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s banking and non-banking finan-

cial mstitutions become increasingly

more sophisticated in their trading

activities, regulators and risk man-
agers alike need instruments to monitor the
solvency and financial stability of their insti-
tutions. From a regulatory point of view, finan-
cial firms have to maimtain minimum capital
requirements that are periodically monitored
by the regulator. The assessment of capital ade-
quacy 1s made under two types of standards:
1) those of the 1988 Basle Accord and subse-
quent amendments, based on mimimum risk-
weighted capital ratios and wvalue ar risk
calculations; and 2) those that rely on stress-
testing procedures.

Capital requirements for U.S. banking
and thrift institutions primarily follow the nor-
mative of the Basle Accord. Institutions should
maintain a minimum risk-weighted capital
ratio. Capital is classified in three tiers, and
assets are weighted according to their credit
and market risks. At present, the minimum
total risk-weighted capital ratio must be 8%
of total nisk-weighted assets.

The Basle Accord endorses a value at risk
(VaR) methodology to assess and monitor
market risk capital requirements. The Accord
and its subsequent amendments underscore
the importance of periodic stress-testing, but
the regulation does not provide any specific
rule or procedure on how to operationalize
these stress tests.

Capital adequacy regulations for U.S,

non-banking financial institutions, such as
msurance companies and government-spon-
sored enterprises (GSEs), focus primarily on
the ability of these institutions to withstand
very stresstul scenarios that may create extraor-
dinary losses. The Office of Federal Housing
Enterprise Oversight (OFHEQ) is the regu-
lator for the GSEs, the Federal National Mort-
vage Assoctation (FNMA, Fannie Mae) and
the Federal Home Loan Mortgage Corpora-
tion (FHLMC, Freddiec Mac), which operate
in the secondary mortgage market. As of the
end of 2001, Fannie Mae and Freddie Mac
had a combined asset value of more than
$1.000 lhon.

Unlike the stress-testing guidelines of the
Basle Accord, OFHEOY regulation is very
specific on formulating the risk-based capital
rule. [t specifies the stressful scenarios to be
considered, the valuation models to use, and
the horizon to be considered, among other
specifics. GSEs should have sufficient capital to
survive at least ten yvears of stressful economic
conditions. The regulation contemplates stress-
ful scenarios that are marked by sharp changes
i mterest rates (market risk) and house prices
(credit risk).

The OFHEQO’ regulation considers two
scenarios. In cthe up-rate scenario, the max-
imum increase in the ten-vear constant-matu-
rity Treasury is limited to 75% of the average
yield over the nine months preceding the stress
period. In the down-rate scenario, the max-
imum decline in the ten-year Treasury rate is
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limited to 50% of the average yield over the nine months
preceding the stress period. It is assumed that interest
rate changes all occur in the first year of the stress period
and remain at the new level for the remaining nine years.
The credit risk component of the stress test assumes that
house prices decline according to the historical experi-
ence of the early 1980s in the ALMO region (Arkansas,
Louisiana, Mississippi, and Oklahoma), where default
activity caused losses to creditors exceeding 50% of the
collateral assets.

The Committee on the Global Financial System
(CGFS) at the Bank for International Settlements (BIS)
in 2000 and 2001 produced two reports on the current
practices of stress-testing in large financial institutions.
The most common practice i to develop a set of histor-
ical or hypothetical scenarios and to track their impact
on the portfolio of the institution.

The CGFS surveyed 43 commercial and investment
banks in ten countries. The banks submitted 293 stress test
scenarios such as stock market crashes, and 131 sensitivity
stress tests such as changes in correlations or shifts in the
yield curve. Most of the stress tests consider extreme move-
ments in equity prices, interest rates, emerging markets,
and credit spreads.

The CGFS reports find that even though banks may
consider the same scenario, such as a stock market crash,
the extent of the crash could be very different across dif-
ferent institutions. Equally heterogeneous is the response
and commitment of risk managers to the results of stress-
testing. According to the CGFS survey, stress-testing results
may help to set limits on position-taking, to allocate
capital, to hedge positions, and to challenge modeling
assumptions.

