affected by toughness. The
goals of the system may also change as a function of the same
environmental influences that affect rates of change directly. For
example, external threat to a society may have effects on internal
cohesiveness both by directly affecting the rate of change in cohesion (as
the public in general become frightened), but also by affecting the
desired level of population morale and nationalism held by political
elites, causing them to invoke public rituals to increase cohesiveness still
further,
~In addition to the possibility of making goals contingent on the
_environment, goals may also be directly contingent on the state of the
system itself. In Figure 6.4, for example, we show goals as being affected
~ byboth the rates and the level of the system, as well as by environmental
- factors. Some goals may be contingent on the level of the process
already attained. It might be hypothesized, for example, that the desired
or goal level of occupational prestige attainment is a function of the level
. already attained: each person, regardless of his or her level of prestige,
might be hypothesized to have a goal of 5% more prestige. Hence, as
attainment rises (falls), the goal rises (falls). The goals of the system may
also vary according to rates of change. If sales are decreasing, for
example, goals for investment may be reduced by business management.
In this case it is not the level of production or consumption that is having
an effect on the goals for investment, but rather the rate of change.
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The logically simple extension from goal-referencing systems to
systems that set goals dynamically seems a small step, and in the abstract
it is. However, the one additional “degree of freedom” is very
consequential for both stating and analyzing the dynamics of social
action. Systems, be they human or artificial, that change their goalsasa
consequence of contingencies arising from environments are a powerful
analogy for understanding more complex patterns of social action and
interaction that are only poorly approximated by systems with fixed
goals. Many social science theories of dynamic processes utilize such
imagery, but its implications have rarely been formalized.

Because of their flexibility and adaptability, we cannot present any
single set of experiments to demonstrate the fundamental dynamic
tendencies of models with adaptive feedback control. The answer to the
question of how such systems generally behave is, quite properly, “it all
depends.” What it depends on, however, is not some hidden mystery. As
simple extensions of goal-referencing feedback, the dynamics of adaptive
models display tendencies either to equilibriation or to destabilization,
depending on whether the feedback is positive or negative. In adaptive
control models, however, the criterion that the system is attempting to
reach or avoid through feedback keeps changing as a consequence of the
current state of the system and exogenous factors. The shot pattern
produced by the adaptive system depends on whether it is trying to hit or
to miss the target, and on the fact that the target is moving.

Feedback Control and Delay

We argued earlier that social dynamics often involve complicated
forms of relationships with respect to time, as well as among variables.
In examining the behavior of systems governed by stimulus-response
types of control, we explored several basic time-forms (DELAYs), and
discovered that such delay can have the consequences of “smoothing”
trends and preventing the full realization of the consequences of stimuli,
We also suggested that the effects of delays in systems with more
complex control structures were different. It’s now time to talk a bit
about this issue.

All systems that involve feedback loops (i.e., self-referencing, goals
referencing, and goal-setting systems) are particularly sensitive to the
time shapes of relationships. In all such self-referencing systems, the
rates of change depend on the current state of the system in ways that are
increasingly intricate as the control structures become more complicated.
If there is delay in the loop connecting the current level of the system to
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the rate of change, the feedback is operating with reference to a level that
nolonger, in fact, exists. As a result, the time trace of the system may be
considerably different in the presence of delay than in the presence of
instantancous feedback, often overshooting or undershooting. Since
feedback systems are self-referencing, distortions introduced by delays
are themselves multiplied through the system, resulting in further
disruption.

We have all had experiences with the effects of delay in systems
controlled by feedback loops. Suppose that you are taking a shower,
and you find that the water is not hot enough for your liking, so you turn
the control knob to increase the flow of hot water. After what seems to
be a reasonable interval, you notice no effect, so you turn the knob
further. Suddenly the water is warm enough, and then too warm, so that
you turn it down again. Again, nothing seems to happen, so you turn it
down further. What has happened here is an overcompensation by the
goal-referencing feedback structure (you), to a delayed response of the
system (the water heater, pipes, valves, and all that). The main point
here is that there has been an overcompensation as a result of delay in
the system. We usually, of course, don't do as badly as just suggested.
The lack of realism of this simple example, in fact, suggests a more
complex model. Often the control structure is aware of the delays and
hence either no overcompensation or a much-dampened compensation
occurs,

