Semiparametric ARCH Models

Robert F. Engle; Gloria Gonzalez-Rivera
Journal of Business & Economic Statistics, Vol. 9, No. 4 (Oct., 1991), 345-359.

Stable URL:
http://links jstor.org/sici?sici=0735-0015%28199110%299%3 A4%3C345%3AS AM%3E2.0.CO%3B2-4

Journal of Business & Economic Statistics is currently published by American Statistical Association.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/astata.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of
scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org/
Mon Aug 22 20:39:53 2005



© 1991 American Statistical Association

Journal of Business & Economic Statistics, October 1991, Vol. 9, No. 4

Semiparametric ARCH Models

Robert F. Engle and Gloria Gonzalez-Rivera

Department of Economics D-008, University of California-San Diego, La Jolla, CA 92093

This article introduces a semiparametric autoregressive conditional heteroscedasticity (ARCH)
model that has conditional first and second moments given by autoregressive moving average
and ARCH parametric formulations but a conditional density that is assumed only to be suffi-
ciently smooth to be approximated by a nonparametric density estimator. For several particular
conditional densities, the relative efficiency of the quasi-maximum likelihood estimator is com-
pared with maximum likelihood under correct specification. These potential efficiency gains for
a fully adaptive procedure are compared in a Monte Carlo experiment with the observed gains
from using the proposed semiparametric procedure, and it is found that the estimator captures
a substantial proportion of the potential. The estimator is applied to daily stock returns from
small firms that are found to exhibit conditional skewness and kurtosis and to the British pound

to dollar exchange rate.

KEY WORDS: Linear spline; Nonparametric density; Quasi-maximum likelihood estimation.

The most common technique for estimating dynamic
models with time-varying variance is maximum likeli-
hood. Since the pioneering work of Engle (1982), the
assumption of conditional normality ¢, | w,_, ~ N(O0, h,)
has been widely used in theoretical as well as in em-
pirical research, even though assuming any other prob-
ability distribution function will not violate the spirit of
the analysis.

Generalized autoregressive conditional heterosce-
dasticity (GARCH) models as introduced by Bollerslev
(1986) have proven to be particularly suited for model-
ing the behavior of financial time series. It is precisely
in this field of research that enough evidence has been
found to make it possible to reject the assumption of
normality. It is a well-known fact that the unconditional
distribution of returns to financial assets exhibits fatter
tails than a normal distribution. GARCH models are
able to generate this characteristic under the assump-
tion of conditional normality. Leptokurtosis, however,
is found in the conditional distribution as well. For in-
stance, Bollerslev (1987) concluded that the monthly
returns to the Standard and Poor’s 500 (SP500) Com-
posite Index were better fitted with a GARCH model
under the assumption of Student-t distributed errors.
Hong (1988) rejected conditional normality claiming
abnormally high kurtosis in the daily New York Stock
Exchange stock returns. Gallant, Hsieh, and Tauchen
(1989) gave a theoretical explanation of why we should
find leptokurtosis in the conditional distribution of fi-
nancial returns and confirmed their findings in the daily
exchange rate of the British pound to dollar (BP/$).
Baillie and Bollerslev (1987) used a conditional Stu-
dent’s ¢ to model exchange rates.

The fourth moment is not the only concern of re-
searchers. French, Schwert, and Stambaugh (1987) found
conditional skewness significantly different from 0 in
the standardized residuals when a GARCH-in-mean
was fitted to daily SP500 returns. Looking at the un-
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conditional distribution, Peruga (1988) showed empir-
ical evidence of high skewness and kurtosis in exchange
rates. Singleton and Wingender (1986) reported high
skewness in individual stocks. Badrinath and Chatterjee
(1988) showed that the distribution of the daily value-
weighted stock returns was explained as a skewed, elon-
gated distribution. Hence there is some empirical evi-
dence for a violation of the distribution assumptions
underlying the most common estimate of GARCH
models.

For ARCH and GARCH models, there are already
quasi-maximum likelihood results in the work of Weiss
(1986) and Bollerslev and Wooldridge (1988), who
showed that under a correct specification of the first
and second moment consistent estimates of the param-
eters of the model can be obtained by maximizing a
likelihood function constructed under the assumption
of conditional normality, even though the true density
could be some other. The asymptotic standard errors
can be estimated consistently, as was done by White
(1982) and Gourieroux, Monfort, and Trognon (1984),
although they will not attain the Cramer—-Rao bound,
reflecting the penalty imposed for not knowing the true
conditional density.

The purpose of this article is twofold. First, we quan-
tify the loss of efficiency of the quasi-maximum likeli-
hood estimator (QMLE), which falsely assumes nor-
mality. Second, we propose a more efficient estimator,
based on a nonparametric estimated density.

The rest of the article is organized as follows. In
Section 1, quasi-maximum likelihood results are stated
and quasi-maximum likelihood relative efficiency is in-
vestigated for two types of densities, one leptokurtic
and the other positive skewed. In Section 2, we present
a semiparametric GARCH estimator and some Monte
Carlo simulations. Section 3 shows some empirical ap-
plications to individual stock returns and to the BP/$
exchange rate, including an asymmetric or leverage term
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in the variance equation. A summary is offered in Sec-
tion 4.

1. QUASI-MAXIMUM LIKELIHOOD ESTIMATION
OF GARCH MODELS

1.1 Conditions for the QMLE Resulits to Hold

Bollerslev and Wooldridge (1988) studied the quasi-
maximum likelihood estimation of multivariate GARCH
models, and their results can be viewed as a generali-
zation of those of Weiss (1986), who studied QMLE of
univariate ARCH models.

We can state the consistency and asymptotic nor-
mality of the QMLE as follows:

Theorem (Bollerslev and Wooldridge 1988). 1f (a)
regularity conditions from Appendix A hold and (b)
for some 0 € int @, E(y, | 95_1) = u(0,) and V(y,|5_,)
= Q(6), then (A} 'BSAY )"V T (0 — 6;) ~ N(O,
1), where

- ET: E(s,(60)s.(60)"), 5(60) = Vol,,

_‘N
1

-3 lOgIQt(a)l

- %(y: - .ut(a))lnl(e)_l(}’t - /ut(et))’

and

Ar =T é E(a(6)),  ad0) = —V,s.(0)".

In addition, A, — A% 0 and B; — B3 0, where

T

! E az(é 7)

t=1

A

Ar=T"
and
A T A A
Br=T"! E s(07)s(07)'.
t=1

This theorem was stated and proven by both Weiss
(1986) and Bollerslev and Wooldridge (1988), with the
second authors explicitly considering the multivariate
context. Although the regularity conditions were es-
sentially the same, Weiss assumed finite fourth uncon-
ditional moments to insure that several of the series
satisfy uniform weak laws of large numbers. In fact,
this condition is sufficient but not necessary to satisfy
the conditions previously listed in (a). This is fortunate
because many of the empirical applications of GARCH
models find parameter values that are inconsistent with
finite unconditional fourth moments. For example, in
the ARCH(1) model, Engle (1982) showed that the
fourth moment will be finite only if o < 3. The wide-
spread finding of integrated (IGARCH) models (Engle
and Bollerslev 1986) means that even second moments
do not exist.