In general, stress-testing plays a complementary role
in risk management practices of financial institutions. VaR
seems to be the dominant methodology. VaR calculations
have become a routine exercise for risk managers, and
banks and regulators are committed to act upon VaR
results. Stress-testing, however, is vaguely defined, and
when it is defined, as in the OFHEO's regulation or in
the CGFS report, the definition is rather specific to the
institution. While there is an extensive professional and
academic literature on VaR, stress-testing has not attracted
as much interest among academicians, although practi-
tioners and regulators have been paying more attention
in recent years, as the CGFS reports attest.

The concept of stress-testing per s is very straight-
forward, but the specification, implementation, and inter-
pretation of the tests are difficult. As the current practice
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goes, stress-testing is subjective and lacks scientific foun-
dation. Jorion writes

|Stress-testing] consists of subjectively specifying
scenarios of interest to assess possible changes in
the value of the portfolio.... Stress testing, how-
ever, is poorly adapted to measuring VAR n the
same scientific sense as other methods. The method
is completely subjective.... Stress testing does not
specify the likelihood of worst-case situations [1997,
p. 196-198].

The CGFS survey sunumarizes the difficulties of the
current practice when it enumerates at least five limita-
tions of stress-testing:

What risk factors to stress.

. How to combine the stress factors.
. What range of values to consider.
. What tume frame to analyze.

. How much is likely to be lost.

L =

Ul 4=

We argue for a conceptual shift in our understanding
of stress-testing, and show that the limitations of the cur-
rent practice are due in part to the lack of a method-
ological framework that can guide the construction of
the stress tests.

We propose a rational approach to stress-testing. We
present a coherent measure of risk, named value in stress
(ViS), that answers most of the limitations of stress-testing
as expressed by the CGES reports. At a minimum, we
assume a financial institution is aware of the risk factors
to which it is exposed, and of the desired time horizon
to assess risk. We thus offer answers to limitations 2, 3,
and 5.

Notwithstanding the heterogeneity of practices sur-
veyed by the CGFS, there is a common denominator to
the current stress-testing in banking institutions and in
the OFHEO setting; that is, the stress scenarios are exoge-
nous. A priori, the risk manager chooses a set of risk fac-
tors to be stressed and the degree of the stress, regardless
of the likelihood of the event (although we presume that
is small) and of their dependence on the other non-stressed
risk factors.

This partial stress practice relates to limitation 1. If
the risk factors were independent, partial stress would be
acceptable, because on choosing a subset of risk factors
we should not expect any reaction in the remaining ones.
To overcome limitation 1, we need not only a total stress
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approach but also a methodology to remove manager sub-
Jectivity in choice of the extent of the stress.

Limitations 2 and 3 are consequences, once again,
of the exogeneity of the stress scenarios. We argue that
considering stresstul scenarios fixed as in the OFHEQ
regulation is not an optimal practice. As corporations gain
more experience in managing risk, what is considered
stresstul should change over time, making fixed stressful
scenarios obsolere.

The main characteristic of the proposed ViS mea-
sure is that scenarios become endogenous; scenarios will
change, depending on the management experience and
the level of business of the corporation. Calculation of
ViS entails an optimal combination of risk factors and
their magnitude, overcoming limitations 2 and 3. Finally,
calculation of the ViS permits an assessment of the like-
lihood of the potential loss, overcoming limitation 5.

I. VALUE IN STRESS

We first define value in stress, and then show it is a
coherent measure of risk.

Definition and Properties

Consider an institution with an objective variable 17,
tor instance, net revenue or capital. Assume 2 time interval
[0, T] where the initial position is 17, and the final posi-
tion is 17, so thar Al = Vig= Vs List f = :f|!3 f,\}'
be a vector of risk factors to which the corporation is
exposed. The vector of factor changes, Af, has a joint
probability density function (pdf) P(Af. ¢), where 6 is a
parameter vector that defines the density function.

From the pdf. we can derive the a probability con-
tour, defined in the space of Afas the k-dimensional ellip-
soid p(Af, #) = ¢ that includes 100a% probability. The
constant ¢ delivers the o probability.

Suppose there is a function h(.), continuous and at
least twice-differentiable, so that AT7= Ii(Af). That is, only
movements in the risk factors drive a change in the objec-
tive variable.

The institution wants to assess its risk exposure to
extreme changes in the risk factors. For that, the firm chooses
an @ probability and optimizes its objective function sub-
Ject to the o probability contour of the set of risk factors.

