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We propose a new battery of dynamic specification tests for the joint hypothesis of iid-ness and density
function based on the fundamental properties of independent random variables with identical distributions.
We introduce a device—the autocontour—whose shape is very sensitive to departures from the null in
either direction, thus providing superior power. The tests are parametric with asymptotic t and chi-squared
limiting distributions and standard convergence rates. They do not require a transformation of the original
data or a Kolmogorov style assessment of goodness-of-fit, explicitly account for parameter uncertainty,
and have superior finite sample properties. An application to autoregressive conditional duration (ACD)
models for trade durations shows that the difficulty with the assumed densities lies on the probability
assigned to very small durations. Supplemental materials for this article are available online.

KEY WORDS: Autoregressive conditional duration model; Bootstrap; Parameter uncertainty; Probabil-
ity contour plot.

1. INTRODUCTION

We propose a new battery of tests for dynamic specifica-
tion that rely on the fundamental properties of independent ran-
dom variables with identical distributions. We focus on mod-
els in which all the dependence is contained in the first and
second moments such that for a process {yt} we have yt =
μt(θ01,�t−1) + σt(θ02,�t−1)εt where μt(·) is the conditional
mean and σ 2

t (·) is the conditional variance, both functions of
an information set �t−1, θ0 = (θ ′

01, θ
′
02)

′ is a parameter vector,
and εt is an innovation that is iid. The innovation εt is character-
ized by a parametric pdf, say f (εt). In this context, we formulate
a collection of statistics for the joint hypothesis of iid-ness and
density functional form of the innovation as specification tests
of the full model.

There is an extensive literature on testing a single hypoth-
esis, either density functional form or iid behavior. There are
numerous parametric and nonparametric tests for density func-
tional form, most of which assume iid observations as a starting
point as in Andrews (1997), or independence as in Fernandes
and Grammig (2005). On the other hand, there are several diag-
nostic checks that do not explicitly consider the density func-
tional form. Brock et al. (1996), Hong and Lee (2003), and
Chen (2008), among others, test for iid-ness, Escanciano (2008)
focused on the specification of conditional mean and variance,
and Meitz and Terasvirta (2006) provided Lagrange multiplier
(LM) tests of dependence in the context of duration models.
Testing the joint hypothesis of iid-ness and density functional
form arise concurrently with the interest in density forecast
evaluation methods based on Rosenblatt’s probability integral
transform. If the proposed density forecast, say ft(·), is correct,
then the transformed random variables, ut = Ft(yt|�t−1; θ0),
are iid uniformly distributed, see Diebold, Gunther, and Tay
(1998), Berkowitz (2001), Chen and Fan (2004), who tested
the joint hypothesis of iid-ness and uniformity without account-
ing for parameter uncertainty. Bai (2003) dealt with parame-
ter uncertainty, but his test lacks power against violations of

independence (see Corradi and Swanson 2006). Hong and Li
(2005) proposed a nonparametric-kernel-based test statistic that
has power against violations of both independence and density
functional form. Their procedure is asymptotically distribution
free, but it is dependent on the choice of the bandwidth.

In this article we propose a battery of tests for the joint hy-
pothesis of iid-ness and density functional form that are very
powerful against violations of both. The proposed tests focus
on fundamental properties of independent random variables
with identical distributions. Let the process under consideration
be {εt} with density f (·). The random variables in this process
are independent if and only if their multivariate distribution is
equal to the product of their marginal distributions, in which
case the null hypothesis simply boils down to f (εt−k1, εt−k2,

. . . , εt−km) = f (εt−k1)f (εt−k2) · · · f (εt−km), {kj}m
j=1 ∈ N. The

specification tests we propose are based on a new concept that
we term autocontour. Under the null, we horizontally slice the
joint density at different levels and project the resulting seg-
ments down to the hyperplane (εt−k1, εt−k2, . . . , εt−km). The
projection is the autocontour containing a known percentage of
the observations. Based on the sample estimates of these per-
centages we construct a battery of t-statistics and chi-squared
statistics, which have standard asymptotic distributions. The
shape of the autocontour will change whenever there is a de-
parture from the null in any direction, and by doing so it will
provide superior power to the tests. Our tests can be applied to
primitive series and model residuals, in which case we need to
address the parameter uncertainty problem. We show that a gen-
eral bootstrap procedure to obtain asymptotic variance matrices
delivers standard asymptotic tests with very good finite sample
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performance. In comparison with the existent tests, the autocon-
tour tests have several advantages as they are parametric with
standard convergence rates and standard limiting distributions
that deliver superior power. They are computationally easy to
implement as they are based on counting processes. In addition,
they do not require either a transformation of the original data
or an assessment of Kolmogorov goodness-of-fit, and explicitly
account for parameter uncertainty.

The structure of the article is as follows. In Section 2, we
formalize the notion of autocontour and present the testing
methodology. In Section 3 we explicitly deal with the parame-
ter uncertainty problem. In Section 4, we provide Monte Carlo
evidence on the size and power properties of our tests and of-
fer a comparison with the nonparametric tests of Hong and Li
(2005). Section 5 contains an empirical application in the con-
text of autoregressive conditional duration (ACD) models. We
conclude in Section 6. All mathematical proofs can be found in
Appendix B.