Delays obviously occur in human-human, as well as human-machine
interactions. Let’s suppose that an individual is undergoing some
stressful life event that is substantially reducing the individual’s social
performance (an example that we will treat in some detail in a later
chapter). The individual is aware, with relatively little delay, of
experiencing stress, and will seek to compensate. Our stressed person is
also connected to a network of other persons who, upon perceiving that
(s)he is undergoing stress, will attempt to be supportive. It takes far
longer for members of the social network to become aware of our focal
person’s distress than it does for the person to become self-aware,
however, and this can have interesting (and sometimes quite unfortunate)
consequences. Where the stresses are relatively minor, and the individual
is able to fully compensate for them without outside help, the delayed
response of the network gives rise to a (sometimes annoying) helpfulness
from the network after the crisis is already past. Where the crisis is so
severe as to overwhelm the capacity of the focal individual to cope with
it, help may come too late. In either case, the process of smooth
interaction between person and environment and between person and
social support network may be disrupted both by the crisis and by the
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delayed (and hence less than optimal) response to it. Such dynamics,
most readers will agree, can be extremely consequential in human
affairs. v

To get a firmer grasp on the consequences of delay in feedback
systems, let’s construct an ideal-typical system and examine its respon-
siveness. We take as our starting point the goal-referencing negative
feedback system we considered two sections ago, reproduced here.

Y.K = Y.JHDT)(RLJK)

RI.KL = ENVIRON.K+FEEDBACK.K
ENVIRONK = f(X)

FEEDBACK.K = (PARM)(DISCREP.K)
DISCREP.K = Y.K-GOAL

GOAL =350

PARM = - .75

OOQ>>»>»>RC

One way in which delay occurs in human systems is that there is a
slowness in perceiving the state of the system and changes in the state of
the system. That is, humans are often slow to pick up the full magnitude
of changes in their environment. We might model this phenomenon by
modifying the equation describing the discrepancy in the above model
to read:

A  DISCREP.K = DELAYI(Y.K,3)-GOAL

Delays might also be hypothesized to occur in responding to the state
of the discrepancy, as well as in perceiving the state of the system. Let’s
suppose, for the purposes of illustration, that the system responds to the
perceived discrepancy with latency (third order, or S-shaped delay), also
having an average length of three tinie periods: Hence:

R RLKL = ENVIRON.K+DELAY3(FEEDBACK K,3)

To get a sense for the effects of each delay and for the compounded
effect of them both, we can design a series of simulation experiments. In
the first experiment we create a “baseline” run by setting the system in
equilibrium (that is, giving it a starting value equal to its goal value of 50
units). The system is a negative feedback one with an intensity of -.75
(PARM). After the third time unit we disrupt the system with an
exogenous shock (the DYNAMO program for this set of experiments is
appended). The results of this baseline are shown as the first panel in
Figure 6.11.
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Pigure 6.11: Feedback with delay.

The full value of the initial shock (which would have been to raise the
system level (*) to 52.5 in a system without feedback) is dampened by the
immediate negative feedback (#), so that it reaches a maximum of about
51.5. The negative feedback loop acts quickly to return the system to its
initial level. After five time units have passed, the full effects of the initial
shock have been almost completely removed, and the time-trace of the
system level is essentially flat,
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In the next panel of the figure we have added a delay of perception (of
three time units average length), and repeated the experiment. The result
is notably different from that of the same negative feedback system
without delay. Because of the delay in perceiving the full extent of the
shock, the initial negative feedback response is less in the system with
delay, and, consequently the shock is more fully realized in the first time
period (the system reaches about 52.25 at its maximum, as opposed to
the 51.5 of the system without feedback). As the process continues, more
interesting things occur. The control structure is always lagging behind
the real status of the system (notice that the peaks and valleys of the
feedback curve are two to three units later than the corresponding peaks
in the system levels). As a result, the control structure takes the wrong
corrective action, causing the system to overshoot its goal. In this case
the system level not only returns to the goal state of 50, but actually
drops below that level before recovering. Similarly, the feedback loop is
initially negative (to compensate for the positive shock to the system),
but assumes positive values (at about time points 10 to 15) to correct for
its earlier overcompensation. A cycle of oscillating response is set off in
this experiment as a direct result of delay in perception of the true state
of the system. Note that the cycles of response show progressive
dampening in this case. That is, the peaks and valleys become closer to
the goal state the longer the system operates. While the system
overcompensates, it does, eventually, approach equilibrium.