For simplicity of exposition, let us assume that 1rep-
resents net revenues, so that the corporation wishes to assess
its maximum risk exposure (minimum net revenues), given
the cv probability contour (extreme events or worst case sce-
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narios). In other words, the corporation searches for the o
probability scenarios that produce a maximum loss.”
The problem is stated as

AVT = min AV = i(A[)
Af
st plAf.H) =, (1)

Definition. Value in stress (ViS) is (minus) the value
that minimizes the change in the objective function of the firm,
subject to the occurrence of extreme changes in the risk factors:

ViS(AV) = A7

ViS is a risk measure. For example, suppose that
AT is negative; that is, stressful movements in the risk
factors produce Josses. ViS will be positive, and inter—
preted as the minimum amount that the company needs
to add to Al in order to avoid negative revenues (or the
amount of capital that is needed to withstand these losses):
that is, 17, + ViS = I/, If AP* is positive, ViS will be
negative, and interpreted as the minimum amount that
the company may withdraw from AV and still be solvent;
that is, V= ViS= 1/,

Exhibit 1 is a probability contour p(Af, #) = ¢, for
two generic risk factors (Af,. Af,). The function h(Af) is
assumed to be linear, and iso-value lines can be plotted
in the plane (Af,, Afy). The 178 value is the tangency point
between the ellipsoid and the linear objective function.

Theorem. ViS is a colierent measure of risk in the sense of
Artzner et al. (ADEH) [1999).

Proof. For ViS to be coherent, it needs to satisfy the
axioms of translation invariance, subadditivity, positive
homogeneity, and monotonicity (Definition 2.4 in
ADEH):

¢ Tianslation invariance. Adding a riskless amount to A1
reduces ViS: Vw, ViS(AV + w) = ViS(A1) — w.
Suppose we add a riskless quantity w, which does
not depend on Af. to our all final positions so that we
need to minimize AV + w. Then argmin Al” =
argmin(Al7 + w) = Af¥ Since AV* = [i(Af*), and
min(Al + w) = AP + w, it follows that ViS(A1 +
w) =—AP* — g = ViSIAV) — i
* Subadditiviry. The sum of two or more different posi-
tions is not riskier than the sum of their separate risks:
VAV, AV, VISV, + AV, < ViS(AL,) + VISV,
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ExHIBIT 1
Graphical Representation of Value in Stress
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A priori chosen stressful scenarios may not be optimal choices to monitor risk.

Let AV = AV, + AV,, AV, = h,(Af), and AV,
ha(Af) Then AV* = h(Af¥) = h (Af "y (Af“'“) =
|+ AV, = min AV +mluAI’ _AI”*+ AVE.
lt tollowa that -AV* £ —A e AV}‘. and subadd:-
tivity is satisfied.

*  Positive homogeneity. There are no economies of scale
to the size of the position: VA = 0, ViS(A AV) =
AViS(AT).

We have that argmin MV = argmin Al Since
AT* = h(Af¥) and min(AAV) = AAV#, it follows
that ViSOAAY) = -AAI* = AViS(AV),

» Monotonicity. If YAV, Al/,, and VAf such that
AV, £ AV, then ViS(AV|) = ViS(AV).

IFAI < AV, then AV* = minAV, < AV %

minATl/,. lt follows that —=A 1/ * =-AV, and ViS(AV)
= ViS(AV. 5)-

Components of the Definition

Our comments on the main components in the ViS
definition relate to the objective function, the endogeneity
of stressful scenarios, sensitivity analysis, and diversification.

Objective function. The objective function h(.) is
general enough to accommodate a linear or a non-linear
relation between the risk factors and the objective vari-
able AT/, It can be understood as an aggregated pricing rule.

Corporations often maintain many business units
and many pricing models. There are individual pricing

10 VALUE 1N STRESS: A COHERENT APPRROACH TO STRESS-TESTING

models for individual contracts or financial instruments
that are known to the trading parties, but when the cor-
poration as a whole needs to evaluate its total risk expo-
sure, there is no formula. It is not known how to combine
individual risk exposures in a meaningful manner. The
role of the function h(.) is to summarize all the individual
decisions and choices across products and across units, a
function that is unknown to the risk managers.