2. THE JOINT TEST OF DENSITY
AND INDEPENDENCE

The class of dynamic models that we are interested in are of
the following form:

yt = μt(θ01,�t−1) + σt(θ02,�t−1)εt, t = 1, . . . ,T, (2.1)

where �t−1 denotes the information set available at time t − 1,
μt(·) and σt(·) are fully parameterized by θ0 = (θ ′

01, θ
′
02)

′ and
measurable with respect to �t−1, and {ε}T

t=1 is a series of iid
innovations having a particular density function f (·). Usually,
εt is assumed to have zero mean and unit variance, but for non-
negative data it will naturally have a nonzero mean. We assume
first that εt is observable, i.e., θ0 is known. Later on we will
relax this assumption to account for the effects of estimation on
the distribution of our test statistics.

2.1 Autocontour

Under correct dynamic specification the null hypothesis in
its most general form is stated as, H0 : εt is iid with density
f (·), where H1 is the negation of H0. Under this null hypoth-
esis the multivariate density function for an m-dimensional
vector (εt−k1, εt−k2, . . . , εt−km) is written as f (εt−k1, εt−k2, . . . ,

εt−km) = f (εt−k1)f (εt−k2) · · · f (εt−km). We define the (α,m)

autocontour, ACRm
α , as the set of points in the hyperplane

(εt−k1, εt−k2, . . . , εt−km) that results from horizontally slicing
the multivariate density function at a fixed value, say f α , to
guarantee that the resulting set contains α% of observations,
that is,

ACRm
α :=

{
B
(
εt−k1, . . . , εt−km

) ⊂ R
m
∣∣∣

∫ u1

l1
· · ·

∫ um

lm
f
(
εt−k1

) · · ·

× f
(
εt−km

)
dεt−k1 · · ·dεt−km ≤ α

}
, (2.2)

where B is a set in R
m, um = um(εt−k1, . . . , εt−km−1), lm =

lm(εt−k1, . . . , εt−km−1), and {kj}m
j=1 ∈ N.

Our testing methodology focuses on the bivariate autocon-
tour because, as we will show in the forthcoming sections,
the tests enjoy superior power in the most empirically rele-
vant cases. Monte Carlo simulations illustrate the consistency
of the tests against a wide set of alternatives. Tests based on
higher-dimensional autocontours can deliver more power, but at
the cost of higher-dimensional integration problems in the con-
struction of the autocontour and loss of the graphical represen-
tation that is useful in choosing the modeling strategy. Thus, bi-
variate autocontours allow the combination of formal statistical
testing, graphical techniques, and easy implementation, without
sacrificing desirable properties of the tests.

The bivariate autocontour is given by

ACRα,k :=
{

B(εt, εt−k) ⊂ R
2
∣∣∣∣

∫ u0

l0

∫ uk(εt)

lk(εt)

f (εt)f (εt−k)dεt dεt−k ≤ α

}
, (2.3)

where B is a set on the plane R
2 and the limits of integration

are such that the contour shape of the hypothesized density is
preserved. Therefore, we are interested in testing the following
null hypothesis:

H0 : f (εt, εt−k) = f (εt)f (εt−k) for k = 1, . . . ,K < ∞. (2.4)

Note that the null should hold as k → ∞. However, in prac-
tice k is limited by the sample size. Thus, we choose K suffi-
ciently large so that we can handle relevant dependence struc-
tures while keeping the theoretical framework tractable. In the
following, we present the equations representing the boundaries
of the autocontours, i.e., when the integral in Equation (2.3)
holds with equality, corresponding to the most commonly en-
countered densities in financial econometrics (see Appendix A
for details on construction of the autocontour equations for
these densities):

(i) Standard Normal distribution: ε2
t + ε2

t−k = aα ,
(ii) Student-t distribution: 1 + (ε2

t + ε2
t−k)/ν + (ε2

t ε
2
t−k/

ν2) = aα ,
(iii) Exponential distribution: εt + εt−k = aα ,
(iv) Weibull distribution: (1−κ)[ln(εt)+ ln(εt−k)]+cκ (εκ

t +
εκ

t−k) = aα .

In Figure 1, we show the graphical contours corresponding to
these cases.

2.2 Test Statistics and Asymptotic Distributions

For a given autocontour ACRαi,k, we define a binary variable
as follows

Ik,i
t = 1

(
(εt, εt−k) /∈ ACRαi,k

)
, t = k + 1, . . . ,T, (2.5)

where 1(·) is the usual indicator function, k = 1, . . . ,K and
i = 1, . . . ,C, i.e., K is the number of lags and C is the num-
ber of autocontours. Hence, this Bernoulli random variable
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(a) Standard Normal (b) Student-t (ν = 5)

(c) Exponential (β = 1) (d) Weibull (κ = 0.75)

Figure 1. Sample autocontours of bivariate distributions under independence. Notes: Autocontours are presented for the following coverage
levels (%): 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, and 99.

takes on value 1 if an observation falls outside the auto-
contour and 0 otherwise. Note that this indicator can also
be constructed the other way around, i.e., taking on value 1
if an observation falls inside the autocontour and 0 other-
wise, producing the same set of results in a symmetric fash-
ion. Since ACRαi,k contains αi% of observations, we ex-
pect to have (1 − αi)% outside the autocontour. Let pi ≡
1 − αi. Under the null we have E[Ik,i

t ] = pi and Var(Ik,i
t ) =

pi(1 − pi). Furthermore, the indicator is a linearly dependent
process with a moving average (MA) structure. Its autocovari-
ance function is given by γ i

h = 1(h = k)[P(Ik,i
t = 1, Ik,i

t−h =
1) − p2

i ], i.e., there is dependence only at the kth lag. Our
first test statistic is a t-statistic based on this indicator se-
ries.

