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A Two-Party Game:
Arms Race Escalation

A good deal of theory about social dynamics is concerned with
situations that involve limited numbers of self-referencing actors in
goal-directed interaction. The “actors” involved may be individuals,
groups, organizations, or more extended forms; they may be “self-
referencing” in a wide variety of ways; and, they may “interact” by
responding directly to other actors or more indirectly by responding to
environmental conditions created by other actors.

In principle the dynamics of interaction of any degree of complexity
can be captured by coupling together the simple chains we examined in
the previous chapter. In the current chapter we will take a couple of
short but important steps in the direction of increasing complexity.
First, we will have multiple actors (in this case only two, to keep it
simple) who directly interact with one another. Second, we will make the
actors a bit “smarter”than they have been in previous models in terms of
the amounts of information that they take into account in formulating
action plans.

The model that we will develop in this chapter is very similar to many
others in various social sciences in that it deals with interaction among
small numbers of goal-oriented actors. While we will be concerned with
the particular two-party game of armed escalation, the current model
can also serve as a template for formulating models about interactions in
a small group context, among firms in a market, among governments,
and many other similar situations in which actors interact in the pursuit
of goals.!

Arms Races and Other Games

Social scientists have been interested for some time in a problem that
contains many of these kinds of dynamics of adjustment to the states of
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both one’s own and others’ systems: arms races and escalations of
conflict between parties. It takes a certain degree of perversity to group
models dealing with arms races into the same category of “games” as
“the prisoner’s dilemma” or chess. Nonetheless, as theoretical systems,
the problems are similar. Escalation models are good examples of
“smart” interaction between or among parties in that they are fully
dynamic and each party monitors the self, the environment, and other
actors. The particular context that we will consider—arms races—is, of
course, substantively important. It also differs from many other models
in the “game theoretic” tradition in that the interaction is positive sum
(or, in the case of arms races, negative sum). This is not a necessary part
of such models. For our purposes, it is sufficient that arms races be
reasonably thought of as essentially similar to most two or multiactor
“games” of this type: Each actor has goals, monitors their own and
others’ actions, and continuously modifies and updates strategy based
on changing conditions.

There are very substantial literatures that present and analyze
formalized “games.™ Formal mathematical models for many relatively
simple games have been created, and the problem of escalation and
competition between two actors has been subject to particularly close
scrutiny. The model of escalation in the interaction between two actors
that we develop below as a “systems dynamics” model has also been
extensively analyzed by mathematical means and subjected to empirical
testing.? We will begin by building a simple model of competitive
interaction between two actors that is formally identical to these
mathematical models. After we explore its properties we will then turn
to some of the additional possible specifications that our analysis of the
simple model suggests. In particular we shall be concerned with the
consequences of informational distortions and delays in complex
dynamic systems.

Developing the Baseline Model

Let us suppose that there are two actors (X and Y) and that each
possesses a stock of arms. Arms are created by transforming natural
resources at some rate over time, and become obsolete or useless after a
time and are discarded. Our system then is composed of two “sub-
systems”—the actors, each of which is characterized by a “state space”
composed of a single chain of material feed-forward relations—raw
materials are transformed into arms are transformed into scrap. These
parts of the model can be diagramed as in Figure 10.1.
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Figure 10.1: Chains for arms race model.

We are deliberately keeping the baseline model quite simple in a
number of ways so that we can understand the basic dynamics of this
interaction before moving to elaborations. We are assuming that only
two actors are involved in the interaction, we are assuming that each
actor’s resources are unlimited, and we are assuming that “scrap” is a
“sink.” None of these assumptions are necessary, but they are useful to
keep the model to its bare-bones structure.

From looking at Figure 10.1 it is apparent that the system thus far can
be represented as two “level” equations, each having two associated rate
components (that is, rates of transformation of raw materials into arms,
and rates of discard from the stock of arms to scrap). The level equations
are:
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L XK =XJHDT)(RIX.JK-RDX.JK)
L  Y.K=Y.J+(DTYRIY.JK-RDY.JK)

where X and Y are the current levels of arms of the two competitors.

Let's now examine the control structure surrounding each of these
chains, leaving aside—for the moment—how the chains are coupled
together. Take note of the strategy here, for we are following the same
approach as we did in the development of simpler models: First divide
the problem into subsystems, then identify the chains that couple the
states within each subsystem, then examine the control structure of each
process. Only after each of the “parts” is assembled are they be coupled
together.