Using a different line of proof, Lumsdaine (1989)

showed in the univariate GARCH(1, 1) and IGARCH(1,
1) that weaker conditions will still support consistency
and asymptotic normality of the QMLE. Her sufficient
condition is that

E (ah oh, ) -
30 30’

where h, = (), in a univariate model. This condition is
typically satisfied because the derivative of A, with re-
spect to the parameters will generally contain squared
residuals. When these are divided by conditional vari-
ances, the ratio has a well-defined conditional distri-
bution with typically many finite moments. In fact, ex-
amining the preceding quasi-likelihood, it is clear that
every residual is automatically divided by its standard
deviation and thus divergent variances do not neces-
sarily lead to estimates with nonstandard distributions
as long as the proper weights are used.

1.2 Relative Efficiency of QMLE

Definition. Relative efficiency (RE) of the QMLE
estimate of a parameter 0 is the ratio of its asymptotic
variance when the true density f is known to its asymp-
totic variance when normality has been assumed:

_ Var(?MLE)
’ var(fomie) |

When the conditional probability density function is
correctly specified and some regularity conditions are
satisfied, we have the well-known result A" 2\/7“(07
6,) ~ N(0, I), where A%, as previously defined, is the
information matrix; that is,

i d 1(00)
= 9000’
and [, is the correctly specified log-likelihood function

of observation t.
Furthermore, the information equality holds; that is,

I 8L(00) 3(00)\ _ 4o
BY=T- ZIE( Y RRET] AY

and the numerator of RE, is consistently estimated by
the inverse of
'//r—l) .

When the distributional assumptions are not correct,
the previously discussed QMLE results apply and the
denominator of RE, is consistently estimated by
ATIBTAT s where

")

where /, is the incorrectly specified likelihood function
under the assumption of normality.
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The RE ratio is bounded: 0 < RE = 1. RE = 1if
the true density function is truly normal.

Given that a GARCH(1, 1) is a good representation
of the dynamics of the asset returns, in this section we
will deal with this type of models: y, = ¢, var(e, | y,-,)
=h=0-a-p) + ety + ph,.

We consider two cases:

1. The conditional density of ¢ follows a gamma
distribution with shape parameter c:
Ve o (Ve . et
EYC A

Ve,
X exp{ — 577 — ¢

This type of probability function exhibits positive skew-
ness. The coefficient of skewness is V), = 2/Vc and
the coefficient of kurtosis f, = 3 + 6/c. When c tends
to infinity, it converges to the normal distribution
(Johnson and Kotz 1970).

2. The conditional density of ¢ follows a Student’s

t with v df
v+1 v~
f(atly/t 1) ( P )F<§)
) (v+1)/2
— -1/2 P S
x ((v — 2)h) (1 + (v — 2)) .

This distribution is symmetrical around 0 and exhibits
leptokurtosis. The coefficient of kurtosis is f, = 3 +
6/(v — 4). When v tends to infinity, it tends to the unit
normal distribution (Johnson and Kotz 1970).

f(gt I Wt—l) =

§|

In Appendix B, it is shown that if the true conditional
density is a gamma, then

1 on\(c — u2\?
RE, = (403,2 0 (aﬁ> (c ¥ u))

B-1
( Dy, th( )) > )

where f, is the coefficient of conditional kurtosis g, =
E(e} | wi-1)/h}, u, = Vce/hi?, and Dy, D,,, are the
determinants of the matrices B; and Ay, respectively,
where f stands for the true density and N for normality.
To calculate RE;, we use (1) substituting dh,/9f for
oh,/da.

If the true conditional density is a Student’s ¢,

1 oh, v+ e )
RE, = <4DB, 27 (w) (1 RO 2)) )

(5 a(E)) e

As before, to calculate RE; we use (2) substituting 9,/
ap for oh,/0a. The calculations of these ratios are given
in Appendix B.
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Table 1. Efficiency of QMLE

a=.1 a=.5 a=.8
Shape B=.8 =4 B =1
True conditional density: Gamma
c=1 25 .25* 25 .25 25 .25
2 16 .17 a7 a7 21 21
6 .53 .53 .55 .55 .60 .60
12 73 .73 73 .74 .81 .82
30 .90 .91 92 .92 1.00 1.00
True conditional density: Student's t

v=5 41 41 41 4 42 42
8 .82 .82 .83 .83 87 .87
12 95 .95 95 .95 98 .98
NOTE: Model: y; = &, var(e | wi—1) = he = (1 — a — ) + msf_, + fhy—4. Ratio of

Variances = var(fu_e)/var(0amce)-
* The first number is the relative efficiency of QMLE for «, the second is for S.

In Table 1, we present the RE results for different
values of «a, f8, ¢, and v. The efficiency increases as ¢
and v increase, reflecting the convergence to a normal
probability distribution. For instance, for ¢ = 12, the
coefficient of conditional skewness is .57 and the con-
ditional kurtosis 3.5. For v = 8, the conditional skew-
ness is 0 and kurtosis 4.5 (the respective values for a
normal are 0 and 3). For ¢ > 30 and v > 12, the re-
spective distribution functions are indistinguishable from
the normal. Different values of a and § do not seem to
affect much the ratio RE, even though there is a small
loss of efficiency when the process has a large g.

The efficiency is particularly low for a gamma (¢ =
2). The asymptotic variance of the QMLE estimator is
around six times larger than the minimum variance. For
this kind of distribution, the conditional skewness is
1.41 and the conditional kurtosis is 6.

QMLE provides a consistent estimator of the asymp-
totic covariance matrix, which ensures the right size in
the traditional hypothesis tests. Although we will be
able to make the correct inference, we have shown that
the precision of the estimation of a GARCH(1, 1) model
could be very low and therefore the power of hypothesis
tests will be considerably reduced. Moreover, the fore-
casting ability of these models will be affected. The
precision of the forecast will be diminished; the forecast
intervals will be wider. It is worthwhile searching for
estimators that can improve on QMLE.

2. SEMIPARAMETRIC GARCH

In this section, we present a generalization of a
GARCH model in which the assumption of a known
conditional density is relaxed.