Proposition 1. Let p̂k
i = 1

T−k

∑T−k
t=1 Ik,i

t . Under the null hy-
pothesis given in Equation (2.4),

tk,i =
√

T − k(p̂k
i − pi)

σk,i

d→ N(0,1),

where σ 2
k,i = pi(1 − pi) + 2γ i

k .

Note that pi is given under the null and a consistent estima-
tor of the autocovariance term, γ i

k , can be easily obtained from
data. For a given autocontour i, we can examine the lag struc-
ture of tk,i for k = 1, . . . ,K and collect those t-statistics in a
graph, which we call autocontourgram. See Section 5 for vari-
ous empirical examples.

In the spirit of Box–Pierce–Ljung statistics, the information
contained in the individual tk,i statistics can be pooled either
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across K lags or across C contours. The following two test sta-
tistics consider the joint distribution of t-ratios associated with
different lags or contours.

Proposition 2. For a given autocontour i, consider all lags
up to K. Let qk,i = √

T − k(p̂k
i − pi), k = 1, . . . ,K, and stack

them in a vector qi = (q1,i, . . . ,qK,i)
′. Under the null we have

qi
d→ N(0,�i) where any element ωi,kl in �i is given by

ωi,kl =

⎧⎪⎪⎨
⎪⎪⎩

Cov(Ik,i
t , Il,i

t ) + Cov(Ik,i
t , Il,i

t−k)

+ Cov(Il,i
t , Ik,i

t−l) + Cov(Il,i
t , Ik,i

t−l+k) for l > k,

pi(1 − pi) + 2γ i
k for l = k.

It directly follows that

QK
i = q′

i�
−1
i qi

d→ χ2
K .

Proposition 3. For a given lag k, consider multiple contours.
Let zi,k = √

T − k(p̂k
i − pi), i = 1, . . . ,C, and stack them in

a vector zk = (z1,k, . . . , zC,k)
′. Under the null we have zk

d→
N(0,�k) where any element ξk,ij in �k is given by

ξk,ij = min(pi,pj) − pipj

+ Cov(Ik,i
t , Ik,j

t−k) + Cov(Ik,i
t−k, Ik,j

t ), ∀i, j.

Then, it directly follows that

JC
k = z′

k�
−1
k zk

d→ χ2
C.

Since our testing framework imposes both implications of the
null hypothesis, independence and correct density function, our
statistics have power against violations of both. As an example,
consider the case where the null assumes that εt is iid normal,
but in reality there is neglected dependence in the conditional
mean. Under the alternative, we have elliptical autocontours as
opposed to circles implied by the null. Now suppose the null
assumes iid normal innovations, but εt is in fact an independent
Student-t process. The actual autocontours will look like Fig-
ure 1(b), whereas the null implies circles as in Figure 1(a). The
discrepancy between the autocontours in these cases is what
makes our tests powerful in detecting departures from the null
in either direction. Whenever there is neglected dependence,
t and J-statistics will exhibit particular patterns signaling the
form of the violation, e.g., significance at early lags, but a fast
decay in case of linear dependence. Similar arguments apply
to the Q-statistics. When the null is rejected because of an in-
correctly assumed density function, the t and J-statistics will
be significant, but they will not display any specific dynamic
patterns. Finally, when the rejection comes from violations of
both dependence and the density function, it will be desirable to
combine our omnibus tests with tests that are powerful against
violations of the null in a single direction, e.g., Escanciano
(2008), Fernandes and Grammig (2005), and Hong (1996).

3. PARAMETER UNCERTAINTY

Even though the tests we propose can be applied to raw data,
they will be most useful as a diagnostic tool for model specifi-
cation. Thus, in practice we will be analyzing residuals, ε̂t(θ̂T),
which depend on parameter estimates, instead of the true error
εt(θ0). Our tests are subject to the uncertainty created by pa-
rameter estimation. The following discussion will be centered
around the t-statistics, tk,i, considered in Proposition 1, but the
same conclusions will apply to the QK

i and JC
k tests given in

Propositions 2 and 3, respectively.
To understand how parameter estimation affects the tests, let

us take a mean value expansion and apply Slutsky’s Theorem,
e.g., Randles (1982). This yields
√

T(p̂k
i (θ̂T) − pi)

= √
T(p̂k

i (θ0) − pi)

+ √
T(θ̂T − θ0)

′ lim
T→∞ E

[
∂ p̂k

i (θ)

∂θ

∣∣∣∣
θ=θ0

]
+ op(1). (3.1)

Note that we use T instead of (T − k) since they are asymptoti-
cally equivalent. We make the following assumptions to obtain
the asymptotic distribution under parameter uncertainty:

A1.
√

T(θ̂T − θ0)
d→ N(0,A−1BA−1) where A ≡

E[−H(θ0)], B ≡ E[S(θ0)S′(θ0)], and H(θ0) =
1
T

∑T
t=1 Ht(θ0) and S(θ0) = 1√

T

∑T
t=1 st(θ0) are the

Hessian matrix and the score vector corresponding to
quasi-maximum likelihood (QML) estimation.

A2. Let D ≡ limT→∞ E[ ∂ p̂k
i (θ)

∂θ |θ=θ0]. Assume Dj < ∞ for
j = 1, . . . ,q where q is the dimensionality of the para-
meter space.

A3. Cov(Ik,i
t , st(θ0)) < ∞ and Cov(Ik,i

t , st−k(θ0)) < ∞.