The level of arms in each subsystem controlled by two decisions:
decisions about rates of arms construction and decisions about rates of
scrapping. We will assume that the important and interesting policy
decisions are “smart,” or “goal oriented and self referencing,” and
involve how rapidly arms will be built. The process of scrapping arms
will be treated as a simple physical process of constant decay of the stock
of arms:

R RDXKL = MAX(A1*X.K,0)
C Al =1

That is, the rate of decline in arms for actor X (RDX) will be equal to
10% (A1) of the current level of arms (X), but not less than 0. The same,
of course, holds for actor Y.

The “smart” decision making about the building of arms is more
complicated, and involves the monitoring of information. In order to
make each of these systems “dynamically self-referencing,” it is necessary
that some mechanisms be specified that describe how actors monitor
their own statuses. There are several possibilities: The level of resources
available could be monitored; the level of existing armaments could be
monitored; the level of scrap could be monitored; the rate of transfor-
mation of resources into armaments could be monitored; or, the rate of
transformation of armaments into scrap could be monitored. In real
world arms races actors probably monitor all of these states and rates
and combine the information in complex ways. We will keep the
baseline model simple by assuming that each actor monitors their own
stock of arms, and does so without distortion or delay.

“Smart” decision making also involves the comparison of the
monitored state (in this case, one’s level of arms) to some goal. Actions
are then based on perceived discrepancies between the actual and
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desired state of the levels. We will make the assumption that actors goals
are constants, and exogeneously determined. The most common such
assumption is that each party desires superiority to the other:

A DLAX = KX*YP.K
C KX=1.05

That is, actor X’s desired level of arms (DLAX) is equal to 105% (K X) of
the arms it perceives its opponent to possess (YP) at any point in time.
Actor Y formulates its goals in the same fashion.

The information that each actor has about its own level of arms (X) is
compared to the desired level of arms (DLAX) to produce a perceived
arms gap, which serves as the basis for action:

A GAPX.K = DLAX.K-X.K

The internal control system for each actor then can be summarized as
in Figure 10.2.

There is nothing new in this model so far. Each actor’s “subsystem”is
a single chain of three states governed by two rates—both of which
reference the level of arms, and one of which is “dumb” (scrapping) and
the other “smart.” _

Now we come to the key step. In order for this model to be a true
“dynamic interaction,” each actor must be paying attention to (moni-
toring) some aspect of the other’s system, and adjusting its behavior to
meet its goals in light of the changing behavior of the other. Again there
are choices. What aspects of the other’s system is monitored? How
accurate and speedy is the monitoring? What role does the monitored
information play in decision making?

We will begin by assuming, like most of the existing models of
escalations, that each actor monitors the level of arms of the other. This
is, of course, somewhat unrealistic, for the levels of the opponent’s
available resources and the rates at which the opponent is building arms
are also probably monitored. We will also assume, for our baseline, that
each actor has accurate and up-to-date information about the level of
the others arms:

A YPK=YK

That is, actor X perceives actor Y’s arms (YP) as identical to their true
current levels (Y).
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Figure 10.2: Control structure for arms production.

With this simple step in the specification, we have coupled the two
actors together into a more complex system. By making the desired level
of arms of each actor a result of the goals of the focal actor, the current
state of the focal actor’s system, and the current state of the other’s
system (as the focal actor perceives it), the two chains interact. We can
represent the full model by elaborating our diagram slightly, as in Figure
10.3.

The general structure of the diagram in Figure 10.3 is now familiar. It,
like all of the others to be presented in the remainder of the volume,
consists of “subsystems” composed of simple chains that are coupled
together by flows of monitored information.

As we have built it, the model—while highly interactive and
dynamic—is still very simple. A great deal of elaboration could be done
on each of its parts to make it more realistic. Some of these alternatives
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Figure 10.3: Arms race baseline model.

have, in fact, been explored in the theoretical and research literatures on
arms races, and we will explore and discuss some of the possible
extensions later on. For our current purposes, however, the model that
we've specified is sufficient: It shows two actors, each conscious of their
own condition and the condition of the other, each with goals (which we
have specified as being incompatible), interacting over time. In principle,
such a model can serve as a starting point for the formalization of
theories having to do with more actors, more complex state spaces for
cach, and more complexly coupled interactions. Before moving toward
such complicated models, however, there are some interesting dynamics
to be explored in the baseline model.
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Behavior of the Baseline Model

The dynamic behavior of the simplest possible forms of this game are
rather easy to anticipate. Answers to questions about equilibria and
sensitivity are available by direct solution, but we can also gain an
understanding of the behavior produced by our theory by simulatingit,
as we shall in a moment. But let’s think through the problem before
looking at the results. What factors might produce different outcomes?
What factors and connections are most “central” in the network of
variables describing the theory? What are the consequences of modifying
these central variables?