Let us consider the following model:

= E(yr| W) t &= Yeje-1 + &, 3)

with h; "%, ~ iid g(0, 1) or ¢ | w,_; ~ (0, h,); f is the
unknown density function of ¢ conditional on the set
of past information y,_,. Notice that the mean function
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Yii-1 can be an autoregressive integrated moving av-
erage model or any type of regression model.
The first four conditional moments of ¢, are

Baleed o, @

E(el L twt-l) -1, )

E(e | i)

o % (6)
and

E(ﬁf}[;//:—l) = ke, 0

where h, is a random variable parameterized as h, =
wy + 2-; aieX; to obtain an ARCH(p) model (Engle
1982) oras h, = wo + /-1 ael; + 27, Bih,—;to obtain
a GARCH(p, q) (Bollerslev 1986), s° is the coefficient
of conditional skewness, and k¢ the coefficient of con-
ditional kurtosis, both depending on the shape of the
conditional density function f. The shape characteristics
of the unconditional probability distribution function of
¢ will depend on the features of the conditional distri-
bution.

The coefficient of skewness of the unconditional dis-
tribution (s*) is defined as s* = (Eg¢})o 3, where ¢? is
the unconditional variance of ¢. For any distribution
such as E(&}) < » and considering that the expectation
of a random variable is the expectation of the condi-
tional expectation, we can write, applying (6),

T g3 (Eh,)m
_ E(Ee | yi-1) _ EGR?)
o (ERR O (ERPE

Given that ¢h,; "2 is iid, the conditional skewness is a
constant, and we can write

3/2
o o BB

GO ®
Furthermore, because of Jensen’s inequality, Eh}? =
(Eh)¥?, given that h, > 0, |s*| = |s|. Hence the uncon-
ditional skewness has the same sign as the conditional
and is not smaller in absolute value.
Analogously, using (7) and assuming E(ef) < , we
can write

Eef _ E(Est|y, 1) _ E(kh)
ot (Eh) (Eh,)?
En?

The unconditional kurtosis is not smaller than the con-
ditional, k* = k°.

ke =

= ke

2.1 Estimation of the Model

By the prediction error decomposition, the log-like-
lihood function for a sample ¢, . . . & is, apart from
some initial conditions, given by

Ir(0) = log L1(0) = ; log f(e | wi-1)-

This function will be maximized to estimate the un-
known parameters 6 as well as the unknown f. The set
of parameters 6 includes the ones in the mean equation
and the ones in the variance equation. To facilitate the
estimation, it is convenient to work with the standard-
ized residuals &h, /2. Taking into account the transfor-
mation of the random variable, the log-likelihood func-
tion looks like

1 T T 6
I(6) = ) ;1 log h, + ;21 log g (W) . (10

Note that we have restricted the set of density func-
tions to those with mean 0 and variance 1. We will
obtain the shape of g independently from location and
scale.

To maximize (10), we propose the following proce-
dure:

1. Choose some initial consistent estimates of the
set of parameters §. These estimates may come from
applying ordinary least squares to (3) (Engle 1982), or
from applying quasi-maximum likelihood estimation to
(3) (Bollerslev and Wooldridge 1988; Weiss 1986).

2. Save the residuals ¢ and the conditional variances
h, from step 1 and construct the variable ¢, /2. Check
if the new variable has mean 0 and variance 1; if not,
standardize it.

3. Use any of the nonparametric methods for density
estimation to estimate g(¢,h,'%); call it §. Write the log-
likelihood function as in (10), replacing g by §.

4. Perform the maximization of the log-likelihood
function from step 3, keeping g fixed and iterating to
convergence.

In step 3, we have chosen the discrete maximum pen-
alized likelihood estimation (DMPLE) technique (Tapia
and Thompson 1978) to estimate the nonparametric
density. This technique consists of maximizing the ac-
tual likelihood of a sample in which the arguments of
the function are the heights (p; . . . pn-1) Of a gener-
alized histogram at some given knots (n, . . . n,,-;). For
a sample x; . . . x, (in our case &/h}? . . . g/hl?) and
an interval (a, b) divided in m subintervals of length g,
the following optimization problem has to be solved:

max L(p, . . . Pm-1)

m }. m—1
= 2 log g(x;) — 3 2 (Pr+1 = 2Pk + Di1)’
i=1 k=1



Pi

Figure 1. Estimate of a Density Function Using the Discrete Max-
imum Penalized Likelihood Estimation Technique (Tapia and
Thompson 1978).

subject to
qu—lpk=1, pz=0, k=1...m-1,
k=1
where
g(n) = px + pk;‘q_ﬂ (n — ny),

ne [nk, nk+1); g(n) = 0, n ¢ (n(], nm)

and 4 is the penalty term (chosen by the researcher) to
ensure smoothness of the estimate of p. The estimate
of the density looks like Figure 1.

Tapia and Thompson (1978) performed Monte Carlo
simulations comparing a Gaussian kernel estimate, us-
ing the optimal window, to a DMPLE estimate. They
showed that the DMPLE estimator is more robust with
respect to the choice of the penalty term than the kernel
is in respect to the choice of the window width.

In step 4, to perform the maximization we use an
iterative algorithm such as that of Berndt, Hall, Hall,
and Hausman (BHHH 1974). This requires the cal-
culation of the score function. For a semiparametric
GARCH model, the scores are

o, 11ah 1 (ae

+ o _ 1oh &) &
00  2h 90  hl?

0 230h) 8"

where ¢ represents the parameters in the mean and in
the variance equation. If 6, is the subset of parameters
in the variance, d¢,/06, = 0. DMPLE turns out to be
computationally convenient to estimate the ratio g'/g,
because Vt € [t, tis1), 8 = (Pes1 — Po)/q.

2.2 Monte Carlo Simulations

To test how the semiparametric procedure performs
compared to QMLE in terms of efficiency, we have
carried out Monte Carlo simulations for two types of
models, GARCH(1, 1) and AR(2)-GARCH(2, 1). All
of the following computations have been carried out in
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the mainframe system Hewlett-Packard 9000/850.

For each model, we have considered that the distur-
bance term ¢, is conditionally distributed as a Student’s
t with v df or as a gamma with shape parameter c. The
t, distributed random variables were formed as an N(0,
1) distribution divided by the squared root of a y?/v.
The normal variate was generated by the International
Mathematical and Statistical Libraries (IMSL) subrou-
tine DRNNOR (App. C, footnote 1) and the x? with v
df by DRNCHI (App. C, footnote 2). The gamma-c
random variables (g.) were generated by the IMSL sub-
routine DRNGAM (App. C, footnote 3).

The artificial data has been generated in the following
way. Suppose a generic GARCH model y, = y,,_; +
&, where ¢, = £h!'?, and the variate ¢, is iid (0, 1). We
generate random numbers from a Student’s ¢ with v df
and from a gamma with shape parameter c. These ran-
dom numbers play the role of &, after some adjustment.
Since &, has mean 0 and variance 1, we need to stan-
dardize ¢, as well as g.. The variance of a ¢, is equal to
v/(v — 2). Hence

B 1,
P

Given some initial values and proceeding recursively,
we obtain

&= gh 2

-1/2
14
Ve = yt|t—1 + tvhtll2 ( ) )
v—2

where the right side depends on past information en-
tirely.