A1 is based on standard quasi-maximum likelihood estimate
(QMLE) arguments. A2 guarantees that the gradient vector is
bounded. A3 is a weak assumption that is required to have a
well-defined asymptotic variance. A2 and A3 can be straight-
forwardly verified for commonly used models.

Proposition 4. Under A1–A3 we have
√

T(p̂k
i (θ̂T) − pi)

d→ N(0, τ 2
k,i),

where τ 2
k,i = σ 2

k,i + D′A−1BA−1D + 2E[√T(p̂k
i (θ̂T) − pi) ×

S′(θ0)]A−1D.

Proposition 5. For a Gaussian location-scale model yt =
μ0 + σ0εt, where εt ∼ iid N(0,1), we have

D = (
0,−aαi fzt

(
aαi

)/
σ 2

0

)′
,

E[√T(p̂k
i − pi)S′(θ0)] = (

0, (E[Ik,i
t ε2

t ] − pi)/σ
2
0

)
,

where fzt is the pdf of zt, a chi-squared random variable with
2 degrees of freedom.

This proposition states that the estimation of the parameters
in the mean does not affect the asymptotic distribution of the
test (D1 = 0) for the case when the variance is known. This
result also holds for a model with Student-t innovations.
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In general, it will be difficult to obtain an empirical counter-
part of the gradient vector D. In addition, for some models the
covariance terms given in A3 may be difficult to estimate, e.g.,
simulation-based methods reviewed in Gouriéroux and Mon-
fort (1996). Therefore, we propose to estimate the asymptotic
variance τ 2

k,i using a bootstrap procedure. This is a commonly
used approach in the literature to overcome the difficulties asso-
ciated with asymptotic variance estimation in various contexts
(see Efron 1979; Buchinsky 1995; and Ledoit, Santa-Clara, and
Wolf 2003 among others). The bootstrap estimator of the vari-
ance in Proposition 4 is given by

τ̂ 2
k,i = T

B − 1

B∑
b=1

(
p̃k

i (θ̃T,b) − 1

B

B∑
b=1

p̃k
i (θ̃T,b)

)2

, (3.2)

where B is the total number of bootstrap samples and θ̃T,b is the
parameter estimate from the bth bootstrap sample. For the chi-
squared statistics, the covariance matrix estimators are defined
analogously. We prefer a parametric bootstrap since the null hy-
pothesis fully specifies the parametric data generating process
(DGP) (see Horowitz 2001). In particular, bootstrap samples are
obtained from Equation (2.1) by replacing θ0 with θ̂T and gen-
erating εt from the specified parametric distribution. Under suit-
able regularity conditions, this estimator should be consistent as
proven within the linear regression context for iid observations
by Liu and Singh (1992), and for dependent data by Goncalves
and White (2005). Alternatively, one can bootstrap the full dis-
tribution of the test statistics. However, our test statistics are not
asymptotically pivotal under parameter uncertainty, and this im-
plies that the bootstrap distribution does not necessarily provide
a superior approximation to the finite sample distributions of
test statistics, see Horowitz (2001). Monte Carlo results (to be
presented in the following section) indicate that bootstrapping
the asymptotic covariance matrices and using standard asymp-
totic critical values delivers remarkable results in terms of size
and power of the tests.

4. MONTE CARLO SIMULATIONS

4.1 Size of the Tests

For size simulations we consider the following three cases:

1. yt = μ + σεt, εt ∼ iid N(0,1), μ = 1.25, and σ = 2.
2. yt = μ+σεt

√
(ν − 2)/ν, εt ∼ iid Student-t(ν), μ = 1.25,

σ = 2, and ν = 5.
3. yt = σεt, εt ∼ iid exp(β), σ = 2, and β = 1.

The Gauss 7.0 random number generator is used to generate
pseudo random numbers from the three distributions. We apply
the tests to the properly standardized residuals, ε̂t ≡ (yt − μ̂)/σ̂ .
Because of computational considerations, the number of Monte
Carlo replications is 1000. The number of bootstrap replications
is 500. We consider 13 autocontours (C = 13) with coverage
levels (%): 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, and 99,
spanning the entire density function. The nominal size level is
5%.

In Table 1 we report the results for t1,i, i = 1, . . . ,13. There
are no systematic deviations from the nominal size either across
autocontours or across distributions with some exceptions for
the 1% and 99% autocontours when T = 250. This result is not
surprising because in small samples there is not enough varia-
tion at the extreme contours (1% and 99% coverage).

To check the size robustness of the t-statistics for different
lags, we exclusively focus on the 50% autocontour (i = 7) and
consider k = 1, . . . ,5. We report these results in Table 2. Over-
all the simulated size values are around 5% indicating good size
for all distributions. These results are robust across all the auto-
contours and also available from the authors upon request. We
also report the size results for the Q-statistic (QK

7 ,K = 2, . . . ,5)

and the J-statistic (J13
1 and J7

1), respectively, in Table 2. Over-
all, Q-statistics have acceptable size. For the J-statistic, when
we consider all 13 autocontours, there is a tendency for the test
to over-reject, but when we focus on the middle autocontours
by removing the first three (1%, 5%, and 10%) and the last
three (90%, 95%, and 99%), the empirical size improves sub-
stantially, approaching the nominal size even for small samples.

