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The Toolbox: Special Functions
for Dynamic Models

In the process of formulating dynamic mdédels of social systems, certain
kinds of relations occur with great frequency. The DYNAMO language
has created convenient shorthand versions of a number of such
formalisms that speed the process of theory specification. While it is not
our purpose here to provide a user’s guide to the DYNAMO language, it
will be helpful if we briefly introduce some of the most commonly used
tools in expressing dynamic relations.! This quick overview will both
help the reader to understand the models used for illustration in later
chapters, and give a sense of the kinds of relations that frequently used in
discussing dynamics. Again, the “semimathematical” nature of these
functions acts as a bridge between everyday language and mathematics
for the theorist-——making formalization a more or less normal part of the
task of theorizing about the causes of change in soc:al structures.

Describing Relations Among State-Space Elements

A key task in the formalization of any theory is the specification of
the forms of the relationships among the elements of the state space. In
~ the early stages of constructing a theory it is sufficient to list the elements
of the state space (that is, the “concepts” or “variables™) and to map the
connectivity of the space—that is, which states are and are not direct
causes of change in other states. To say that two variables are connected,
or even that one is a cause of the other, however, is hardly sufficient. In
order to understand how a variable changes over time, and potentially
make predictions about its time course, we must know how vanables
affect it, not s:mply that they do.

We have, in fact, a variety of very useful tools for dcscnbmg the
relationships among state space elements. The relations among many
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ltate space elements can be rather conveniently expressed using simple
‘mathematical terms; addition, subtraction, division, multiplication, and
“exponentiation. A large variety of linear and nonlinear relations among
_Quantitative (continuous) states can be captured with such terms. In
“addition to normal mathematical functions, the DYNAMO language
- secept trigonometric functions. Thus, for example, one might wish to
- dreate a “test pattern“ to examine the responsiveness of a model using a
tme wave of a certain amplitude and period. '
~ In addition to the normal armament of mathematical and tngono-
metnc functions, the DYNAMO language allows one to “draw” pictures
 of relationships between continuous variables (and “time,” of course isa
i . eontinuous variable) using a TABLE function. The table function
mms as arguments sets of points (X,Y) that describe any continuous
ulatmn, and perform interpolation between the pmnts It is particularly
* useful for describing relationships among quantitative variables that are
: : fundamentally nonlinear (e.g., having more than one “bend”), or which
* have upper or lower limits (as in the case of an S-shaped curve).
¢ . For example, an S-shaped relationship between the variable X and
time could be expressed like this in DYNAMO:

i A XK =TABLE(XTAB,TIME,0,10,1)

T XTAB 0/.5/1. S/S 0/4 0/3. 0[6 0/7.0/8. 5/9 5/10

The first statement says that the value of X is to be defined by a table
called XTAB, in which the horizontal dimension is TIME. TIME ranges
from 0 to 10, and a value of X wiil be supplied for each unit increment of
TIME. The second statement provides the values of X that correspond
to the values of TIME from 0 to 10, respectively.

One reason why many social scientists do not “formalize” their
theoms is a hesitancy to use mathematical forms to express relations
‘among state variables. Many kinds of relations among states in models
of sociological models, however, are fundamentally “qualitative™ or
Jogical relations—rather than “quantitative” or mathematical relations.
‘The DYNAMO language (and most others designed for “mixed” or
discrete state modeling) prov:des a useful set of shorthand functions for
describing quahtatwc relations, in addition to the mathematlcal func-
uons for describing quantitative relations.

.: The MIN and MAX functions select either the smaller or the larger of
8 pair of values—providing one mechanism for expressing conditional
md limited rclauonshlps For example, the statement.

A YKs= MAX(O,MIN(X K,100))
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first selects the smailer of the current value of X or 100, and then selects

the larger of this result or 0 to be the current value of Y. That is, the

" function sets Y equal to X, except that Y cannot be smaller than 0 nor
larger than 100. - -

The more general form of logical functions is also provided by the
CLIP function, which is a simple “if, then, else” type of test (a specialized
form the SWITCH statement, tests for arguments being equal to zero).
For example, the statement:

A Y.K = CLIP(FUNCTI,FUNCT2, THRESH K,100)

‘sets the current of value of Y equal to FUNCT! (which could be a
constant, a variable, a conditional statement, or whatever) if the value of
THRESH.K is greater than or equal to 100; it sets the current value of
Y X to FUNCT2 if THRESH.K is less than 100. | | |

The clip function is a very useful tool for modeling relationships that
change, depending on the values of other processes. In our model of the
elements of Marx’s theory of capitalism, f or example (see Chapter 13),a
simple logical test is used to determine whether the strength of the
working class exceeds that of the capitalist class. If the workers are
stronger, 8 number of the fundamental relationships in the model
«switch™ The state is now regarded as controlied by workers, capitalists
are eliminated, and profit and exploitation of surplus value are reduced
to zero. - |

It is possible then to use logical functions both to describe the
relations among qualitative variables, and to include qualitative change
as well as quantitative change in the dynamic theory. This capacity gives
much greater flexibility than the language of statistical models which, by
and large, are required to have time-invariant coefficients.?