We proceed in a similar way for the gamma. The
DRNGAM subroutine produces a variate with mean
equal to ¢ and variance equal to c. Hence &, = gh, !
= (g, — ¢)c V2 From this point on, the generation
process continues as before. In Figure 2, we plot the
standardized densities of a ¢t with 5 df, a gamma with
shape parameter 2, and a normal (0, 1).

All of the estimation results in Tables 2 and 3 are
based on 500 replications. In both estimation tech-
niques, QMLE and semiparametric, the convergence
criteria used in the BHHH updating regression was R?
< .001. In the semiparametric estimation, the non-
parametric density of ¢/h'? has been estimated by the
IMSL subroutine DESPL (App. C, footnote 4), which
performs the estimation by the penalized likelihood
method. The algorithm computes a piecewise linear
density function. It requires as inputs the penalty term
to ensure smoothness of the estimate, the number of
knots, in which the density is estimated, and the support
interval (a, b). The number of knots should be chosen
as small as possible but large enough to show the struc-
ture of the density. The interval (a, b) has been set up
as a = min(e/h}'*) — .01 and b = max(e/h!?) + .01.
We have repeated some of the simulations in Tables 2
and 3 with different numbers of knots (from 21 to 200)
and different penalty values (from 10 to 100), and the
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Karabeo

Figure 2. Standardized Density Functions: Normal (0, 1), Stu-
dent’s t With 5 df, and Gamma With Shape Parameter Equal to 2:
---, Standard t;; -+-, N(0, 1), , Semiparametric.

results are very robust to the choice of these two pa-
rameters. We have used 51 knots and a penalty of 10
for Student’s ¢, and 21 knots and penalty 10 for a gamma.

The parameter values chosen for both models cor-
respond to the empirical findings in the estimation of
financial time series. Note that the unconditional fourth
moment does not exist in any of the models we consider
(App. C, footnote 5). The sum of « and f is close to
1, reflecting the persistence of the volatility, and the
parameter £ is in the range .6—.8. The parameter values
in Table 3 are the same as those of Bollerslev and
Wooldridge (1988).

In Table 2, we report the sample means and standard
deviations for QMLE and semiparametric estimation
of a GARCH(1, 1) for a sample size of T = 2,000.

Different shapes of a gamma distribution have been
considered. The larger c is the closer it is to a normal
probability distribution. The variability in the QMLE
estimates decreases as c increases, reflecting the near-
ness to normality. The semiparametric estimation pro-
duces gains in efficiency for values of ¢ between 2 and
6. The gains are decreasing for larger values of c¢. For
¢ = 2, the Monte Carlo semiparametric ratio of vari-
ances shows an improvement in efficiency of 50% over
QMLE estimation; for ¢ = 6, the gain is only 10%.

When the conditional distribution is a Student’s ¢, we
cannot find any gain. We suspect that this poor per-
formance comes from the poor nonparametric estima-
tion of the tails of the density. The difference between
a normal and a Student’s ¢ probability distribution lies
in the tail thickness. For a ¢ distribution with 5 df, the
coefficient of kurtosis is 9; for a normal distribution, it
is 3. The information in the tails is very dispersed, and
its estimation becomes difficult. In general, the behav-
ior of the estimate of the tails of the density is very
unstable. We have run some experiments (the results
are not reported here) with conditional normal distrib-
uted errors to check the proper functioning of the semi-
parametric estimation. We examined very closely the
differences between QMLE and semiparametric esti-
mation, concluding that these come from the poor es-
timation of the ratio ¢'/¢ in the tails.

In Table 3, we report the means and standard devia-
tions of the QMLE and semiparametric estimates of an
AR(2)-GARCH(2, 1) model with a gamma (¢ = 2)
and # distributed errors for different sample sizes, T =
2,000, 1,000, and 500. As expected, the variability of
the estimates increases with smaller sample sizes. Once
more, the gains in efficiency do not seem to be very
different from the previous case. With a gamma prob-
ability distribution, the ratio of variances shows an im-

Table 2. Effect of the Shape Parameter

QMLE Semiparametric
Standard Standard Ratio = “
T = 2,000 Mean (1) deviation (2) Mean (3) deviation (4) 2)
Conditional density: f(e | v.-,) ~ gamma
c=2
a .204 .030 196 .021 .70
B .693 .045 .698 .030 .66
c=6
a .202 .022 .202 .021 .95
B .692 .041 .692 .038 .92
c =12
a .201 .020 .201 .021 1.05
B .697 .034 .695 .036 1.05
Conditional density f(e | y.-,) ~ Student's t
v=>5
a .206 .029 .204 .029 1.00
B .690 .049 .692 .048 .97
NOTE: Monte Carlo Results Based on 500 Replications of the Model y; = &, var(er | we-1) = e = (1 — a = ) + asf_, + Bh_q.

Parameter Values: a = .2, = .7



provement in efficiency between 40% and 60% over
QMLE. With a ¢, it is very difficult to improve on

QMLE.

If the true density were known to be g, then the

Table 3. Comparison of QMLE to Semiparametric Estimation Procedure

Engle and Gonzélez-Rivera: Semiparametric ARCH Models

QMLE Semiparametric
Standard Standard Ratio = 4
Mean (1) deviation (2) Mean (3) deviation (4) 2)
Part A: Conditional density f(e | v.-,) ~ gamma with shape parameter ¢ = 2
T = 2,000
¢y .500 .028 .501 .016 .57
b2 150 .027 149 017 .62
w 102 .019 101 .015 .78
a .093 .034 .097 .025 73
a, .205 .049 .202 .037 .75
B 592 .052 596 .037 71
T = 1,000
&, .500 .036 .501 .025 .69
b2 149 .037 152 .025 .67
w .106 .033 .106 .022 .66
a, .092 .051 .099 .039 .76
a, .208 .077 .207 .057 74
B .583 .082 .588 .057 .69
T = 500
b4 497 .050 .501 .036 72
¢, .146 .050 .150 .036 72
w 117 .056 114 .039 .69
a, .094 .078 .096 .061 .78
a 216 120 213 .088 .73
B .560 131 .576 .090 .68
Part B: Conditional density f(e | w:-,) ~ Student t with 5 df (v = 5)
T = 2,000
o) .500 .027 .501 .024 .88
¢, 146 .027 147 .029 1.07
w 102 .020 .104 .023 1.15
a, .093 .033 .096 .035 1.06
a; .200 .049 .204 .056 1.14
B .593 .051 .595 .055 1.07
T = 1,000
o4 .502 .036 .501 .035 97
o2 145 .038 .146 .036 .94
w 107 .035 AN .037 1.05
a; .092 .049 .097 .051 1.04
a, .205 .079 214 .086 1.08
B .581 .090 579 .092 1.02
NOTE: Monte Carlo results based on 500 replications of the model yr = @1yr—1 + dayr—2 + &, varle | wi-1) = hy = @ + a|e,2_|