Table 1. Size of the t-statistics

T t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 t1,7 t1,8 t1,9 t1,10 t1,11 t1,12 t1,13

(a) Normal
250 5.3 5.9 7.0 5.8 5.1 5.3 5.6 4.9 4.8 4.8 5.8 4.4 2.4
500 4.0 4.6 4.0 5.1 4.4 5.5 5.1 5.4 5.8 4.6 4.3 4.1 3.9

1000 4.7 5.7 6.8 5.5 4.8 4.9 4.4 5.3 5.7 5.7 4.6 4.5 6.0
2000 4.5 5.2 5.9 4.0 4.8 4.0 4.9 5.6 7.2 6.0 4.5 5.9 4.6

(b) Student-t
250 3.6 4.4 4.7 4.3 4.1 4.2 4.3 5.6 4.6 5.3 5.2 4.5 2.0
500 4.2 5.5 5.5 5.3 5.5 5.1 5.2 5.2 5.3 4.9 4.7 4.3 5.7

1000 3.9 3.8 3.9 4.4 3.7 3.6 4.1 3.8 4.3 3.5 3.4 3.6 5.8
2000 5.4 5.0 4.0 4.5 4.4 4.0 5.1 5.1 4.6 4.7 5.4 3.2 4.0

(c) Exponential
250 4.9 4.7 4.8 4.4 5.2 5.6 5.0 4.1 5.3 4.4 5.4 4.8 4.2
500 4.7 4.8 5.0 4.8 4.8 4.2 6.2 5.6 6.4 4.6 5.4 4.9 5.6

1000 4.0 5.4 4.8 5.1 5.1 5.6 5.4 5.3 4.7 6.4 4.3 4.1 5.0
2000 3.7 5.5 4.5 4.0 4.4 4.9 4.4 4.7 5.4 5.0 3.9 5.6 5.5

NOTE: Simulated size (%) of t-statistics applied to standardized residuals under three DGPs: (1) yt = 1.25 + 2εt , εt ∼ iid N(0,1); (2) yt = 1.25 + 2εt
√

3/5, εt ∼ iid Student-t(5); and
(3) yt = 1.25εt , εt ∼ iid exp(1). Number of Monte Carlo replications: 1000; bootstrap replications: 500; nominal size: 5%.
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Table 2. Size of the t, Q, and J-statistics

T t1,7 t2,7 t3,7 t4,7 t5,7 Q2
7 Q3

7 Q4
7 Q5

7 J13
1 J7

1

(a) Normal
250 5.0 6.2 4.9 6.4 5.8 5.3 6.7 6.4 6.5 6.6 5.7
500 5.0 5.1 6.6 5.0 4.8 6.0 6.5 6.7 6.6 6.2 6.0

1000 4.7 5.4 5.5 5.1 4.7 5.5 6.6 6.4 6.5 6.6 5.4
2000 5.0 4.6 4.8 5.3 4.6 4.4 5.1 4.6 4.5 5.8 5.4

(b) Student-t
250 4.5 4.6 4.1 4.6 4.6 4.4 4.3 4.4 5.1 6.0 4.8
500 5.3 5.0 5.5 4.9 4.3 6.1 6.9 7.1 6.5 7.4 6.2

1000 4.2 4.4 4.1 4.4 4.0 5.0 6.5 6.3 6.0 6.1 5.4
2000 5.0 5.4 4.7 5.5 5.2 5.5 5.6 5.4 6.5 6.9 6.3

(c) Exponential
250 5.3 5.3 5.6 4.6 5.0 5.9 5.5 5.3 4.7 7.1 5.5
500 7.0 6.2 5.3 4.4 5.4 7.3 6.0 5.6 5.5 6.0 5.4

1000 5.8 4.5 5.0 4.7 5.6 5.1 5.2 6.0 6.1 6.9 5.7
2000 4.5 4.5 5.5 5.3 6.0 4.5 4.4 5.2 5.2 5.2 5.2

NOTE: Simulated size of t, Q, and J-statistics for three DGPs (see the notes to Table 1 for details).

From a practical point of view, one may not want to use auto-
contours too small or too large when the sample size is small.

4.2 Power and Consistency of the Tests

To analyze the power properties of our test statistics we con-
sider three alternative data generating processes and apply our
tests to the standardized residuals generated by the estimation
of the following location-scale models, where μ = 1.25 and
σ = 2 in all cases:

1. yt = μ+σεt, εt = φεt−1 +ut where ut ∼ iid N(0,1−φ2).
2. yt = μ + σεt

√
(ν − 2)/ν, where εt ∼ iid Student-t(ν).

3. yt = μ + σεt, εt = √
htut where ut ∼ iid N(0,1), ht =

ω + αε2
t−1 + βht−1.

For all three cases the null hypothesis is εt ∼ iid N(0,1). In
case 1 we investigate departures from the independence hy-
pothesis by considering different values of the autoregressive
parameter, φ ∈ {0.5,0.9}. In case 2, we maintain the inde-
pendence hypothesis and investigate departures from the hy-
pothesized density functional form by generating iid data from
the Student-t distribution for two different values of the shape
parameter, ν ∈ {5,15}. The variance is normalized to unity
to control for the scale effects. Finally, in case 3 we ana-
lyze departures from both dependence and functional form
by generating data from a generalized autoregressive condi-
tional heteroscedasticity (GARCH)(1, 1) model with (α,β) ∈
{(0.05,0.9), (0.15,0.8)}. We set ω = 1 − α − β to normalize
the unconditional variance to 1.