Discovery of the function h(.) needs to rely on
econometric methods. From the joint probability distri-
bution of the risk factors, we draw N events of the vector
Af,j= 1, ..., N. For each event, individual pricing models
and information systems are in place to evaluate every
contract and every position of the corporation that even-
tually will generate the corresponding A1, The risk man-
ager faces a data set {Af, AV{} for j =1, ..., N from which
an econometric model can be inferred as:

AV = h(Af) + u, 2)

where 1, is an error term with mean zero and variance
o,

In this context, ViS is based effectively on minimiza-
tion of the conditional expectation E(AV|Af) = h(Af).
Different parametric and non-parametric methods are
readily available to uncover the functional form of this con-

ditional expectation.
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It should be noted that the variability of Al is due
exclusively to the variability of Aff and corsequently we
should expect asmall error variance 0. There is no poten-
tal misspecification due to the choice of regressors in the
econometric model. The probability distribution fumction
of A" depends on the distributional assumptions of Af.
Note that if the factors are assumed multivariate-normally
distributed. Al may not be a normal variate because the
funcrion () may be non-linear.

Many risk management methodologies rely on a
second-order Tavlor expansion of the fi() function. Our
approach takes a different direction because it aims to
identify the functional form of A(.) using econometric
methods.

Stressful scenarios. The definition of ViS entails that
stresstul scenanos are endogenous. Once the ViS s
caleulated, the risk manager knows not only the most
stresstul value that can be attained within the o probability
contour bur also the degree of the change in all risk
factors that needs to oceur. This is the main difference
between ViS and the current practice in stress-testing.

The design of the OFHEO regulation and the cur-
rent practice surveyed by the CGFS may result in incom-
plete measures to monitor risk for several reasons. First,
stressing a subset of factors may generate changes in the
remaining tactors if these are not independent.

Suppose that the vector of factors can be partitioned
as {AfMAFD} and that AV = B (AFM) + i, (AF2) + .
Then EQAV[AS) = h (A" + I,(AF?). If the corporation
contemplates a shock to Af11 = AfS EAV A § =
Iy (A )+ Bl (Af ) |Af) ). The current practice
ignores the term E(J,(Af=) |AfD ) entirely: consequently,
the estimated conditional stress value can be either over-
estimated or underestimated depending upon the sign of
that term. The ViS measure, however, takes into account
the interdependence among the factors, and whenever
one factor is stressed, there may be a response in the
remaining tactors depending on the probability model
that summarizes the behavior of risk factors, and the func-
tional torm of h().

Kupice [1998] argues a similar point with regard to
a linear value at risk model. He does not argue for endoge-
nous scenarios, however, but frames his argument fol-
lowing the current practice in stress-testing,

Second. and most important, on choosing a priori
very specific stresstul scenarios, there is no guarantee those
will produce the largest losses, or that we can exclude the
possibility that the same loss can be achieved under more
likely scenarios. Exhibit 1 illustrates this argument.
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Consider two factors f; and f,. and assume that the
function h(.) is linear. We consider two probability con-
tours. The a contour accounts for a broader range of sce-
narios than the /3 contour, and they are less likely to occur
than the scenarios in the /3 contour.

We consider a fixed value of the objective variable,
say, E(AT|Af) = A", We can construct iso-value curves
defined as the loct of points (Af,, Af) so that the value
Al s atained. Points A, B, and C represent different
combinations of the two factors, all of which produce the
same loss AT,

Let us suppose the risk manager (or the regulator)
has selected the stressful scenario A, which lies on the
less likely set of scenarios represented by the o contour.
Is A an optimal choice of stressful scenarios? Clearly not,
because the point marked ViS, which considers stressful
scenarios within the same probability contour as those
n A, produces higher losses. Furthermore, the loss A1
can also oceur in the scenarios represented by B and C,
which are less stressful than scenario A. Hence, the risk
manager will be misled into thinking that the corpora-
tion 1s protected if capital allocations are based on the
potential losses A", We can find another set of sce-
nartos, as likely to occur as the point A, that delivers
greater losses than AT,

The solution is to let the choice of scenarios be endoge-
nous, because scenarios will change according to the ability
and the experience of the corporation to deal with risk,
which in turn will affect the functional form of (). The
OFHEO legislation is a prime example of fixed scenarios.

The current practice does not attach a probability
statement to the stress Joss; there is merely a perception
that the potential loss is unlikely because it is based on
unlikely events. This perception can be misleading because
h(-) may be non-linear, and stressful scenarios may be asso-
clated with likely losses, Exhibit 1 conceptualizes one
argument against this perception.