+ age? 5 + fhy—q. Parameter values: ¢; =

B, ¢2=.15,w=.1,a1=.1,a2=.2,andf = .6.
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estimated standard errors would be consistent estimates
of the relevant elements of the information matrix un-
der the general conditions for maximum likelihood es-
timation. Instead, this density was itself estimated from

Table 4. GARCH Model: y, = b + ¢; h, = w + agt; + fhe; + yes

MO FMC PDS AF
N(1) N@) NP N(1) N2) NP N(1) N(2) NP N(1) N2) NP
b .0005 .0004 .0004 .0006 .0005 .0001 .0012 .0011 .0014 .0006 .0008 .0003
(2.01) (1.72) (1.11) (.97) (2.31) (2.10) (1.49) (2.06)
w® 3 4 3 4 A A 3 3 4 1.0 .02 .02
(x 10%) (3.51) (3.62) (1.71) (1.90) (2.25) (2.15) (4.93) (1.49)
a .0802 .0898 .0784 .0287 .0224 .0207 .0708 .0700 .0738 .2243 .0269 .0292
(5.15) (5.32) (2.67) (2.88) (3.51) (3.37) (5.34) (5.13)
) .8520 .8318 .8546 .9233 .9634 .9656 .8544 .8602 .8492 .5649 .9690 .9682
(27.97) (25.04) (27.05) (76.58) (18.30) (18.96) (8.76) (161.7)
e - -.0005 — — -.0011 -.0013 — -.0003 — — -.0009 -.0009
(—.92) (—2.90) (~.44) (—2.93)
log If 14,224.8 14,227.2 14,616.0 5,706.3 5,718.4 5,850.2 3,494.5 3,494.8 3,577.1 8,482.3 8,526.5 8,805.0

NOTE: Nis conditional normal; NP is nonparametric density (for MO, FMC, and AF knots = 91, penalty = 20; for PDS, knots = 41, penalty = 20). Consistent ¢ statistics are in parentheses.
Number of observations: MO, 5,903; FMC, 2,769; PDS, 1,453; AF, 3,785.
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the data that involve estimating a large number of ad-
ditional parameters. Only in the special case of adap-
tation will the standard errors now be correct. In this
case, the information matrix is essentially diagonal be-
tween the parameters of interest and the nuisance pa-
rameters (Bickel 1982; Manski 1984). These conditions
are not satisfied for this problem, as the Monte Carlo
results illustrate. The estimator does not achieve the
full gains. The estimated standard errors are therefore
not consistent and are not reported.

3. EMPIRICAL ILLUSTRATION

In this section, we apply the semiparametric GARCH
estimation to a set of individual stock returns and to
the exchange rate of the British pound in terms of the
U.S. dollar (BP/$).

For a set of 115 stocks from Center for Research in
Security Prices tapes, we have calculated the Spearman
correlation coefficient between size of the firm (ordered
from the largest to the smallest according to their capital
account) and the first four moments of the uncondi-
tional probability distribution of the monthly stock re-
turns for the period 1962-1985. The results are the fol-
lowing:

Standard
size Mean deviation Skewness Kurtosis
332 .632 .339 .176
(.000)  (.000) (.000) (.059)

The numbers in parentheses are the p values under Hy:
p = 0. These values suggest that there is a significant
relation between the first three unconditional moments
and the size of the firm. The small firms have higher
mean, higher standard deviation, and higher skewness.
The first two facts are well known; small firms are risk-
ier and consequently they offer a larger return. On the
contrary, it is not so well reported that small firms tend
to have larger skewness. Using daily data for the period
1962-1985, we have estimated a GARCH model for
four securities: Mohasco Corporation (MO, furniture),
First Mississippi Corporation (FMC, chemicals), Perry
Drug Stores (PDS, drugstores), and Airborne Freight
(AF, air express transportation).

We have specified two types of GARCH models, the
symmetric in variance GARCH(1, 1) and the asym-
metric GARCH(1, 1) as in the work of Engle (1990).
The latter responds to the need to differentiate between
the effects of good news and bad news. Bad news is
associated with a large decline in the stock price of the

Table 5. Unconditional Distribution of

Table 6. Conditional Distribution of ¢h; '’

Mean Variance
Company (x 10%) (x 109 Skewness Kurtosis
MO .06 .04 .50 6.77
FMC .05 .09 .62 497
PDS 15 .04 .54 5.19
AF .06 .07 .96 10.21

Company Model Mean  Variance Skewness Kurtosis

MO N(1) .002 1.00 51 7.41
N(2) .004 1.00 53 7.47
NP .003 99 51 7.40
FMC  N(1)  -.002 1.00 66 5.18
N@2)  -.004 99 63 498
NP .009 99 68 5.38
PDS N(1) .004 1.01 51 5.50
N(2) .008 1.01 53 5.52
NP —.0002 .98 51 5.48
AF N(1)  -.001 1.00 70 8.04
N@2)  -.007 1.02 67 6.83
NP .007 99 65 7.44

NOTE: N(1) = conditional normal; N(2) = conditional normal with asymmetric effect in
variance equation; NP = nonparametric density.

firm; consequently, the value of the firm falls and the
debt—equity ratio rises, making the firm riskier (Black
1976). According to this argument, declines in prices
will tend to be followed by increases in volatility. To
capture the so-called leverage effect, we have intro-
duced the term ye,_; in the variance equation. If it is
true that bad news increases the volatility of the stock
returns, we will expect y to be negative. Similar features
were found important by Nelson (1989) and Schwert
(1990).

We have estimated these GARCH models using
QMLE, under the assumption of conditional normai
errors, and using our semiparametric approach.

In Tables 4-9 we report the estimation results. When
we compare the models estimated under QMLE, it seems
that the asymmetric GARCH fits FMC and AF stock
returns better. The value of the log-likelihood function
of the asymmetric GARCH model for FMC and AF is
much higher than the one in the symmetric model. For-
mally, we cannot perform a likelihood ratio test because
its distribution is unknown when the assumption of nor-
mality fails (White 1982). As we would expect, the
asymmetric term in variance is negative but only sig-
nificant for FMC and AF. The introduction of the asym-

Table 7. Box—Pierce Q Statistic of gh; 2

Company Model Q(12) Q(24) Q(36)
MO N(1) 1.5 22.0 414
N(2) 1.4 21.9 411

NP 115 22.0 413

FMC N(1) 21.7 38.4 55.0
N(2) 23.1 39.6 57.2

NP 225 38.3 54.4

PDS N(1) 10.6 19.2 28.6
N() 10.9 19.3 28.7

NP 111 19.5 29.1

AF N(1) 121 25.8 36.0
N(2) 14.8 22.6 31.2

NP 15.8 23.6 33.4

NOTE: N(1) = conditional normal; N(2) = conditional normal with asymmetric effect in
variance equation; NP = nonparametric density.
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Table 8. Autocorrelogram: Residuals From Semiparametric GARCH
Lag
Security 1 2 3 4 5 6 7 8 9 10 11 12
Residuals ¢,
MO .008 -.003 —-.016 -.014 -.005 —-.007 .010 .001 -.03* .006 —.014 .023
FMC —.009 —-.025 -.012 —-.021 .022 —.006 —.003 .000 —-.032 .000 —.046* —.061
PDS .032 —-.014 —-.034 ~.019 -.018 .039 .022 .021 ~.063* -—.038 -.016 .042
AF .024 —.003 —.006 -.007 .008 -.017 .001 ~.010 ~.002 —-.016 .006 .010
Squared residuals ¢