In Figure 2, we present the power surfaces for t1,i, i =
1, . . . ,13, for samples sizes ranging from 250 to 2000 observa-
tions and for the 13 autocontours. In the autoregressive case 1,
the power of the t-statistics approaches 1 rather quickly for high
values of the autoregressive parameter, though there is a sub-
stantial drop in power for autocontours around the 80% cover-
age level. In the Student-t case 2, the power approaches 1 very
quickly for low degrees of freedom. For instance, in the 99%
autocontour, the power is as high as in the central autocontours

for all sample sizes due to the leptokurtosis of the Student-t den-
sity. As anticipated, rejection rates decrease as ν gets larger, for
which the null and the alternative become less distinguishable.
The power surface exhibits the lowest values at the 90% auto-
contour, for which the null and the alternative hypotheses are
very close to each other. In the GARCH case 3, the data are un-
correlated but dependent through the second moments. There is
also excess kurtosis relative to the normal distribution. Persis-
tence is the same across the two alternative parameterizations
(α + β = 0.95), but kurtosis and the level of first order auto-
correlation in the second moment is increasing with α. As ex-
pected, the power of the test is increasing in α. When α = 0.05,
the excess kurtosis in the data is only 0.16 and the first order
autocorrelation in the second moment is only 0.0725, so the de-
parture from the null is fairly weak.

The substantial drop in power at particular coverage levels
observed in Figure 2 should not be interpreted as a lack of con-
sistency of the t-test, but rather as the difficulty of any test to
discriminate between a null and an alternative hypothesis that
are very close to each other for a fixed sample size. To un-
derstand why, let us focus on case 2 since the same reasoning
will apply to the others. Let η ≡ 1/ν, so that under normal-
ity H0 :η = 0, and under Student-t H1 :η > 0. The asymptotic
power of the t-test, say �T(η), for a fixed contour i and a fixed
lag k at the α-significance level is given by:

�T(η) = P
[√

T|p̂k
i − pi(η)|

≥ σk,i(0)z1−α/2 − √
T|pi(η) − pi(0)|]

→ 1 − �

(
σk,i(0)z1−α/2 − √

T|pi(η) − pi(0)|
σk,i(η)

)

+ �

(
σk,i(0)zα/2 − √

T|pi(η) − pi(0)|
σk,i(η)

)
.

We can see that the power will increase whenever pi(η) �=
pi(0), and it will be equal to the size whenever pi(η) = pi(0).
Thus, if the null and the alternative hypothesis are very close
to each other we will need a substantial number of obser-
vations for

√
T|pi(η) − pi(0)| not to vanish. In Table 3 we
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φ = 0.9 φ = 0.5

ν = 5 ν = 15

α = 0.15, β = 0.8 α = 0.05, β = 0.9

Figure 2. Power of the t-statistics. Notes: Simulated power of the t-statistic for all 13 autocontours and the first lag (k = 1) under the following
DGPs: (1) yt = 1.25+2εt , εt = φεt−1 +ut , ut ∼ iid N(0,1−φ2); (2) yt = 1.25+2εt

√
(ν − 2)/ν, εt ∼ iid Student-t(ν); and (3) yt = 1.25+2εt ,

εt = √
htut , where ut ∼ iid N(0,1), ht = ω + αε2

t−1 + βht−1.The null hypothesis is εt ∼ iid N(0,1). All test statistics are based on standardized
residuals. Number of Monte Carlo replications: 1000; number of bootstrap replications: 500; nominal size: 5%.
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Table 3. Difference in violation percentages between
Normal and Student-t

pi(η) − pi(0)

i ν = 5 ν = 10 ν = 15

1 −0.0050 −0.0019 −0.0011
2 −0.0236 −0.0089 −0.0055
3 −0.0436 −0.0167 −0.0103
4 −0.0735 −0.0289 −0.0180
5 −0.0911 −0.0368 −0.0230
6 −0.0974 −0.0403 −0.0254
7 −0.0937 −0.0395 −0.0250
8 −0.0809 −0.0344 −0.0218
9 −0.0602 −0.0253 −0.0160

10 −0.0329 −0.0125 −0.0076
11 −0.0017 0.0025 0.0023
12 0.0127 0.0092 0.0066
13 0.0174 0.0095 0.0063

NOTE: pi(η) is the theoretical violation percentage under the alternative hypothesis.
η = 1/ν , where ν denotes degrees of freedom of the Student-t distribution. pi(0) is the
theoretical violation percentage under the null hypothesis of normality. The true distribu-
tion is Student-t with degrees of freedom equal to ν.

show the difference pi(η) − pi(0) for ν = 5,10,15. It is ex-
actly for the 90% autocontour that the difference is the small-
est, by as much as one order of magnitude, e.g., for ν = 5,
pi(η) − pi(0) = −0.0017. To provide further insight, we repli-
cated the same simulation as in Figure 2 for ν = 5 and for the
90% autocontour (i = 11) with sample sizes larger than 2000
observations. We find that a substantial number of observations
will be needed to discriminate the null and the alternative hy-
potheses (more than 125,000 for a rejection rate above 60%),
but eventually the power will approach 1 so that the test is con-
sistent.