By looking at the diagram of the final model (Figure 10.3), it is clear
that the behavior of each of the chains is governed primarily by decisions
to build arms. The decision to build arms is also the point in the diagram
where the two nations “meet” or are connected—their resources, scrap,
and levels of arms don't connect, but the level of arms in each is a factor
in the decisions to build arms by the other.

The decisions about the rates at which arms are to be built, in turn,
depend on several things: the curreut level of arms in the focal nation,
the perceived level of arms in the competitor’s nation, and each nation’s
goals. To anticipate the dynamic behavior of this system then, we must
focus our attention on the decisions in each nation to build arms. In
turn, this requires us to ask how the current levels of arms in the focal
and competing nations and how the nations’ goals determine outcomes.

Each actor’s rate of arms building is a direct response to the gap
between its own level of armament and the level it desires. The rate of
change in arms building in each nation, then, is directly proportional to
the magnitude of this difference. The magnitude of the difference
depends in turn on past levels of arms building and on the goals of that
actor. Differences in the goals of the actors, then, would seem to be
critical to the dynamic behavior of the system. If each actor desires
superiority to the other (KX and KY > 1), escalation results. If each
actor should desire inferiority to the other (KX and KY < 1) a “race”
downward will result. If the actors have different goals, say one desiring
superiority while the other is satisfied with inferiority in arms, or if the
two actors desire exact parity, then stability over time would be implied.

According to our logical analysis of the diagram of the theory, the
levels of arms in the two nations and the goals of the two parties are the
keys to the dynamic behavior of this system. To explore the effects of
these factors, let’s design a series of experiments that vary the levels of
arms, and vary the goals of the actors while holding other factors
constant. The levels of arms possessed at any point in time will be set to
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be equal, favor actor X over actor Y, or vice versa. The goals of the
actors can also have several configurations: X and Y may seek
superiority, each may seek equality, or each may seek to have fewer arms
than the other.

Along one dimension our two actors, X and Y, divide 200 units of
arms either equally, or with a 3-to-1 superiority for one side or the other.
Along another dimension we vary the goals of the X and Y (labeled KX
and KY), which are expressed as their desired levels of arms as a
percentage of the arms of their opponent. We create four alternative
scenarios of the goals: Both actors desire equality, both actors desire
superiority, both actors desire inferiority, or one actor desires superiority
while the other desires inferiority. In Table 10.1 below, the levels of arms
present in each camp after 25 cycles of the model are reported.

The basic results of these simple interaction games are relatively easy
to anticipate and understand: (1) where both actors have the goal of
equality with the other, the equilibrium result is equality at a level
between the two starting points (here it is 100), (2) initial differences in
the levels of arms are rapidly adjusted away by increases in the arms of
the initially inferior player and declines in the arms of the initially
superior player, (3) where both actors desire superiority to the other,
“escalation” or exponential growth occurs, (4) where both actors desire
to reduce their arms to be less than those of those of their competitor, the
“arms race” leads downward, again regardless of initial levels. In
general, whether the characteristic behavior of the model is exponential
growth, exponential decline, or stability depends on the sum of the goals
of the actors and the ratio of these goals to each other.

These experiments give a good understanding of the characteristic
behavior of the baseline model. A stable level of armaments is achieved
where both actors desire equality, or where both desire inferiority.
Where both desire superiority, or the balance between the desire for
superiority by one is not exactly balanced by a desired inferiority on the
part of the other, unstable situations result., Where both desire
superiority, exponential growth ensues; where goals are unequal, either
unbounded growth or bounded decline ensue, depending on the ratio of
the goals. The levels of arms of the actors at the beginning of the race
make little difference in the baseline model: The equilibrium levels of the
processes are the same regardless of initial equality or inequality.

An Extension: Delays

There are a number of ways that the baseline model could be
extended and made more realistic. In the next section we will briefly
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TABLE 10.1 '
Baseline Escalation Model Results at t = 25
Initial Levels of Arms

X =100 X =150 X=50

Goals Y =100 Y =50 Y =150
KX =KY X =100 X =100 X =100
=1.00 Y =100 Y =100 Y =100
KX =KY X =350 X =348 X =348
=1.05 Y =350 Y =348 Y = 348
KX =KY X=29 X=29 X =29
= 95 Y=29 Y=29 Y =29
KX =1.05 X =99 X =98 X =101
KY = .95 Y =95 Y =93 Y =96

discuss some of the possibilities. One particular modification of the
basic game, however, is worth considering in some detail because of the
importance it has for understanding the dynamics of most social
interactions.