MO .104* .064* .056* .035* .036* .037* .023 .031* .027 .026 .035* .028
FMC .104* .009 .029 .028 —.001 .012 .037 .047* .056* .009 .004 .045*
PDS 137 11 .074* .068* .053* .011 .064* .017 .027 .049 .005 .090*
AF .089* .065* .043* .042* .041* .032 .041* .018 .030 .004 .029 .027

* Significant at 1% level.

metric term in MO, FMC, and PDS does not very much
affect the structure of the model obtained under a sym-
metric GARCH. This is not the case for AF, where the
leverage effect changes the estimates of the model sub-
stantially.

If we compare the QMLE model with the semi-
parametric model, we can reject the null hypothesis of
conditional normality at any significance level. As an
informal comparison we report the values of the like-
lihood ratio test, which are 782.4, 263.6, 165.2, and 557
for MO, FMC, PDS, and AF, respectively. The per-
sistence in volatility, measured by the sum of a + f,
ranges from .92 for MO and PDS to .98 for FMC and
AF. The conditional distribution of the standardized
residuals g4, "2 is positively skewed and leptokurtic. In
Figures 3, 4, 5, and 6, there is a comparison between
the nonparametric conditional density and a standard-
ized Student’s ¢ with 5 df and a normal (0, 1). MO and

Table 9. BDS Statistic? for ¢h; "' From the Semiparametric

GARCH Model

Exponent .64 .512 .4096
Company: MO?

m=2 .05 -.09 -7

3 -.14 -.12 —-.24

4 -.29 -.14 -.30
Company: FMC

m=2 -.23 .08 1.1

3 -.32 -.05 -.85

4 —-.30 -.12 —.64
Company: PDS

m=2 -.90 -.33 —-.51

3 -.94 —.43 - .56

4 -1.05 -.52 —.68
Company: AF

m=2 -2.00 -.05 12

3 —2.68° -.15 -.01

4 —3.21° -.23 —~.14

2 PC program provided by David Dechert. For the company MO, the test was run with
the first 4,000 observations due to program limitations. The test was also run with the last
4,000 observations, and the results are similar to those reported in this table.

b Significant at 1% level.

AF follow quite closely the shape of a standardized ¢
with 5 df, even though those have longer tails. In PDS
and FMC, the skewed shape is apparent. At 1% level,
we cannot reject the null hypothesis of white-noise stan-
dardized residuals as the Box—Pierce Q statistic shows.
The assumption of iid standardized residuals is also
tested with the BDS statistic. Although the actual size
of the BDS statistic, when the procedure is semipara-
metric ARCH, is not known, we compute nine tests for
each set of residuals, and only for two versions of the
stock AF can we reject at a 1% level.

In summary, the asymmetric semiparametric GARCH
seems to fit the data. A size effect appears to be related
to the shape of the unconditional distribution as well
as the conditional. Skewness should be taken into ac-
count in the estimation of the stock returns.

The second set of examples refers to daily closing
prices of the BP/$ from January 2, 1974, until Decem-
ber 30, 1983. This series has been fitted by Gallant et
al. (1989). They applied the seminonparametric tech-

R

KamnBsoo

AF Standardized residuals

Figure 3. Comparison of the Semiparametric Conditional Density
of AF Standardized Residuals to a Normal Density (0, 1) and to a
Standardized Student’s t With 5 df: ---, Standard ts; ---, N(O, 1);
, Semiparametric.




Journal of Business & Economic Statistics, October 1991

LIGA RN N -

..... -7 T
FMC Standardized residuals

Figure 4. Comparison of the Semiparametric Conditional Density
of FMC Standardized Residuals to a Normal Density (0, 1) and to
a Standardized Student’s t With 5 df: ---, Standard t;; ---, N(O, 1);
, Semiparametric.

nique, designed by Gallant and Nychka (1987), which
consists of approximating the conditional distribution
by a truncated Hermite polynomial expansion using an
ARCH-type model as the leading term.

We work with returns to the BP/$ exchange rate
calculated as the logarithm of price changes. We adjust
the data in the same way that Gallant et al. (1989) did,
removing the day-of-the-week effect from the mean as
well as from the variance.

The unconditional distribution of these returns is very
peaked around 0 and has fat tails (Gallant et al. 1989,
fig. 1). The first four unconditional moments are shown
in Table 10. The correlogram of the adjusted series is
shown in Table 11.

KctHrn300

MO Standardized residuals

Figure 5. Comparison of the Semiparametric Conditional Density
of MO Standardized Residuals to a Normal Density (0, 1) and to a
Standardized Student’s t With 5 df: ---, Standard t;; -+, N(0, 1);
, Semiparametric.

Kt 00

PDS Standardized residuals

Figure 6. Comparison of the Semiparametric Conditional Density
of PDS Standardized Residuals to a Normal Density (0, 1) and to
a Standardized Student’s t With 5 df: ---, Standard ts; ---, N(0, 1),
, Semiparametric.

It reveals no linear structure in the mean but a rich
structure in the second moments. Given this hetero-
geneity in the variance, the estimation of a GARCH
model seems to be appropriate.

Tables 12, 13, and 14 show the estimation results.
We have run a GARCH model and an integrated
GARCH model with different distributional assump-
tions for the disturbance term.

There is strong evidence for integrability in variance.
Under a conditional normal density, « + f = .998 and
under .a Student’s ¢, « + f = 1.050. These integrated
processes are characterized by persistence in variance;
that is, shocks to the conditional variance are perma-
nent. Furthermore, the unconditional fourth moment
does not exist; consequently, the unconditional coef-
ficient of kurtosis, previously calculated, is meaningless.

There is an overwhelming rejection of a conditional
normal density function for ¢h, V2. If the alternative is
a Student’s ¢, the likelihood ratio test is 598.2. If the
alternative is a nonparametric density, an informal com-
parison is given by the likelihood ratio, which is equal
to 504. We reject the null hypothesis of conditional
normality at any significance level.

The conditional Student’s ¢ is also rejected based on
the sample moments of ¢, 2. The variance of h; '
should be 1 and the coefficient of skewness equal to 0,

Table 10. The First Four Unconditional Moments of the
Distribution of Returns to the BP/$ Exchange Rate

Adjusted
Raw data data
Mean -.018 .0001
Variance .350 .998
Skewness —-.413 —.429
Kurtosis 8.902 8.396
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Table 11. Correlogram of the Adjusted Series
Lag
1 2 3 4 5 6 7 8 9 10
y. —.016 .000 —-.006 -.008 .014 —.003 -.006 -.011 .051* —.008
y? 152 148" .067* .064* .107* .078* .032 .039 .025 .049*

* Statistically significant at 1% level.

but the sample variance is 1.41 and the skewness is 1.47.