In the third panel of the figure we have repeated the experiment with
only the delay of response but no delay of perception. Not surprisingly,
the result is similar to that of the delay in perception. That is, oscillation
and overcompensation are introduced to the system, and the cycles
gradually dampen over time as the system approaches its goal state
of 50.

The time trace of the response-delay experiment and the perception-
delay experiments, however, are not identical. Both the initial response
of the system to shock and the amplitude of the cycles (though not their
period) are much greater in the response-delay experiment. Recall that
the time shapes of the delay in perception and in response were specified
to be different (that is, a first-order delay of perception and a third-order
delay of response). Because the third-order delay responds more slowly
at first than the first-order delay, the impact of the shock on the system is
greater. Because this latency of response persists, the speed with which
the system adjusts to its overcompensating mistakes is also slower, so
cycles of overadjustment are more severe in the presence of this form of
delay. The comparison of the second and third panels of the figure
should suggest that the theorist’s specification of the time shape of the
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 relations among variables in dynamic systems is just as important as
their choice about the form of the functional relations. Differing forms
- of time relations produce different time shapes in feedback systems, just
. a8 they do in stimulus-response systems.

Finally, let’s see what happens when both delays of perception and
delays of response operate simultaneously. These results are shown in
the fourth panel of the figure. The consequences are striking, and
important for thinking about human systems that often contain
multiple sources of delay.

~ First, note that the system reaches a (slightly) higher level immediately

. after the initial shock in this experiment than in any of the others. The

. system is slow to perceive the full magnitude of the exogenous shock, as
it was in the second panel; to this is added a slow response to the
misperceived gap, as in the third panel. Consequently, the immediate
response to the exogenous shock is additively dampened by the two
delays.

Second, note that the period of the oscillations in the experiment with
two delays (of average length of three each) is much greater (roughly
double) than in the experiments with a single delay. Multiple delays in
feedback loops interact multiplicatively to increase response times.
From this fact follows the third important thing to notice about the
results of the last experiment.

The system in the last panel of the figure is not approaching
equilibrium over time. Note that the successive peaks and valleys of both
the system level and the feedback process are further and further away
from the goal level. As a direct consequence of the delay, a negative
feedback system that would otherwise tend toward stable equilibrium
Bow tends toward disequilibrium. In this case (though not generally for
systems with multiple delays) the total delay is sufficient that the
feedback loop tends to deepen each crisis, accentuating movements
away from equilibrium.

- Lest this seem a trivial and contrived example, it has been argued that
federal monetary policy has, on occasion, suffered from the same type of
dynamic. Efforts to slow inflation, because of lags in perceiving the rate
of change in the economy and because of lags in implementing policy,
may end up restricting money supply at the wrong time, leading to even
more severe recessions than would have otherwise occurred.

* The central points of this experiment are that the consequences of
delay in feedback systems are fundamentally different from the
consequences of delay in simple stimulus-response systems. Because
action is self-referencing in feedback systems, misperception, latency,
and other forms of lagged response tend to lead to distortions and

o -
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overadjustments. This is because the effects of delays and distortions are
multiplied through the system over time, just as all other signals are, by
feedback loops. The consequences of delays for the dynamic tendencies
of complex systems can in some cases be rather difficult to anticipate. If
delays are of sufficient magnitude or of certain periods relative to the
dynamic relations among variables, systems that would otherwise
appear to tend toward equilibrium may not, and systems that may
appear to have self-destructive tendencies may never realize them.

Conclusions

In this chapter we have examined the dynamics of a variety of
abstract systems, ranging from very simple to slightly more complex. In
particular, we have discussed a hierarchy of types of control structures
of systems that can serve as an aid to thinking about, and building
formal theories of social action.

The least complex systems considered here are those whose over-time
behavior is due solely to responses to exogenous variables—what we
have termed “stimulus-response” or “dumb” control structures. Con-
served systems governed by stimulus-response control structures have
distinctive dynamic tendencies that differ from those of systems
governed by more elaborate control structures. Because of the operation
of conservation, such systems respond to constant inputs with linear
change, to trend input with exponential change, and to shock with
stepwise change. “Delay” or nonlinearity in the time shapes of
relationships in such systems result in varying degrees and forms of
smoothed or dampened response to environmental changes. If the
delays are of substantial magnitude, the system may never attain full
realization of the impacts of environmental variables.