In the interactions among human actors, delays and distortion in
perception, communication, and action are usually present and can
have substantial consequences. In very simple systems the consequences
of delays and distortions are relatively easy to anticipate (as in our
discussion in the first part of this volume). In complex systems with
feedback, however, the consequences are not always so obvious. Now
that we have a firm grasp of the basic dynamics of a two-actor escalation
game we can modify our basic model to begin to understand how such
imperfections affect outcomes.

There are many kinds of delay and distortion that occur in
interactions. Actors may fail to perceive signals being sent, may be slow
in decoding them, and may lose part of the message (or add noise to the
message). Once a message is received and decoded it takes time for the
actor to make decisions. Indeed, the more complex the organization of
the actor the more likely it is that there will be a lengthy delay between
perception and action. Once a course of action has been decided there
are frequently delays (and sometimes errors as well) inimplementation.
To these “imperfections” in the capacities of each actor we must add
another factor. When two actors, each “imperfect,” base their actions on
the behavior (including signals given off) of the other, the errors, delays,
and distortions in interaction are multiplied by the interaction: A
incorrectly perceives what B is doing, makes a response that B perceives
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as inappropriate, which causes A to respond differently, etc. Such cycles
of misperception and consequent inappropriate action may make for
clever comedy, but may be somewhat less amusing when the interaction
in question may lead to a nuclear exchange. What might the conse-
quences be if such delays and distortions were introduced into our
escalation-interaction model?

To explore this question, let us first calculate two “baseline”
scenarios. We will assume that each actor has perfect information about
the other and is able to respond immediately and completely (as we have
been assuming thus far). We will further assume that each actor desires a
5% supremacy over the other and has unlimited capacity. When an actor
has more arms than he needs at a given point in time he does not get rid
of them—except for scrapping obsolete ones—but does not build more.
In the first baseline scenario the two actors each begin the game with 100
units of arms. In the second baseline scenario actor X begins with 150
units and actor Y with 50.

As in our analyses in the previous section, starting the actors with
equal levels of arms and equal desires to have superiority over the other
results in an exponential increase in the levels of arms of each and an
exponential increase in the gap between the level of arms that each has
and the number that it would deem satisfactory. Starting with 100 units
of arms each actor has acquired 331 units by the 25th time period and is
acquiring arms at a rate of 50 units per unit time. This is the classic
problem of escalation, as we have studied it above.

Initial inequality of arms compounds the problem. Where the actors
begin with equal desires to superiority but radically unequal initial levels
(X has 150 units initially to Y’s 50), both the level of arms accumulation
and the rates of accumulation for both actors are accelerated. By the
25th time point both actors have acquired 394 units of arms and are
building arms at a rate of 60 units per year at this time under the
leader-follower scenario.

Now let us suppose that there are no delays or errors in each actor’s
perceptions of their opponent’s level of arms, but that it is not possible to
immediately respond to perceived gaps. That is, let us suppose that it
takes some time to actually build the arms after it has been decided that
they are necessary. For current purposes we will use a simple first-order
exponential delay with a period of three time units (roughly, the actor
responds in such a way as to close the gap over a period of three units):

R RIXKL = DELAYI(MAX(GI1+GAPX.K+RDX.JK,0),3)

Thatis, X's rate of arms building (RIX) is a first-order exponential delay
of average length of three units (DELAY1,3) of the larger of two
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quantities. X builds arms at a rate sufficient to satisfy its feelings of
grievance or bellicosity (Gl), to replace arms that have depreciated
(RDX), and to close the gap it perceives between its current arms and its
goal (GAP). Arms, once created, are not destroyed even if they are not
“needed” (note the use of the MAX function to represent this effect).

When the actors begin the game with equal levels of arms, the effect of
a delay in producing new arms is to reduce the final levels of arms. The
exponential pattern of growth and growing gaps, however, persists.
When the actors begin the game with unequal arms, however, the
pattern of dynamic behavior is dramatically affected by a delay in arms
production. The actor who is far behind initially undertakes a massive
building program to attempt to close the gap. However, since the arms
are not immediately delivered, the opponent does not immediately
perceive the threat, and initially takes no action to maintain his
superiority. As the program of building on the part of the initially
inferior actor begins to reach its full realization, the initially superior
actor finally perceives the threat and begins his own building response.
However, since it takes time for these arms to be delivered, the first
actor—who was initially inferior—reaches his goal of superiority and
stops building. The resultant pattern is one of dampening cycles in
perceived gaps on the part of both actors and an unstable upward arms
race—as is shown in Figure 10.4.