Rejection of normality and Student’s ¢ leads us to
estimate an IGARCH with a conditional nonparametric
density. We observe that the conditional distribution of
&h; 12 is slightly skewed and has fat tails. A plot of the
conditional density is given in Figure 7, page 356, and
it is compared to a standardized ¢ with 3 df and to a
normal(0, 1).

Gallant et al. (1989) found modest evidence for het-
erogeneity in the conditional density. We have checked
the possibility of time-varying standardized third and
fourth moments of the integrated semiparametric
GARCH. Their correlograms are shown in Table 15,
page 357. We also ran the regressions in Table 16, page
357, in the same spirit as time-varying variance models.

Even though there is not a formal test for time-vary-
ing skewness and kurtosis, these preliminary results do
not seem to indicate any violation of the iid hypothesis.
Furthermore, the BDS statistic for the standardized re-
siduals does not reject the assumption of independence.

Summarizing, a semiparametric GARCH can solve
the problems found in the estimation of the BP/§$ re-
turns and could be an easier alternative to the one
presented by Gallant et al. (1989). The series is char-
acterized by an IGARCH with a homogenous non-
parametric conditional density that exhibits leptokur-
tosis and side lobes in the tails.

4. SUMMARY AND CONCLUSIONS

We have introduced a further generalization of
GARCH models—the semiparametric GARCH. There

is enough empirical evidence to reject the assumption
of conditional normality in financial series, a field in
which GARCH models have been proven to be ex-
tremely successful. It seems sensible to ask how restric-
tive the assumed normality could be. In this sense, we
have investigated the efficiency of the QMLE esti-
mator. We have shown that the loss of efficiency, due
to misspecification of the density, could go up to 84%
[var(@omie) is 6.25 times larger than var(fyg)]. Con-
sequently, there exists a need to search for more effi-
cient estimators.

If we assume that the mean and variance equations
are well specified but we do not know to which prob-
ability function they belong, then “the closest” ap-
proximation to the true generating mechanism we can
think of should come from the data itself. A nonpara-
metric density responds to this concern. In this article,
we have proposed a new estimator. The semiparametric
GARCH is able to accommodate any particular con-
ditional probability density of the disturbance term.

Monte Carlo results suggest that this semiparametric
method can improve the efficiency of the parameter
estimates up to 50% over QMLE, but it does not seem
to capture the total potential gain in efficiency. In this
sense we say that the estimator is not adaptive in the
class of densities with mean 0 and variance 1; that is,
the estimator is not fully efficient, and it does not achieve
the Cramer—Rao lower bound. The information matrix
is not block diagonal between the parameters of interest
(the ones in the mean and in the variance equation)
and the nuisance parameters (the knots of the density).

Table 12. Adjusted Daily Returns BP/$: Model:y, = b + &; (1) hy = o + agt; + ph._y; (2) h, =
o+ act, + (1 — a)h,_,

Normal Student’s t Semiparametric
(1) 2 (1) 2 (1) (2
b .0202 .0184 .0450 .0437 .0145 .0168
(.014) (.014) (.007) (.008)
w .0150 .0152 .0004 .0004 .0109 .0151
(.006) (.006) (.000) (.000)
a 1327 1291 1979 .1008 .1654 1270
(.026) (.023) (.026) (.007)
B .8692 — .8634 — .8665 —
(.023) — (.011) — _
1/v —_ —_ .3031 .2367 —_ -
— — (.000) (.002) — —
log If —3289.1 —3289.0 —2976.7 —2989.9 —-3027.1 —-3037.0
NOTE: v is degrees of freedom. Standard errors are in parentheses: consistent standard errors for normal, outer product of the score

for Student's t. In the nonparametric density, knots = 51. and penalty = 20.
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Table 13. Adjusted Daily Returns BP/$: Conditional Distribution

of gh;y 12
Model Mean  Variance  Skewness  Kurtosis
Normal (1) —-.01 1.00 .05 11.81
Normal (2) -.01 1.01 .04 11.67
Student-t (1) -.03 1.07 1.85 44,39
Student-t (2) -.04 1.41 1.47 36.28
Semiparametric (1) —-.00 91 11 13.50
Semiparametric (2) —-.00 1.00 .03 11.60

If we choose the parametric form of the model with a
conditional parametric density defined by a shape pa-
rameter, this one being part of the parameters to es-
timate, we can show easily that the expectation of the
cross-partial derivatives of the log-likelihood function
respects the parameters of interest and the shape pa-
rameter is different from 0. In other words, the esti-
mation of the shape parameter affects the efficiency of
the estimates of the parameters of interest. This topic
will be extended in future research.

To obtain meaningful standard errors for the esti-
mates of the semiparametric model, an alternative es-
timation procedure can be implemented. Instead of es-
timating the model in two steps, first the density and
second the parameters in the mean and in the variance,
we can choose a parametric representation of the den-
sity and form a single parameter list composed by all
the parameters that define the model and the density
function. The maximization of the log-likelihood func-
tion will be done with respect to the whole set of pa-
rameters at once. We can construct the information
matrix so that now it will incorporate the cross-partial
derivatives between the parameters that define the den-
sity and the parameters of the model. The inverse of
the information matrix will retain its interpretation as
the variance—covariance matrix.

We have illustrated the use of the semiparametric
estimator with two sets of examples. We have chosen
a subset of small-firm stock returns, and we have shown
that the fitted GARCH process reveals a conditional
density that follows closely a Student’s ¢ with 5 df, even
though there is some positive skewness to account for.
The second set of examples is a comparison between
the seminonparametric approach reported by Gallant
et al. (1989) and our semiparametric method, using the
returns to the BP/$ exchange rate. It is shown that the
integrated semiparametric GARCH is a simple ap-
proach to modeling this “recalcitrant” series.

Table 14. Adjusted Daily Returns BP/$: BDS Statistic for ¢h; 2
of the Semiparametric (2) Model

Exponent .64 512 4096
m=2 -.02 —-.06 -.12
3 -.02 -.07 -.12

4 -.13 —-.08 -.15

<tEwSou

6 9

British Pound/$ Standardized Residuals

Figure 7. Comparison of the Semiparametric Conditional Density
of the BP/$ Exchange Rate Standardized Residuals to a Normal
Density (0, 1) and to a Standardized Student’s t With 3 df: ---,
Standard t;; -+, N(O, 1); , Semiparametric.
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APPENDIX A: REGULARITY CONDITIONS
OF QMLE

1. 0 is compact and has a nonempty interior.

2. The conditional mean and the conditional vari-
ance are measurable for all  and twice continuously
differentiable on int 0.