It 1s relatively simple to caleulate the probability of
occurrence of the ViS measure, say, p,... We need to cal-
culate or to estimate the unconditional probability den-
sity function ot AL, say, (A1), This is easy to obtain
because we have already generated the data on AT for j
=1, ... N, and we can apply either a kernel estimator or
calculate the order statistics.

The probability associated with the ViS measure is
Pras = | 2" g(AV)AAT, which can be estimated by cal-
culating the empirical quantiles of A1,

Sensitivity analysis. The ViS measure can be com-
plemented with sensitivity analysis. It is important to
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understand the response of the optimal values Af*, A}**
to changes in the parameters of the model. For instance,
the risk manager may be interested in the sensitivity of Vi$
to changes in the likelihood of the scenarios, or to changes
in the correlation between factors, or to changes in the
volatility of some of the risk factors.

The derivatives OAf*/dc, . OAF*/00, OAV*/ 0k, and
OAV */00, where @ and ¢, are parameters embedded in
p(Af, 0) = ¢, canbe mcorporated in the analysis of stress-
testing. We compute these derivatives assuming the risk
factors are multivariate-normal in the following section.

ViS calculations are also sensitive to changes in
internal models such as prepayment and default models,
or evaluation formulas such as derivatives pricing. The
function h(.) can be a tool for the risk manager to assess
the sensitivity of ViS to changes in internal models.

Diversification. ViS can be implemented across the
different business units of the corporation. The subadditivity
property guarantees there is risk diversification across units.
We can construct different measures of diversification.

For instance, consider a corporation with n units.
Since:

ViS(AWA + AV; +...AV,) <
ViS(AV}) + ViS(AV;) + ... ViS(AV,) <
nmax{ViS(AV;), ViS(AVA)..... ViS(AV,)}

a potential diversification measure can be

V".'ES(A"’] 2 AV{! =+ 4...AL".H.)/”‘

Dunax = 1 = S IS (AV,), ViS(AV)... ViS(AV,))

where D2 (), provided that max{.} > 0.

The quantity D, means that, for the riskiest unit,
diversification produces an average risk reduction of
D, . % 100%. Less risky units will benefit less from diver-
sification (lower D), and some units may not benefit at all
(D is non-positive).

As an example, suppose a corporation has two divi-
sions for which ViS(A1,) = 30 and FiS(A Vy) =20, and
VisSav, + AV, = 40. In absolute terms, diversification
producu a reduction in risk of 10. The average value in
stress is 20 per division. In this case, Division 2 provides
diversification for Division 1. We have that D = 0.33,
so for Division 1, diversification produces a reduction in
risk of 33%. For Division 2, D = (), and there is no ben-
efit from diversification for this division.
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I1. VALUE IN STRESS UNDER NORMALITY

We offer analytical and graphical solutions to the
problem stated in Equation (1) under the assumption that
the risk factors are multivariate-normally distributed, and
we provide a framework where stress-testing can be under-
stood as sensitivity analysis in the ViS framework.

Analytical Solution

Without loss of generality, let us assume we deal
with two factors. For instance, the OFHEO regulation
contemplates housing prices and interest rates as the two
main factors that affect the business of the GSEs. The fac-
tors Af, and Af, have means . f1, and variances af, o3,
respectively. and they may be correlated with correlation
coefficient p. If Af, and Af, are bivariate-normal, their
joint probability density function is:

PAfiLAf) =

L % exp[ — —-1—, P
2mayoay/1 — p? 2(1 — p*)
(Afi—p)? | (A=) 20(AR = m)Af— ),
o3 ‘ o3 oy J

For this distribution, the quadratic form

1 (Afy—nq)? X (Afs = i) B 2p(Af, = p WA — Hz})
1=p* i 2

T3 T1Ta

has a chi-squared distribution with two degrees of freedom.
This result permits the construction of elliptical contours.
Since the cumulative distribution function of a chi-
square with two degrees of freedom is Pr (zS¥)=1-
exp{—x/2}, the ellipse contour including 100a% prob-
ability is given by

I (Afy — )
B o
Nty — 2 _) £ = AT — [l
(Afa = p)®  2p(Af — ) (Afo = pty) | _ _2log(1— @)
as T2
3)
The optimization problem (1) becomes
AV = Igifl} AV = h(Af) €Y
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I
subject to =7 X
(Afi— ) (Af = )

3 2
fl"i (T

C2p(Afi = )(AS2 = i)

T|O%

I
-~

2]

ot

where ¢, = -2log(1 - a).