In Table 4, we report the power of the Q and J-statistics.
For Q-statistics we present power results for a different auto-
contour in each case to offer a comprehensive analysis. In all
three cases the rejection rates are high and behave in the right
direction. The power is close to 1 for samples larger than 500
when there is high dependence, or a large departure from nor-
mality. When the dependence is due to strong autoregressive
conditional heteroscedasticity (ARCH) effects, a sample size
of 500 provides reasonable power. In case 1 when the depen-
dence is high we observe an increase in rejection rates as K
increases. This is expected given the sensitivity of the test to lin-
ear dependence. On the other hand, we do not observe a similar

Table 4. Power of the Q and J-statistics

(a) AR(1)

T Q2
4 Q3

4 Q4
4 Q5

4 J13
1 J13

2 J13
3 J13

4 J13
5

φ = 0.9 250 83.9 87.5 91.8 93.5 82.8 59.4 43.6 35.2 29.6
500 99.5 99.7 100.0 100.0 98.0 84.8 69.4 53.2 44.9

1000 100.0 100.0 100.0 100.0 100.0 99.0 90.6 78.8 65.7
2000 100.0 100.0 100.0 100.0 100.0 100.0 99.5 94.9 85.5

φ = 0.5 250 11.9 12.6 11.9 11.6 17.1 8.4 8.3 7.0 7.1
500 19.2 18.2 18.1 17.7 27.8 9.2 7.2 7.7 7.3

1000 40.0 41.7 42.3 43.9 46.4 11.2 7.5 7.5 6.9
2000 67.6 72.3 75.7 75.0 75.0 12.8 8.6 4.4 6.3

(b) iid Student-t

T Q2
8 Q3

8 Q4
8 Q5

8 J13
1 J13

2 J13
3 J13

4 J13
5

ν = 5 250 73.8 71.0 69.2 67.3 83.4 81.9 81.8 81.1 81.0
500 94.8 93.5 92.9 92.3 97.3 97.5 96.9 97.3 95.7

1000 99.8 99.7 99.8 99.8 100.0 99.9 100.0 100.0 100.0
2000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ν = 15 250 15.8 14.1 12.3 11.3 21.9 22.4 20.2 20.5 19.7
500 21.5 19.3 17.5 16.1 27.3 28.6 27.7 27.3 28.2

1000 38.7 36.0 34.8 33.4 47.7 47.4 47.0 45.4 48.3
2000 67.7 62.6 59.7 57.9 69.3 69.1 69.7 69.0 68.9

(c) GARCH(1, 1)

T Q2
6 Q3

6 Q4
6 Q5

6 J13
1 J13

2 J13
3 J13

4 J13
5

α = 0.15 250 41.3 38.4 36.8 35.6 46.8 45.2 45.9 41.7 40.4
β = 0.8 500 69.5 66.4 64.6 63.0 72.8 70.8 70.9 70.3 68.1

1000 94.1 92.7 91.5 90.6 94.1 93.4 93.4 92.5 92.2
2000 99.9 99.8 99.8 99.7 100.0 99.6 99.7 99.4 99.6

α = 0.05 250 5.2 5.1 5.9 5.7 12.1 10.0 11.3 9.9 10.1
β = 0.9 500 10.5 10.1 9.6 8.9 15.9 13.8 14.7 14.2 14.6

1000 16.7 14.4 14.2 13.1 20.7 21.2 19.3 19.5 18.7
2000 29.8 27.5 24.5 22.4 36.1 34.0 33.1 31.1 29.3

NOTE: Simulated power of the Q and J-statistics under three DGPs (see the notes to Figure 2 for details).
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Table 5. Size simulations for Hong–Li tests

Q̂(k) W(K)

T k Normal Student-t Exponential Normal Student-t Exponential

500 1 3.1 8.4 6.8 3.1 8.4 6.8
2 4.0 8.1 6.4 4.8 9.8 8.9
3 3.6 8.8 7.1 5.4 11.8 10.0
4 4.3 8.5 6.5 6.0 14.0 10.6

1000 1 3.8 9.4 7.3 3.8 9.4 7.3
2 4.6 9.1 6.2 5.0 12.1 8.7
3 3.9 9.7 7.5 5.8 14.7 10.1
4 4.3 8.4 6.0 7.1 15.8 10.8

2000 1 4.9 9.3 7.7 4.9 9.3 7.7
2 5.4 9.8 7.2 6.6 12.2 9.2
3 5.0 8.5 6.7 8.0 14.6 11.1
4 4.3 9.6 6.9 7.7 15.2 12.4

NOTE: Simulated size (%) of the Q and W-statistics of Hong and Li (2005) for three DGPs (see the notes to Table 1 for details). Nominal size is 5%.

pattern in the GARCH(1,1) case where the dependence comes
through higher moments. Regarding the J-statistic, a common
characteristic across all three DGPs is that for a given sample
size the power is roughly the same as the maximum power of
the t-statistics. The pattern on rejection frequencies is the same
as that of the individual t-statistics. In case 1, the rejection is
stronger when there is high dependence even for small samples.
There is a decrease in power as k increases, which is more evi-
dent when the autoregressive parameter is small. This is some-
how expected because the DGP is only an AR(1) process. In
case 2, the test is more powerful for small degrees of freedom,
but we should mention that even for ν = 15 the power of the
test is still high, around 69% for 2000 observations. In case 3,
we have stronger rejections rates when the data exhibit higher
levels of kurtosis and stronger autocorrelation in the second mo-
ment.

4.3 Comparison of the Autocontour Tests With
Hong and Li’s Tests

We offer a comparison of our tests with the most recent
tests proposed by Hong and Li (2005), who entertained the
same joint null hypothesis of iid-ness and density functional
form as that of our autocontour tests. There are other para-
metric and nonparametric tests, like those in Engle and Rus-
sell (1998), Fernandes and Grammig (2005), and Meitz and
Terasvirta (2006), among others, that focus on a single hypoth-
esis, either dynamic specification or density functional form.
Thus, by focusing on a test with the same joint hypothesis we
will be able to provide a fair comparison. Moreover, since Hong
and Li’s test is nonparametric in nature, our comparison will
provide an assessment of the advantages of a parametric test
versus a kernel-based nonparametric test.