We also examined the dynamic behavior of systems governed by
several more complex forms of control structures. The behavior of
social actors may sometimes be more effectively captured if we regard
the actors as self-referencing, goal-referencing, or even goal-setting, in
addition to environment-referencing. The fundamental dynamic behav-
ior of systems governed by structures of these types are fundamentally
different from those of stimulus-response systems.

All more-complex control structures involve feedback. We have
distinguished here between feedback that makes reference only to the
current state of the system (self-referencing), feedback that makes
reference to goal states as well as the current state of the system (goal-
referencing), and feedback that modifies goals as well makes reference
to them in controlling rates of change (goal-setting or adaptive systems).
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The presence of feedback in the control structure of systems implies the
multiplication and interaction of causal factors, as opposed to the
simple addition of stimulus-response systems. That is, each change that
occurs in a feedback system is also a cause of further change in the
system.

Each loop (that is, feedback structure) can have a tendency to move
the system toward a goal or away from a goal (the goal states themselves,
of course, may be changing in the more complicated variants of
feedback systems). The over-time behavior of feedback systems is
fundamentally determined by the tendencies of these loops to move
toward goal states (negative feedback), or to diverge from them (positive
feedback). The behavior of a system governed by multiple feedbacks of
both positive and negative characters as well as responses to environ-
mental stimuli may be too complex to understand intuitively, but is
decomposable into the interaction of the fundamental tendencies of the
simple response and feedback response that make up the control
structure,

Nonlinear causal relations and incomplete realizations—delays—
also have different effects in systems governed by feedback than they do
in stimulus-response systems. In feedback systems, delay in perception
of change or delay in response to change can have nonintuitive effects.
In negative (goal-seeking) systems, delay causes “overcorrection” and
sets off cycles of oscillatory behavior. Usually such disruption slows the
realization of movement toward equilibrium inherent in negative
feedback loops; if the delay is sufficient in intensity, however, a tendency
toward ever-deepening cycles can be generated.

We have, quite deliberately, kept the discussion of the dynamics of
control structures at a very abstract level. It is quite important to
.understand the range of alternative types of control structures in the
abstract because they are very useful “ideal types” that can be used by
theorists in specifying the dynamics of patterns of social action of
particular interest. It is quite important to understand the fundamental
dynamic tendencies of these abstract systems to improve our under-
standing of the behavior of “real” systems, whether naturally occurring
or artificial. As we shall see in the next chapter, interesting patterns of
social action can be analyzed and theories about them built up from the
application of these abstract tools with little difficulty.

Notes

1. The notion of “control” structures is central to all systems analysis and cybernetic thinking. The
rader may be interested in examining some of the classic works in this tradition to get a sense of how
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“systems™ approaches use the notion of control as the basis for the classification of systems. See
particularly Ashby (1958, 1962), Bayless (1966), Bellman (1961), Berrien (1968), Bertalanffy (1968),
Cannon (1939), Foerster and Zopf (1962), Kremyanskiy (1960), Maruyama (1968), von Neumann
(1951), Schank and Colby (1973), Schutzenberger (1954), Simon (1957, 1969, 1981), Sommerhoff
(1969), and Weiner (1948).

2. There is no single consensual classification of types of control systems. The schema presented in
this chapter is peculiar to the author, but is at least broadly consistent with the approaches of most
writers in systems theory and cybernetics.

3. Theory and research on the development of single organizations and populations of
organizations in management and sociology has advanced a number of interesting dynamic theories
that emphasize relatively simple control structures. Some focus more on self-referencing growth, others
more on exogencous sources. For examples, see Anderson and Warkov (1961), Blau (1970),
Cadwallader (1959), Campbell (1962, 1965), Cyert et al. (1971), Cyert and March (1963), Emery and
Trist (1965), Haire (1959), Hummon (1971), Land (1975), and Simon (1947).

4. We have not provided the DYNAMO code for these simple experiments in appendicies (as we
will do from time to time). The core of the models are as shown in the text.

5. The integrating, discrete, and continuous delay processes discussed here in terms of simulation
methods are also dealt with statistically (Box-Jenkins, ARIMA, and Spectral models), and
mathematically (stochastic processes and Fourier series). With regard to the latter, see Bartholomew
(1973) and Doreian and Hummon (1976).