It is also notable that the instability introduced by the delays in
building not only distorts the dynamic pattern but also the final
realization of the series. By the 25th time point in this scenario the total
arms possessed by each actor are much greater (570 units) and the rate of
building of new arms is somewhat greater (77 units per unit time) thanin
the equal initial-arms scenario. Thus we are led to an interesting result:
In the presence of initial equality, delays in response lead to a lower final
accumulation and no change in time pattern; in the presence of initial
disequilibrium, delays in building lead to an acceleration of the arms
race, and to cyclical instability in the time trace.

It also seems likely in an interaction of the type that we are modeling
that actors may not have access to perfect information about the status
of the other. Indeed, in arms races (and other forms of competition),
actors may find it in their interest to disguise their true strength (or
weakness), and hence gain an advantage over the other. Let us suppose
that each of the actors in our game is able to hide information, so that
the true levels of arms in each system become apparent to the other actor
only with delay. This delay can be modeled with the statement:

A  YPK =DELAYI(Y.K,3)

gl
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Figure 10.4: Delay in response in leader-follower model.
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That is, actor X perceives the level of Y’s arms with a first-order
exponential delay of three time periods. So that we can see the effect of
this kind of “perceptual” delay, we shall, for the moment, allow no
manufacturing delay.

In the scenario in which our two competitors begin with equal
resources, the major effect of a delay in perceiving changes in the arms
level of the other is to slow the general process of escalation. Because
each actor sees only a portion of the increase in the other’s arms in a
given time period, the (false) impression is formed that the other is
building arms more slowly than is the case. Each actor formulates their
own building program on the basis of this incorrect information and
hence creates less ambitious building plans than they would with a
correct pcrccption Since the level of arms actually built is less, the
perceived gap is cumulatively reduced. While arms escalation still
occurs, it occurs linearly, and the rate of increase in arms building is
greatly reduced. In this scenario the level of arms acquired by time point
25is only 138 by each actor, and arms are increasing at only 16 units per
year.

The effects of a “perception” delay are similar where the actors are
initially unequal. These results are displayed as Figure 10.5. The degree
of inequality in the initial positions of the actors is not fully perceived by
either, dampening their responses and dramatically slowing down (but
not eliminating) the tendency of each to “overshoot” in adjusting to the
other. As a result, the levels of arms acquired by the 25th time point are
much smaller (160) than those in the leader-follower scenario where the
delays were located in the “response” rather than the “perception.”

In real systems both perceptual and response types of delays operate
simultaneously. In the case where both forms of delay—perceptual and
response—are operating and the actors were initially equal, a complex
time trace is produced. The arms race is generally quite retarded by the
presence of the perception delay, but retains some of the cyclical
character due to the response delay. In the case where both delays are
present and the actors are initially unequal, another complex response
occurs. These results are shown in Figure 10.6.

Due to the initial inequality and the “acceleration” due to the delay in
the production of arms, a substantial stockpile of arms has been
acquired by the twenty-fifth time point (285). In addition, the presence
of both delays has markedly destabilized the interaction, leading to
continuing (though dampening) cycles of building and perceptions of

“gaps. L
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A summary of the results of these experiments with perceptual and
response delays is shown as Table 10.2.

We can reach a number of conclusions about the effects of delays on
the dynamics of competitive interaction from these results. In the case of
asystem in which the actors are initially equal, delays in perception and
response always result in lowering the rate of growth. Where the actors
are initially unequal, however, the effects of delays are not so
predictable. Response delays in this circumstance actually accelerate the
process of escalation. Under the particular rules of this game, competi-
tion between actors who are initially unequal generates more heated
races than does competition between equals. The presence of any delay
in a system not in “balance” tends to produce the general pattern of
overcompensation and cyclical behavior in the time paths of both
actors. In this game, the cycles dampen with time in all cases. Where the
presence of both delays in the system, however, dramatically slows the
rate at which the cycles dampen—that is, misperception and slowed
responses tend to reenforce one another in creating problems of
adjustment.