A major advantage of such “semimathematical” languages as
DYNAMO for formalizing theory lies in the case and precision with.
which they allow the statement of hypotheses about the relations among
variables. The availability of both logical (qualitative} and mathematical
(quantitative) functions make the task of expressing even very compii-
cated ideas about relations among variables rather straightforward. The
language requires theory builders be more precise than they might have
been had they used everyday language to discuss how variables are
connected. This can only be an improvement. Formalized statements
about how elements of a state space are connected may be illogical, and
" they may be inconsistent with empirical evidence, but they are not
:sdeterminate. One of the joys and frustrations of everyday language for
describing relations among states is that such statements can be 5o
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imprcclse as to allow virtually any empirical result to be judged to be
‘gonsistent (or inconsistent) with the theory. |
% Semimathematical languages such as DYNAMO provide consider-
i;‘-lbl& case and flexibility in specifying relations. Complex expressions are
-implified by breaking them down into sequences of simpler relations:

“Levels are determined by multiple “rates,” each of which is determined
“by multiple “auxiliaries,” each of which, in turn, is determined by other
‘Jévels, rates, and auxiliaries until, at some point, the circle is closed. The
“languages allow both qualitative (if-then-else, and/or) relations and
“fuantitative relations (either linear or nonlinear), as well as providing
“the possibility of creating specialized jargon to express particular forms
“of relations.? The resulting statements about how variables “go together”
'do not read as well as English—but are far less ambiguous. The

-ftatements also tend to be far more intelligible than parallel statements
-in the language of sets, formal logic, algebra, or differential equations.

:..r-_ .
LT

**’ Special Functions for Dynamic Analysis: Delays

‘i In formalizing theories about explicitly dynamic relations among
variables there is a need for additional specialized vocabulary. The
‘particular nature of theory about dynamics is that we are greatly
“concerned with processes that occur over time. It follows that we need a
_yocabulary for describing connections among variables that directly
-address the “time-shape” of the effect of causal variables on response
‘variables.

*. The most fundamental “time function” necessary for specifying
ftheonea about dynamic relations has already been discussed. It 1s so well
‘hidden in the basic vocabulary and syntax of DYNAMO and similar
| hnguagcs that the theorist (rightly) has to give them little thought. This
;"ipeclal dynamic function” is integration with respect to time, and is an
‘sutomatic part of the use of “level” and “rate” equations. “Integration
with respect to time” can be thought of as the simplest form of over-time
relation. It says, for example, that the amount of change in some
‘{dependent) variable Y over a period of time (e.g., between “J”and “K™)
i the summing up or accumulation of signals received from some
{eausal) variable X over the time interval. These “signals” are sent at
*ntes that are dependent upon other things {(auxiliaries). The “inte-
-grating function” that is a part of the syntax of “levels” and “rates,” then,
;;il expressing a particular form of relation among states that occurs over
{ime: the continuous accumulation of causal impacts that occur at ratcs
}mciﬁed by uthcr variables.
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Tn most semimathematical languages for describing dynamic relations,
another special function for dealing with the time-shape of effects is
provided: the “lag.” A “lag” suggests that the “signal” or causal force
emitted by a variable at one point in time has an instantaneous effect on
the receiving variable after a fixed interval of time has passed. Thus, it
might be convenient to specify a dynamic relation between two states as
follows: The number of persons who are 25 years old on Nov. 12, 1976is
equal to the number who where 24 years old on Nov. 12, 1975, lagged by
one year (assuming no deaths, etc.). Because of its strong bias toward
~ continuous time functions (as opposed to the discrete time function ofa
lag), the DYNAMO language does not directly and easily provide for
the specification of “lags.™ | | S

The “continuous integration” and “lag” time functions can be
thought of as two rather distinctive “time-shapes™ of responses to
stimuli. In integration, a change in the independent or stimulus variable
is responded to in a cumulative and linear fashion until the full impact
has been realized; in a lagged response, the dependent variable does not
change at all for a specified period, then reaches its full realization
instantly. These time shapes are illustrated in the Figure 4.1.