Letus call = = (Af, = p,)/0, and =z, = (Af, - ,t.'.z)/ﬂ'_,
the standardized risk factors; and JAI/0Af, = I, and
OAV/OAL, = Iy the sensitivity of the objective htmnon (o
marginal Lll.mL,L\ in the risk factors. From the first-order
conditions of (4), we have that, in the optimum, the rela-
tion as follows must hold:

h] B W PR 02
h-_g - I — P T (:))

The ratio ? is @ marginal rate of substitution between
both factors, or the slope of the iso-value curve: and
S=E=a 2 s the net relative allocation of the risk factors
in units of standard deviation, or (minus) the slope dz,/d=,
of the elliptical contour,

It is interesting to observe that =, — pz. is the net
value of 2. This is the projection error it we were to
regress =, on =,. In the optimum, the allocation of risk
factors is equal to their marginal rate of substitution. Ifa
corporation 1s particularly sensitive to one of the factors,
the value in stress will load, in relative terms, heavily on
such a factor.

Note that the relavon in Equation (5) is the basis for
understanding that stressing only one set of factors is not
an optimal practice. In ViS, whenever a factor is stressed,
SAY. T, We expect contemporaneous movements in the
remaining factors that may counteract or reinforce the
stress on . This is why Equaton (5) considers the net
effect &, — pz.,

To solve for the optimal values of both risk factors,
and eventually to obtain AI7#, we need further knowl-
edge of the functon h(.). Let us assume the funcrion is
linear, AV"= 3 Af, + 3Af, Then )‘r ] 7 and h, = 13,

Under this framework. the optmm] solution for the
standardized risk factors is:

by s
. = 141 0
I = x| pH+ = 3

29Ty ( . dym

( J‘lff]) Co
5 = & (14p22 -
a2 B ) +(1—p2)
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The values =* that minimize A1’ depend on the
signs of | f and /1,. Of the four possible values of =*, and
once the \tgns of i3, and 3, are known, one will provldc
the minimum valuc. and another the maximum value of
the function AV, Graphically, in the plane (Af], Af).we
can draw the iso-value (A1) curves

W
A== ~ B0
and the elliptic contour (3).

Exhibit 2 shows the graphical solution for ViS and
the optimal choice of scenarios when the two risk factors
are bivartate-normally distributed. In this graph we assume
tlmt 4,>0 md 3, = 0, implying the optimal choice of

= U and z, < 0. The elliptical contour has been drawn
.umldmi., to the parameters jt, = p, =0, o7 = 03 = |,
p = 0.5, and o = 99%. For this example, we can inter-
pret that the stressful scenarios for this institution are neg-
ative changes in both risk factors of about 2.5 standard
deviations, and that, within a 99% probability contour, ViS
is approximately 16 units.

Stress-Testing as Sensitivity Analysis

The current practice in stress-testing, as surveyed
by the CGFS, can be classified as either choosing a priori
extreme scenarios and observing the change in portfolio
value, or performing a sensitivity test that analyzes the
effect of one or more shocks to a single factor in port-
folio value. Within the ViS framework, stress-testing is
the same as analyzing the sensitivity of the ViS measure
to changes in the several parameters included in the opti-
mization problem (1).

We classify stress-testing into three categories.

Stress 1. The OFHEO regulation and the current
practice in stress-testing fall into the Stress | category.
Stresstul scenarios are chosen according to historical expe-
rience, such as the drop in housing prices in the ALMO
region at the beginning of the 1980s, or the stock market
crash of 1987.

Stress 1 1s defined as the collection of scenarios that
are considered extreme events within a given probability
model; that is:

Afest = (Af |P(AS.6) < ¢}

where P(Af.#) < =} means that the probability of the sce-
nario is very small.
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EXHIBIT 2
Value in Stress under Bivariate-Normality

5 T T T T T T ] T
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2+ \9\
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The parameters of the bivariate-normal probability distribution (Af,, Af,) are ft, =
99%. For the lincar function AV, it is assumed that 3, > 3> 0.

M, =10, o‘f - o‘:; =1, p = 0.5. The probability contour is drawn for ev =

In the ViS framework, the stress of the scenario is
related to the choice of e and consequently the choice
of ¢,. It is of interest to calculate the sensitivity of the
optimal risk factors and of the ViS measure to changes in
¢, For bivariate-normality of the risk factors and linearity
of the function AV, we have that;

oz 1

_— = 22 )

de, 20, "

Oz .