We are obviously still very far from an empirically adequate theory of
competitive interaction with this model. The results of even such a
simple game, however, are interesting—and not entirely obvious. The
primary lesson to be taken from this simple extension of the basic
model, for our current purposes, is that the delays, misperceptions, and
errors and slowness of response by actors in interaction can be highly
consequential for both the final realizations and time paths of interac-
tions. Such problems of communication and action are extremely
common in human action systems, and should therefore be part of the
list of things that theorists of social dynamics must specify in the process
of theory building.

Some Directions for Dynamic Theories of Competition

The primary purpose of constructing and analyzing the particular
theories of two-actor competition that we examined in this chapter is as
anillustration and exploration of the dynamics of social interaction. As
atheory of arms races specifically, one can readily imagine a number of
important ways in which the current model could be extended and made
more realistic. We will not pursue these elaborations here (the reader
may wish to, using the model provided in the Appendix as a starting
point), but some of the major possible directions are worth noting.

Let’s first consider the mechanics of arms production. A number of
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TABLE 10.2
Outcomes of Competitions with Delays

Levelsat t = 25 Ratesat t =25

Scenario: Actors Initially Equal (X =Y = 100)

No delays 331 50
Response delay 241 33
Perception delay 139 16
Both delays 139 15
Scenario: Actors Initially Unequal (X =150, Y =50)

No delays 394 60
Response delay 569 77
Perception delay 285 32
Both delays 160 18

simplifying assumptions have been made that might be relaxed. We
have assumed, for example, that all arms are identical. More complex
models (like those used by nuclear strategic defense planners) might
prefer to model the levels of several types of arms, perhaps having
relationships of substitutability (more ICBMs and less bombers, etc.).
The differing types of arms might have differing delays, differing
efficacy, and be subject to differing mechanisms of goal setting. The
decision-making process then becomes quite complex, as different
mixes of arms can be selected—resulting in an optimization problem.

In the same vein, we have assumed that the stock of arms becomes
obsolete at a constant rate and that obsolete arms are automatically
replaced. We might instead suppose that arms have a useful “half-life,”
so that the rate of obsolescence depends on the rate of building at prior
time points. The scrap rate might be regarded as manipulable as a result
of policy—accelerated to slow the accumulation of arms, or slowed to
achieve higher levels of current force. If multiple types of arms were
considered, differential obsolescence of different weapons types would
have to enter the decision-making matrix.

We have also not considered the problem of resource constraints and
resource competition. The rate of possible increase in arms and the total
amounts of arms that can be built may well be limited by the resources
available. The possibilities here are quite interesting. In addition to
absolute limitations imposed by resource availability, the costs and
delays of production may differ between actors due to these factors. The
competition for scarce resources between armaments and alternative
products calls for a more realistic picture of the political processes of our
actors. There may be some levels or rates of arms production that are
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not politically feasible, just as some levels and rates are not physically
feasible within natural resource constraints.

Our simple game also makes a series of highly simplified assumptions
about the informational aspects of the system, as well as about the
material. One can easily imagine alternative specifications about what is
monitored, how the information is processed, and how decisions are
made.

In the current model, each actor monitors only their own current level
of arms and the current level of arms of their opponent. We might
suppose that real decision makers have access to more information than
this. They might also pay attention to the rates of building of themselves
and their opponent and the rates of obsolescence, so that they make
decisions on the basis of their projections about the behavior of the
other—not merely on the basis of the observed behavior. Our decision
makers might also take into account their perceptions of the resource
limitations and limitations on the rates of arms building possible for
themselves and their opponents in making projections.

In the previous section we examined the effects of simple first-order
delays in the perception of and response to the opponent’s actions. The
results were rather dramatic and, in a few cases, somewhat unexpected.
The kinds of delays and distortions we considered above however, are
only a very small part of the range of possible informational imperfec-
tions that occur in such systems. In addition to simple delay, organiza-
tional systems often contain delays that vary randomly or systematically
with levels of the system (e.g., the more highly developed the technology,
the shorter the average perceptual delay). Informational systems are
often “noisy,” as well as filled with delay. Such noise can be quite
destabilizing in the dynamics of interaction—as it is sometimes amplified,
as well as dampened. Real bureaucratic decision makers also may take
considerable periods of time in making decisions—quite independently
of delays in perception and delays in response. As we have seen in the
example above, multiple delays in a system can have the consequence of
amplifying distortion and slowing the realizations of equilibrium
tendencies.

To all of this complexity about how information is really handled in
competitions between actors, we should add an additional very
troublesome possibility—that the actors are “intelligent” in how they
deal with information problems (research on organizational decision
making, however, does not always support the view that bureaucratic
actors deal intelligently with such problems).