There is no necessity that the time-shapes of the rejationships among
variables be restricted to these two simple forms. Indeed, some of the
most interesting aspects of the over-time behavior of states in models of
social action and interaction are consequences of the time-shapes of
responses to stimuli. As in modeling static relations a linear approxima-
tion is often “good enough” to capture the essentials of a more complex
pattern, continuous integration is often “good enough” in dynamic
models for rough and ready theory exploration. |

The DYNAMO language provides shorthand functions fortwo other
common time shapes: first- and third-order exponential delays. A first-
order delay shows immediate response to a stimulus, with exponential
decline thereafter. A third-order delay displays an initial “lag” period of
little response, followed by a rapid increase and a slow decline.’ These
time shapes are shown in Figure 4.2: - | |

Four particular functions are provided in the DYNAMO language
for first- and third-order delays of material and informational quantities:
DELAY!, DELAY3, SMOOTH, and DLINF3. Material delays con-
serve the quantity “in transit” in a delay if the length of the delay
changes; informational delays do not conserve the quantities in the
delay. This is of consequence only if the average length of the delay is
specified to be a variable (for example, the length of the delay in
- nformation reaching the top of an organization changes proportional
to the number of levels in the organization). |
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i Delays can be used in dcscnbmg relations among material or
hfamational quantities, and have a quite simple syntax, for example
lhc statement:

;h A YK= DELAY3(X.K 5)

.?Jr

---- uys that the value of Y at'time K is rcsponswe to the value of X by a time
cshape of a third-order exponential delay (that is, S-shaped), with an
gi%l‘age delay time of five units. Thus, both the form and the magnitude
:of the delay are specified in a single statement,

4. In practice, the distinction between material and informational
Eﬁﬂlaya is seldom of great consequence; the choice of the time-shape of
?myonse (that 1s, first, third, infinite, or some other order) can be
mrnmly consequential. Theorists have rarely given attention to the
‘question of the time-shape of the relations among variables because they
.have been primarily concerned with static or equilibrium analysis.
Agnzn, the DYNAMO language helps, requiring that the theory builder
‘mak him/herself specifying questions about the nature of the dynamic
ielmons among the states in the theory: Given that a change in X causes
iﬁhange in Y, how s this stimulus realized in a response over time? How
%ﬂgdnes it take for the full effects of each change in X to be realized in
L’mponscs in Y (that is, what is the period of the delay)? Does Y begin
mmndmg immediately and then approach its full realization asympto-
tically (as in a first-order delay)? Is the response initially low, but
%ﬁreasmg at a decreasing rate thereafter (as in asecond-order delay)? Is
hitial response low, but then accelerating and finally decelerating (as in
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Figure 4.2: Delayed responses to unit impulse.

a third-order delay)? Is there no response at all for a fixed period, and
then an instantaneous adjustment (asin a lag or high-order exponential
delay)? . -

" Intheorizing about dynamics, we must specify not only the functional
form of relations among variables (i.c., linear additive, if-then, or
whatever) but also the time-shape of the relationship. There are many
possible time shapes that can be specificd and analyzed using mathemat-
.cal formalisms, but the vocabularies of time relations in mathematics
are very difficult. On the other hand, the everyday language of the
theorist is often insufficiently specific in describing the time-shapes of
responses. Vagueness will not do, for, as we shall see in later chapters,
the time-shapes of responses have very important impacts on over-time
behavior. The language of “delays” in DYNAMO is one useful
shorthand for specifying the most common forms of time relations.

Ghosts Within the Machine: Noise

' Formalizations of theories utilizing statistical terminology (¢.g., the
general linear model) routinely include “residual” or “error” terms as
independent variables. In assessing how well such models can account
for observations, we frequently find that the residual term is by far the
largest of the variance components. In constructing models of dynamic
relations with semimathematical languages, it is also useful to consider
~ the role played by “noise,” “error,” and “fesidual sources” The

' DYNAMO language (and other similar languages) provide shorthand
tools for this purpose. Theories that are stated in logical deductive terms
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“bhave similar caveats. When we say that a change in X produces a change
“inY, all else being equal, we are admitting that the relationship between
'3 x and Y will not always be realized perfectly.