Bea 22" !
i ] oL " 3

assuming that min AV is achieved when 2 < 0 and
A i Fi P .

2, < (. The change in ViS follows immediately from
av’*

3 AL | g DAS : ;
B = D’.T{L + 3,5 As expected, if the scenarios are

more stressful, the ViS measure increases, everything else
equal.
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Stress 2. In the same probability model, it is of interest
to assess the sensitivity of ViS to changes in the parame-
ters of the model; say, £ becomesf. For instance, we would
like to analyze the expected changes in ViS when the cor-
relation between risk factors strengthens or weakens.

Stress 2 15 defined as the collection of stressful sce-
narios for which the parameters that define the proba-
bility model are slightly modified; that is:

Afrtrenst — IAF |(P(Af.0) < £) = (PIAS,D) < 2) }

Under the same assumptions as in Stress 1, we show
the changes in the optimal values of the risk factors when
there are marginal changes in the correlation coefficient

. . A
p, and in the ratio 75+

Baaa

Let us call D= (p+ —’1:—) +(1—=p*) >0, Then:
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ExHIBIT 3
Optimal Standardized Risk Factors
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Risk factors as a function of the correlation coefficient and the weighted ratio of standard deviation.
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Exhibit 3 shows the graphical representation of the
=} and 2 given in Equation (6) as a function of the cor-
relation coefficient and the weighted ratio of standard devi-
ations. The first factor is very responsive to changes in
—:‘% when this value is in the neighborhood of zero, but
for large values the function becomes quite flat. The sen-
sitivity of the first factor with respect to the correlation
coefficient depends on the value of —:‘:—l' When the rato
is low, the first factor is more sensitive to changes in the
correlation coefficient than when the ratio s high.

The second factor behaves in the opposite direction.
[t 18 more sensitive to changes in —:‘T:—’ as well as to changes
in the correlation coefficient when the ratio 1s high.

Stress 3. Suppose a different probability model is
assumed. For instance, we might challenge the assump-
tion of the bivariate-normality of the risk factors, and we
would like to assess the sensitivity of VIS with respect to
a new probability distribution that may entail more cor-
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relation between factors in a downturn than in an upturn.

Stress 3 is defined as the collection of stressful sce-
narios when a different probability model for the risk fac-
tors is selected; that is:

Afetresd — IAF |( P(AS.0) < £) — (W(AF.0) < <) }

This is the case we analyze more fully.

ITI. EXTENSIONS

The assumption of joint normality of the risk fac-
tors is convenient because is tractable, and, on specifying
the mean and the variance-covariance matrix, we can
characterize the complete dependence structure of the
risk factors. It is only within the elliptical world that the
correlation coeflicient is enough to describe the depen-
dence of risk factors. Beyond the elliptical world, factors
can be dependent and have zero correlation. In the non-
elliptical world, we need to specify the joint probability
density of the factors if we wish to capture the dependence
structure among risks.

We consider two approaches when we wish to depart
from the distributional assumption of normality: non-
parametric estimation, and copula functions.

Non-Parametric Estimation
of the Joint Density Function

In the case of non-parametric estimation, the den-
sity is estimated from the historical behavior of the risk
factors. Upon collecting data in the vector of factors Af,
the non-parametric estimator of the joint density is

. G e i P .
PAS) = W;h {Ew - A.m}

where n is the number of observations; hi is the window
width or smoothing parameter that can be chosen opti-
mally h«'pr = Ap V14 is the dimension of the vector
or number of factors considered; and K{(.) is the kernel
function defined for the d-dimensional vector satistying:

K(Af)dAf =1
S

The kernel function is customarily a radially sym-
metric unimodal probability function; for example, the
normal kernel where

16 VALUE IN STRESS: A COHERENT APPROACH TO STRESS-TESTING

e
K(Af) = [‘27:’}""'¢-_\:.1:[—35f Af)

but there are many other functions the researcher can
choose.

For a discussion of different kernel functions and
choice of the window width, see Silverman [1986] and
Pagan and Ullah [1999]. The non-parametric approach
is recommended when there are not a large number of
factors, as in the OFHEQ regulation.