Consider a problem that currently exists in the arms race between the
United States and the Soviet Union. Given the speed and accuracy of
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certain new missile types, deployment near the national boundaries of
the other actor reduces the available response time in the event of a first
strike. Being aware of the limited response time (that is, correctly
perceiving the degree of information processing delay in their own
system) each actor must adopt a more rapid decision-making method
than the one currently used (a highly specific and routinized plan with
executive veto). Each actor is tempted to program the decision making
into a microprocesser to meet the challenge. To make such a change,
however, eliminates discretion and judgment from the decision-making
process and may result in an “incorrect” response if any “noise” gets into
the monitoring and decision-making system. Since both actors are quite
aware that their systems for monitoring the behavior of the other (i.e.,
whether the other has, in fact, begun an attack) are slightly unreliable—
that is, they are aware of the existence or noise—each faces a dilemma.
Where lies the greater risk: in the new information processing technology
that is inflexible and hence subject to error due to noise, or in the old
technology, which is flexible and less sensitive to noise errors but is too
slow? We have, unfortunately, no answer to offer. The point for those
who would theorize about social interaction, however, can be taken:
Actors are sometimes aware of, and seek to take into account,
informational delays and distortions in designing systems and making
decisions. The introduction of such a high level of self-awareness into
the models of escalation considered here could produce systems with
dramatically different dynamics.

We have only considered the simplest possible ideas about goal
formation in the current model. We might first explore the consequences
of assuming more complicated goal setting algorithms on the part of our
actors. Leaders may not simply desire superiority, but might desire to
not see existing gaps narrowed. The goals may also be made a function
of other factors—and hence dynamic rather than static. For example,
actors may be less interested in superiority, and become willing to settle
for equality as the levels of arms of each reach very high levels, or as the
strain of building arms becomes too great (either as a function of
limitations of physical or of political resources). One can also imagine
that goal setting becomes “intelligent.” For example, an actor that falls
too far behind in the race may capitulate—ending the game. Or,
possibly, actors may adjust their goals due to internal political
considerations (i.c., nations may become more aggressive if they are
suffering from problems of internal order) or the behavior of the other
(e.g., being willing to accept a lesser degree of superiority when the
opponent is not closing an existing gap).



A Two-Party Game: Arms Race Escalation 245

Lastly, and importantly, our “game” is quite limited in that it takes
into account only two actors, and assumes that the two actors are quite
similar. Real arms races are often multiparty games, and the different
actors usually face quite different configurations of constraints. Ex-
panding the game to include multiple actors and allowing the actors to
differ in both their material and informational systems presents no
technical problem for constructing theories. The complexity of such
models, however, expands by law of combinations, not additively. For
each new actor the relations between that actor and all others in the
game must be specified: In a two-actor game, there is one such relation;
in a three-actor game, three; in a four-actor game, six, etc. The addition
of more actors may also realistically be expected to change the nature of
the game in fundamental ways. Each actor must now monitor, make
sense of, and respond to multiple stimuli—a far more complex and
indeterminant task. Where all of the actors in such games are connected,
each additional complexity, delay, or distortion also multiplies through
the system, producing still greater uncertainty.

The possibilities for elaborating and exploring theories of relatively
simple dynamic interactions among even relatively similar and simple
actors are numerous. Far from being intimidated by the range of
possibilities, however, theorists should see these possibilities as a
research agenda. By decomposing scenarios of social interaction into
the language of subsystems, states, rates, and coupling, even the most
complex forms of interaction are analyzable in formal terms.

Conclusions

Social interaction in general is complex, relative to the simple action
models considered in the earlier chapters. In an interaction each of the
parties monitors both the status of their own system and the system of
the others. The information derived from the mutual monitoring is used
by each actor, in conjunction with its own goals to formulate actions—
which in turn provide the basis for action on the part of others. Social
interactions are necessarily symbolic. Each actor must perceive, interpret,
and formulate goals and plans within the constraints of its own system
of meanings. But social interactions are also necessarily physical. It is
the action of each party that creates the field that is monitored and
interpreted by the other. The dynamics of social interactions are,
consequently, determined by both the material and informational
aspects of the system and its parts.
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As the model of the very simple interaction developed in this chapter
suggests, there is no basic difficulty in using the language of systems to
describe, formalize, and analyze the dynamic behavior of social
interaction. Indeed, patterns of social interaction can be seen as being
built up of the coupling together of actors through the exchange of
information. The actors may be many or few; they may each be
characterized by simple or complex state spaces; the connections among
the actors may be simple and sporadic or dense and multifaceted. All
such systems of interaction are potentially decomposable, and their
characteristic dynamics analyzable.