- Like delay, noise plays a very important role in dynamic relations.
| Thls role is somewhat different than that of the “residual” in static and
. ponrecursive models. Consider the static model:

Y=a+bX+e

-
Thls “sentence” says that the score on Y at a given point in time is equal
sﬁa some constant amount (a), plus some amount that is a function (b) of
‘the score on X at the same time point, plus some random error (usually
g.mh an expected value of zero, and a normal distribution), The “error”
‘gomponent here is conceptually simple: It represents a separate source
: of variations in the scores across realizations (observations) of Y.

* Things change a bit when we consider a dynamic (in this case lagged
Ind conserved) relation: -

Yiui = a+ b (Yt) + b (Xt)-"' €

~That is, the score on Y at the second time point is a linear additive
function of a constant, the score at the previous point in time
~{conservation), the score on an independent variable (X) at the previous
-point in time, and “error.” Now, at each point in time the actual value of
-thestate Y is composed of all of these components. As a result, the score
-an Y ateach later time point is a function of past “errors” as well as past
‘scores on Y and X. If “errors” are truly random with a mean value of
j’jﬂro, this is not a problem for understanding why Y changes the way it
‘does over time. But the particular value of Y at each point in time is
:i-flﬂmtwhat indeterminate due to both current and past errors. That is,
Merrors” remain in the system over time and may cause the time-track of
Y to differ from what we would have expected had there been no error.¢
i If we made our simple statistical model fully recursive (that is, with X
5': susing changes in Y and Y causing changes in X), the role that error
?ﬁays is still more complex. In that case (and we won’t burden you with
‘Ahe equations), the random-error component of each variable at each
point in time is “muluphed“ through the system, so that scores on both
XandY atlater points in time are a function of earlier scoreson X and Y
*]nd earlier errorsin X and Y,

4 Most of the systems that we will be cnnsu:lermg in the later Ghapters of
ﬂlll volume represent patterns of dynamic relations among states that

m at lcast as cﬂmplex as this last case of statistical models. The role that




i

78 - | - Computer-Assisted Theory Building

noise and error play in systems with nonlinear and feedback relations is
often very difficult to deduce directly. Consequently, the normal
strategy for dealing with erroris to ignore it in the early stages of model
formulation, and then add it to the modelina controlled and systematic
‘manner to understand its consequences (more on such simulation
approaches to analyzing complex theories below). The DYNAMO
language (as do most others) makes this a relatively simple process by
providing two functions that generate pseudorandom noise. The
NOISE function is a simple white noise generator (that is, it produces
random numbers); the NORMRN function generates normally distri-
buted random numbers with a mean and standard deviation sclected by
the analyst. With some cleverness, other noise patterns can be created if
‘they are needed. For example, one might specify: o

L YK= (PARMI*Y.J)+(PARm*x.JyNORMRN(o,1'0)

That is, the level of Y at time K is equal to the autoregressive effect
(PARM1) of its value at the previous point in time, plus the lagged effect
(PARM2) of the value of X at the previous time, plus an error
component of normally distributed noise having a mean of 0 and a
standard deviation of 10 units. .

Ghosts Without the Machine: Test Functions

The purpose of constructing formal theories.of dynamic processes is
{o gain an understanding of the dynamic consequences of the relations
among the elements of the state space. In models involving large state
spaces, with high connectivity and nonlinear, delayed, noisy, and
tecdback relations among the states, the dynamic behavior of the theory
can be very difficult to deduce directly. In such complex cases,
understanding and analysis of the theory can best be accomplished by
simulation. We wilt deal with this approach at lengthin the next chapter.

The last group of shorthand functions provided by most semimathe-
matical languages for formalizing continuous state continuous time
dynamics are “test patterns” used (primarily) in simulating the over-time
consequences of the theory. In understanding by simulating, the basic
procedure is to subject the formal model of the state space and relations

among state space clements to “shocks,” and to observe the consequences.
DYNAMO provides some useful tools for creating such shocks.

It is frequently useful to subject models to shocks that are composed
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of “white noise,” random noise, constants, or simple mathematical
functions such as sine waves. We have already considered the vocabulary
necessary to create these tests. In addition, three other test patterns are
“particularly useful: PULSEs, STEPs, and RAMDPs,

. PULSESs consist of instantaneous shocks of specified magnitude and
timing, and are useful for assessing the “transient response” of models
{more on transient response in the next chapter). For example, the
“statement:

A TESTK = PULSE(10/DT.5,15)

_creates a test signal of a total magnitude of 10 units (it is necessary to
divide the desired magnitude of the shock by the size of the integration
“interval “DT™” to take the fineness of the integration into account;
- alternatively one could leave the first parameter as a raw number, which
-would set the value of the “peak” of the shock, but not its total
“magnitude, which would vary with the size of DT). This shock occurs for
"ﬂl& first time at TIME = 5 and occurs every 15 time units thereafter.