6. There are many excellent texts on the dynamics of feedback systems. Perhaps the most
accessable to social scientists are those of Forrester (1968), Roberts et al. (1983), and Richardson and
Pugh (1981).

7. Such models involve nonconstant coefficients, and are only now making their appearance in the
statistical literatures in the various social sciences.

APPENDIX 6.1. Feedback and Delay Models

* DELAY AND FEEDBACK EXAMPLES

NOTE

NOTE ALL FOUR SYSTEMS HAVE STRONG NEGATIVE FEEDBACK

NOTE SUCH THAT .75 OF THE DIFFERENCE BETWEEN THE CURRENT
NOTE STATE OF THE SYSTEMS AND THEIR GOAL STATES IS CLOSED
NOTE IN EACH TIME PERIOD. EACH MODEL IS INITIALIZED AT

NOTE EQUILIBRIUM AND THEN SHOCKED TO TEST TRANSIENT RESPONSE
NOTE

NOTE MODEL ONE IS SIMPLE NEGATIVE FEEDBACK

L YLK=YLJHDT)RILJK)

N Y1=50

R RILLKL = ENV.K+FEEDI1 K

A FEEDI.K = (-.75(Y1.K-GOAL)

NOTE MODEL TWO HAS A FIRST ORDER DELAY OF 3 UNITS LENGTH
L Y2.K = Y2JHDT)RI2JK)

N Y2=50

R RI2.KL = ENV.K+FEED2.K

A FEED2.K = (-.7S{DELAY1((Y2.K-GOAL),3))

NOTE MODEL THREE HAS A THIRD-ORDER DELAY OF 3 UNITS LENGTH
L Y3.K = Y3.J+(DT)(RI3.JK)

N Y3=50

R RI3.KL =ENV.K+FEED3.K
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A FEED3.K = DELAY3(((-.75)(Y3.K-GOAL)),3)

. NOTE MODEL FOUR APPLIES A THIRD-ORDER DELAY OF 3 UNITS

- NOTE LENGTH TO A SIGNAL THAT HAS A FIRST-ORDER DELAY OF 3
NOTE UNITS

L Y4.K = Y4.JHDT)(RI4.JK)

N Y4 =50

R RI4.KL = ENV.K+FEED4.K

A FEED4.K = DELAY3((-.75)(DELAY I((Y4.K-GOAL),3)),3)

- NOTE THE ENVIRONMENTAL STIMULUS TO ALL FOUR MODELS IS
' NOTE SET AS A PULSE OF MAGNITUDE 25 AT TIME 3
A ENV.K = PULSE(25,3,50)
- NOTE THE GOAL STATE FOR ALL FOUR MODELS IS SET TO BE EQUAL
NOTE TO THE INITIAL LEVEL OF 50 UNITS
C GOAL = 50
NOTE OUTPUT SPECIFICATIONS
SPEC DT =.1/LENGTH =20/ PRTPER = 1/PLTPER = |
NOTE INTEGRATION INTERVAL IS SET TO 1/10 TIME UNIT.
- NOTE SMALLER INTEGRATION INTERVALS ARE NECESSARY
NOTE TO ATTAIN ACCURACY IN SYSTEMS WITH DELAYS
NOTE THE SIMULATION IS TO RUN FOR 20 TIME UNITS
NOTE TABULAR AND PLOT OUTPUT IS TO BE PRODUCED FOR
NOTE EACH TIME POINT
PRINT Y1/Y2/Y3/Y4
NOTE PRINT VALUES FOR THE OUTPUT SERIES
PLOT Y1 = %(46,56)/ FEEDI = #(-2,4)
NOTE PLOT Y1 USING THE * SYMBOL ON A Y AXIS WITH 46 AND 56
NOTE AS MINIMA AND MAXIMA. ON THE SAME PLOT, PLOT FEEDI
NOTE WITH THE SYMBOL # WITH -2 AND 4 AS MINIMA AND MAXIMA
- PLOT Y2 = %(46,56)/ FEED2 = #(-2,4)
NOTE PRODUCE A SIMILAR PLOT FOR MODEL TWO
PLOT Y3 = #(46,56)/ FEED3 = #(-2,4)
PLOT Y4 = *(46,56)/ FEED4 = #(-2,4)
RUN
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