In the specific model developed in this chapter we've paid particular
attention to the role played by delays in systems. The reason for this
emphasis is that where concern focuses on dynamics rather than statics,
such imperfections in perceiving, organizing, and responding to infor-
mation can have major consequences. We have tried to make several
simple but important points about the effects of delays in models of
interaction. Depending on their nature and location in the systems,
delays can act either to dampen or to amplify. The presence of multiple
delays in a system can lead to unanticipated results as the delays may
either reenforce distortions or dampen them. The presence of delays in
interactions can result in extreme complexity and instability, as the
imperfections of information and consequent response are reenforced in
the dynamic interaction.

Notes

l. Theories involving the dynamics of smart interaction among relatively small numbers of actors
have been highly developed in a number of disciplines. In addition to formal “game theory" (see note 2),
the analysis of small-group dynamics and social exchange have extensively developed models that have
many similarities to those described in this chapter. The interested reader might want to look at some of
this work; some places to start are Bartos (1972), Blau (1964), Camilleri et al. (1972), Caplow (1968),
Cohen (1962), Coleman (1972), Davis (1967), Davis and Leinhardt (1972), Fararo (1972), Holland and
Leinhardt (1977), Hopkins (1964), Komorita (1974), Malone (1975), and Simpson (1973).

2. “Game Theory” is a set of particularly well-developed formalizations of interactions such as
those described in this chapter. For some of the interesting applications of formal game theory models,
see Ackoff (1959), Bloomfield and Padelford (1959), Brams (1975), Luce and Raiffa (1957), von
Neumann and Morganstern (1947), Raiffa (1970), Rapoport (1966), Rapoport and Chammah (1965),
Thrall et al. (1954), and Shubik (1964 and particularly 1984).

3. The arms race model in this chapter is based on the work of Lewis B. Richardson (1960), and the
extensive literature that has developed surrounding his original model. For an introduction to the
rather extensive theoretical, mathematical, and statistical literature on escalations, see Abelson (1963),
Alker and Brunner (1969), Boulding (1962), Brody(1963), Brody and Benham (1969), Cappello (1972),
Coe (1964), Hollist (ed., 1978), Pruitt (1962), Rapoport (1957, 1960), Saaty (1968), Schelling (1963),
Schrodt (1978), Shubik and Hansford (1965), Singer (1958), Smoker (1965), and Waltz (1967).
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APPENDIX 10.1. Arms Race Model With Delays

ARMS RACE MODEL, BASED ON RICHARDSON'S THEORY
#sses ACTOR X #**e+

X.K = X.JHDTYRIX.JK-RDX.JK)
X=XI
XI =100
Arms increase at RIX and depreciate at RDX,
DLAX.K = KX*YP.K
Desired arms are equal to KX of Y’s perceived arms
YP.K = DELAYI1(Y.K,3)
X perceives Y's arms with 1st order delay.
GAPX.K = DLAX.K-X.K
The gap between desired and current arms,
RIX.KL = DELAYI(MAX(G1+GAPX.K+RDX.JK,0),3)
X's rate of arms building is equal to the whole
of the gap between desired and actual arms
plus an amount due to “grievance” (G1).
Building, however, takes an average of 3 units of
time to accomplish.
RDX.KL = MAX(A1*X.K,0)
The rate of exhaustion of arms is Al.
PARAMETERS FOR ACTOR X ARE SET:

Al=.1
KX = 1.05
Gl=0

**ACTOR Y'SSYSTEM IS SIMILARLY DEFINED**

Y.K = Y.JHDT)(RIY.JK-RDY.JK)

Y=YI

YI = 100

DLAY.K = KY*XP.K

GAPY.K = DLAY.K-Y.K

XP.K = DELAYI(X.K,3)

RDY.KL = MAX(A2*Y.K,0)

RIY.KL = DELAYI(MAX(G2+GAPY.K+RDY.JK,0),3)
PARAMETERS FOR ACTOR Y

A2= .1

G2:=0

KY = 1.05

OUTPUT SPECIFICATIONS
DT =.1/LENGTH = 25/PRTPER = 2/PLTPER = |
Y, X,RIY,RIX,GAPY,GAPX
Y.X
GAPY,GAPX
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