= We can often learn a good bit about the behavior of our theory by
f'lubjﬂctmg it to sudden discrete changes in exogenous stimuli by use of
‘STEP functions, or to stimuli that are continuously increasing or
;-_Ejdacrcasmg over time, by use of RAMP functions.

- 'The statement

A TEST.X = STEP(10,5)

5?‘?_[0:' example, creates a test signal that has a value of 0 (by default) until
‘time point 5, and 10 units thereafter. The statement:

A TESTK=RAMP(,10)

ff-m'tsatcs a test signal that is 0 (by default) for the first 10 time points and
‘{ncreases by 5 units for each unit of time thereafter.

- Virtually any pattern of stimuli can be generated by clever use of the
'PULSE, STEP, and RAMP functions. In addition to using such signals
for sensitivity experiments, such shocks can be important parts of
‘models in other ways. Exogenous shock patterns can be used to model
Bhangcs in éxogenous stimuli (the model in Chapter 10 does this), and
*‘m be used to schedule the occurrence of exogenous events or unusual
‘¢hanges in relations among endogenous varlables that are time

dependent
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- Conclusions

The purpose of this brief chapter has been to introduce some of the
vocabulary that can be of assistance in formalizing and assessing
dynamic relations. We have discussed a set of mathematical and logical
functions that are generally useful for describing relations among state
space elements. These functions are quite familiar. We have also
described a number of specialized functions that are less familiar, and
particularly useful for describing the forms of the “time shapes” of
relations among state space elements. | | |

One major and very important group of functions are DELAYS,
which can be used to describe how long it takes a change in one state to
be realized in a response in another state, and the form that the response
takes with respect to time. Responses can be constant with respect to
time (by use of the integration function DT), may begin sharply and then
-~ decline in intensity (for example, firsc-order exponential delays), may
begin slowly and then accelerate (as in third-order exponential delays),
or may be characterized by discrete lags (very high-order delays, or
“boxcars”). Theorists have rarely given much attention to the length of
time that it takes for causal processes to occur, or to the time shapes of
the processes. In dynamic models with feedback, however, these aspects
of the relations among variables can be extremely important. Delays
‘allow one fairly easy way of specifying some of the most common f
patterns. - . | 3

The other group of time functions that we have examined here are
most commonly used in testing models by subjecting them to shocks.
PULSEs, RAMPs, and STEPs are particularly useful for generating
test patterns for this purpose, though they can also be used to describe
(rather unusual) forms of relationships among variables. We have been
deliberately a bit vague about how these test functions are used in the
process of formulating and testing models of dynamic theories. As we
consider the general methodology of utilizing computer assisted simula-
tion in theory building, in the next chapter, their use will become much

clearer.

Notes

1. Thers are a number of excellent sonrces that are very helpful in learning the basics of the
computer language DYNAMO. To work effectively with DYNAMO, readers will aiso have to become
more familiar with the specifics of the program and its use. The most useful introductions are given by
Goodman (1974), Pugh {(1980), Pugh-Roberts Associates (1982}, and Roberts ¢t al, (1983).
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2. The DYNAMO language, while it has many useful functions, particularly for describing
noslinear and over-time relations, is rather inelegant with regard to discrete lags and certain logical
~ functions. Particularly annoying are the absence uf the “AND" and “OR" functmns and the rather

_peouliar form of the “IF-THEN-ELSE" operation.
X Themacro facility available in most versions of DYNAMO allows the user to create specialized
-functions of any complexity that can be called upon as specialized “jargon” in model construction.
4. Such afunction, however, can be created by use of a macro. In some versions of DYNAMO a
- upecialized “boxcar® or “pipeline” delay can be used to capture discrete delays with some effectiveness,
- DYNAMO is not particularly friendly to discrete time functions, which are extremely important in
- Iarge classes of dynamic models; see, for example, Takacs (1962).
| 3. Integration can also be thought of as a “zero-order” delay; discrete lags can also be thought of as
infinite-order delays,

6. Dealing with the complexities of such nver—t:me error processes and their consequences for the
siatistical estimation of parameters is the “bread and buiter” of econometrics, Any of a very large
number of econometrics texts can provide an excellent introduction to error processes and their effects
On parameter estimation.
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