Copula Functions

Nelsen [1999] refers to copulas as “functions that
join or couple multivariate distribution functions to their
one-dimensional marginal distribution functions.” Sup-
pose we know the marginal distribution function of our
risk factors. Let us assume we have two factors Af, and Af,
with distribution functions F,(Af;) and F,(Af,). The Sklar
theorem [1939] says that the joint cumulative distribu-
tion function can be expressed as

F(Af, Af) = C(F(Ah). FyAf)

where C is the copula function.

In order to obtain the joint distribution, we need to
know the marginal probability of each risk and to select
the copula function. For instance, suppose marginal
distributions are standard-logistic; that is, FF, = [1 + exp(-
Af)] ' and F, = [1 + exp(-Af)]™', and we choose the
Ali, Mikhail, and Haq copula:

wy

(1 —u)(l—2)

Colu,v) = 1—4

Then the joint distribution function of the risk factors is:

F(Afi, Afs) Col Fi(Afr), FalAf2))
[1+ exp(—Af)) +exp(—Afs) +

(1 — 8)exp(—Afy — Af)]™"

where the parameter # € -1, 1] guides the degree of
dependence between the two factors. For =1, we have
the Gumbel bivariate-logistic distribution whose con-
tours are described i Exhibit 4.

In this case, we can see there 1s a stronger depen-
dence between the two risk factors when their changes
are negative than when they are positive.

SEFTEMBER 2003



ExHIBIT 4

Contours of the Gumbel Bivariate Logistic Distribution
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Dependence benween the nwo risk factors is stronger when their dvaiiges are negarive thar when they are positive.

IV. CONCLUSIONS

Stress-testing has not attracted as much interest in
the academic community as the value at risk method-
ology, but it has gained a great deal of attention from
practiioners and regulators in recent years. Stress-testing
is a recommended practice for banking institutions in
the Basle Accord and its amendments, and it is a manda-
tory practice for non-banking institutions like the gov-
ernment-sponsored enterprises that must report to the
regulator, the Office of Federal Housing Enterprise
Oversight.

We have provided a methodological framework for
stress-testing. The coherent measure of risk, value in stress.
responds to the limitations of the current practice in stress-
testing as expressed by the Committee on the Global
Financial System. Basically, the limitations of stress-testing

SEPTENMBER 2003

are related to a lack of guidelines on how to choose sce-
narios and their magnitude, and to the absence of a prob-
ability associated with the potential losses.

The heterogeneous current practices across banking
institutions, as surveyed by the CGFS, and the OFHEO
regulations share one common feature: that is, the stress
scenarios are chosen a priori. The risk manager chooses a
subset of risk factors to be stressed and the degree of the
stress, regardless of its likelihood (although we presume
it should be low) and regardless of any dependence on
the remaining non-stressed factors. This behavior could
be misleading, and we have argued that the choice of sce-
narios should be endogenous.

The set of stress scenarios may vary according to
economic conditions and the current solvency of the insti-
tution, For instance, the OFHEO regulation considers
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two stress scenarios, up-rate and down-rate. But the GSEs
are extremely skillful in managing market risk and credit
risk. They make extensive use of hedging instruments to
protect themselves against movements in interest rates in
any direction, and they have developed sophisticated tools
to control credit risk. Hence, the two rigid scenarios that
the OFHEO regulation contemplates, even though
stressful, may not be the most relevant to monitor capital
adequacy.

Furthermore, the dynamic behavior of institutions
can make risks that are barely contemplated by the reg-
ulation, such as liquidity risk or counterparty risk, more
relevant to their future solvency. These additional risks
can be incorporated in the ViS framework, and they can
deliver a more complete picture of the capital adequacy
of the institutions.

We have shown, under an assumption of the joint
normality of the risk factors, that ViS can be easily imple-
mented, and that the current practice in stress-testing may
be reduced to sensitivity analysis within the ViS frame-
work. If normality 18 very restrictive, we have shown that
non-parametric estimation and copula functions are two
easily implemented avenues.

ENDNOTES

The author thanks Vassilis Lekkas, Donald Solberg, and
Carol Wambeke for introducing her to stress-testing. Their
insights and discussions were most valuable.

“The same problem can be rephrased in terms of cap-
ital. The corporation wishes to allocate enough capital to
withstand the losses produced by extreme movements in the
risk factors. In this case, it will be interested in assessing worst
case losses subject to events that have an extreme probability
of occurrence.
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