3. (a){l(9),t=1,2,.. }satisfies the uniform weak
law of large numbers, where /,(0) is the log-likelihood
function of observation ¢. (b) 6, is the identifiably unique
minimizer of E(Z[_, [,(0)).

4. (a) al?/30'90 and E(dl2/96030) satisfy the uniform
weak law of large numbers. (b) Ay = — T~ 2, E(3l3/
96'30) is uniformly positive definite.

5. (a) By = T~' Z, E(81/36)'(9l/36) is uniformly
positive definite. (b) T-"?B7">Z, (3l/96)' — N(0, I,).

6. (0l/00)'(dl/00) satisfies the uniform weak law of
large numbers.

APPENDIX B: RELATIVE EFFICIENCY OF QMLE

Consistent estimator of the asymptotic covariance
matrix (A 'BYAY ) for the model y, = ¢, h, = (1 —
a — B) + ag?_, + Ph,_,. The scores are
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Table 15. Adjusted Daily Returns BP/$: Correlogram of the Standardized Third and Fourth Moments of the
Integrated Semiparametric GARCH

ehr32 .006 .000 -.002 —.002 -.014 .000 .000 —.005 .000 .000
eth? .000 -.002 .000 —-.002 .003 -.002 -.002 .000 -.002 -.002
and Each element of the matrix A is consistently estimated
ol _ _11oh(, by
o 2h 9 h)’ . 1«11 [on
Ay ==, == \{—
! T22M
where ,
. 1«11 (oh
oh, oh,., P __<_,>,
Pyl Tl Sl s z TZM% op
and and
oh, oh,_, Ay = — ah
a—p; h,_1—1+ﬁa—ﬁ 12 22/12 aﬁ

For 6 = (a, f), the expectation of the outer product
of the score, matrix B%, is:

1 al,(6) 91,(60)
0 — — —n0 A0
Br TZ E( a0 30’
_1 91(0y) 01,(%)
- TE,E(E a0 a0 | V)
Each element of the matrix B is consistently esti-
mated by
1«11 (on)
By == : ZE?(:?Z) b - 1),
1«11 (oh)
By = ? 21: Z ;l'? (Bﬁ) (ﬁz 1),
and

where f, is the coefficient of conditional kurtosis g, =
E(el | w1)/he.
The matrix A% is minus the expectation of the Hes-

sian:
1 3%(6)
AO = —— —_—
! T Z E (aoae'

_ l a lr(aﬂ)
DR

")

Obviously, when the conditional density of ¢, is truly
normal ($, = 3), the matrices A and B are identical.
The consistent estimator A "'BA ! is

Gak(a) = ( - 1)25—2(%%') 5 (B
and
@) = (B - 1)25;(5;%’) Di B.2)

where D, is the determinant of the matrix A.

B.2: MLE

If the conditional density is a Student’s ¢ with v df,

falven = g=r () e (3)

82 -(v+1)2
—_ -1/2 ‘
X ((v = 2)h) (1 S vepe 2))

The scores are

al,

(v + 1)é? )
da

O (y v+ Da
;0 e+ h(v - 2)

N | —
3‘])—-\

and

o _ 1 l_h_r( __ v+ Det
B 2 hop & + h(v — 2)

Table 16. Adjusted Daily Returns BP/$: Regressions of the Standardized Third and Fourth Moments on Their Own Past

Dep. var. Const. Lag 1 Lag 2 Lag 3 Lag 4 Lag § Lag 6 Lag 7 R?

ehy? .023 .006 .000 -.002 -.002 —-.014 .000 .000 .000
(-5) (.02) (.02) (.02) (.02) (.02) (.02) (.02)

ethi? 11.860 -.000 —-.002 -.000 -.002 .003 -.002 -.002 .000
(4.69) (.02) (.02) (.02) (.02) (.02) (.02) (.02)

NOTE: Standard errors are in parentheses.
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ix B:
s 111 (an) v+ D2\
Bu_T24h?(aa)(1—a,2+h,(v—2))’

A 1«11 (an) v+ D\
Bo=—3 7m0 (1 - 5055
T 4h\o & + h(v — 2)

R 1 oh,\ [ oh, v+ e
- TZ 4h2( )(aﬂ)(l g2+ k(v - 2)) '

The estimator of the covariance matrix is B~ !:
11 (on)’
4 h? \ op

(v + e 1
g (1 &+ R 2)) b, ©J

S
|

Var(a) =

v+ e \1
X (1 - ——2L )
( &+ h(v—-2)) Dy’ (B.4)

where Dj is the determinant of the matrix B.
‘"l.‘h.e efficiency of the QMLE procedure is calculated
dividing (B.3) by (B.1) and (B.4) by (B.2), respectively.

B3: MLE

If the conditional density is a gamma with c as a shape
parameter:

Ve (Ve -1
f(3t| '//1—1) ( o T C)

huzr(c)
( Ve, )
X exp| — -cj.

h}/Z

If we call u, = Vce/h!?, the scores are:

B _1loh(c )

da 2 h, oa \¢c + u,

and

ol _ =11oh (c - uf
p 2 hop\c+u)’
Proceeding in the same way as in B.2, we have the
estimator of the covariance matrix B~

@@ = 257 (379) (Z‘%) b, ®9
and
-SRI 0

where Dy is the determinant of the matrix B calculated
under a gamma density.

The relative efficiency of QMLE is obtained dividing
(B.5) by (B.1) and (B.6) by (B.2), respectively.

APPENDIX C: FOOTNOTES

1. DRNNOR produces a uniform (0, 1) random
variable and then uses the inverse of the normal dis-
tribution function to generate the normal variate.

2. DRNCHI produces a chi-squared random vari-
able with df degrees of freedom as 52 = —2 In(II}.,
u;), where n = df/2 and u; are independent random
variables from a uniform (0, 1) distribution.

3. DRNGAM produces a gamma random variable
with shape parameter ¢ and unit scale parameter. The
algorithm uses a 10-region rejection procedure devel-
oped by Schmeiser and Lal (1980). For a more complete
description of the IMSL subroutines, see IMSL (1987).

4. Foramore detailed description, see IMSL (1987).

5. For a GARCH(1, 1) model (Table 2), the nec-
essary and sufficient condition for the existence of the
unconditional fourth moment is 2 + 2af + k‘a® <1,
where k¢ is the conditional coefficient of kurtosis. For
a GARCH(2, 1) model (Table 3), the condition is a,
+ B+ Py, + 204 + k‘at + ka3 + k‘dla; —
ko3 + 2k‘a,a, < 1. We obtain these conditions con-
sidering that E(¢}) = E(E(e! | w,-1)) = k°E(h?) and
using the law of iterated expectations successively. If
the conditional distribution is Normal, k¢ = 3 and the
previous conditions are the same as the ones stated by
Bollerslev (1986).

[Received June 1989. Revised March 1991.)
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