Hong and Li’s tests are based on ut = Ft(yt|�t−1; θ0), which
must be iid U[0,1] under correct specification. The test has a
null hypothesis of iid U[0,1] and it compares the estimate of
the joint density of {ut,ut−j} with the product of two U[0,1]
densities, which is equal to 1. They propose two tests: (i) for
a given displacement k, Q̂(k)

d→ N(0,1), and (ii) W(K) =
K−1/2 ∑K

k=1 Q̂(k)
d→ N(0,1). Thus, the Q̂(k) test is similar to

our autocontour tests with a fixed displacement k, such as tk,i
and JC

k , and the W(K) is similar to the autocontour test QK
i that

aggregates over displacements.
We ran the same set of Monte Carlo experiments described

previously with the Hong and Li (2003) tests. The results con-
cerning the size of the tests are displayed in Table 5, which
are directly comparable with those for our tests reported in Ta-
ble 2. The autocontour tests, tk,i and QK

i , and the HL tests, Q̂(k)
and W(K), have a similar size in testing for independence and
normality. The main difference arises in testing for Student-t
and Exponential distributions. In both instances, the HL tests
are heavily oversized. In particular, the W(K) test has a size
more than twice the nominal size in the Student-t and Exponen-
tial cases. These distortions in size are typical in nonparametric
kernel-based tests.

On the power front, the autocontour tests are substantially
more powerful in detecting deviations from the density func-
tional form and dependence in higher moments. The HL tests
have more power in detecting linear dependence. The simula-
tion results on power differences are displayed in Table 6. The
null hypothesis is εt ∼ iid N(0,1). Since the size of the HL tests
are reasonable for this null hypothesis we use their asymptotic
distribution to assess the power properties. Since we already
use the asymptotic distributions of the autocontour tests, both
tests are compared on equal grounds. As a side note, an assess-
ment of the power of the HL tests under nonnormal densities
will require a size correction through resampling techniques.

In the Gaussian AR(1) case, the HL tests are very power-
ful even for small autoregressive parameters and small sample
sizes. For high levels of dependence both tests are very similar.
In the iid Student-t case, the autocontour tests dominate across
degrees of freedom and sample sizes. For instance, a Student-t
with 15 degrees of freedom is relatively close to a normal den-
sity, yet the autocontour tests have power of about 69% ver-
sus the HL tests, which have rejection rates around 20%. In the
third case, where the DGP is a GARCH(1,1) process, the au-
tocontour tests are more powerful throughout. As we saw in
the previous simulations, the power decreases when the α pa-
rameter is small, but even in this case our tests have more than
twice the power of the HL tests. Overall, our assessment is that
the autocontour tests have considerable advantages over the HL
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Table 6. Power comparison of autocontour and Hong–Li tests

(a) AR(1)

T φ J13
1 Q̂(1) Q4

4 W(4)

500 0.5 27.8 100 18.1 99.9
0.9 98 100 100 100

1000 0.5 46.4 100 42.3 100
0.9 100 100 100 100

2000 0.5 75 100 75.7 100
0.9 100 100 100 100

(b) iid Student-t

T ν J13
1 Q̂(1) Q2

8 W(2)

500 5 97.3 70.9 94.8 81.2
15 27.3 8 21.5 11.3

1000 5 100 97.2 99.8 98.8
15 47.7 11.9 38.7 15.9

2000 5 100 100 100 100
15 69.3 19 67.7 26.6

(c) GARCH(1, 1)

T (α,β) J13
1 Q̂(1) Q2

6 W(2)

500 (0.15, 0.8) 72.8 49.4 69.5 56.3
(0.05, 0.9) 15.9 4.8 10.5 6.7

1000 (0.15, 0.8) 94.1 81.4 94.1 88.6
(0.05, 0.9) 20.7 7.3 16.7 10.8

2000 (0.15, 0.8) 100 98.7 99.9 99.7
(0.05, 0.9) 36.1 13.9 29.5 18.5

NOTE: Simulated power (%) of the autocontour J and Q-statistic versus Q̂ and W tests
of Hong–Li for three DGPs (see the notes to Figure 2). The null hypothesis is εt ∼ iid
N(0,1).

tests as they offer a very good size and high power in almost all
instances considered.

5. EMPIRICAL APPLICATION

Our application is concerned with dynamic specification and
density functional form in autoregressive conditional duration
(ACD) models for trade duration data. Bauwens et al. (2004)
and Fernandes and Grammig (2005), among others, called our
attention to a void in the literature on duration models, which
despite being extremely popular in recent years, have not re-
ceived much attention in what concerns the testing for model
specification. Thus, Bauwens et al. (2004) proposed the eval-
uation of the density forecast in the manner of Diebold, Gun-
ther, and Tay (1998) as a test on the distributional specification
of several ACD models. Fernandes and Grammig proposed a
nonparametric procedure to test the specification of the density
in ACD models assuming that the conditional mean process is
correctly specified. We aim to contribute to this literature by ap-
plying our autocontour tests to ACD models. Our contribution
brings different aspects to the testing question. Bauwens et al.
did not take into account parameter uncertainty and Fernandes
and Grammig’s approach is nonparametric while our approach
takes parameter uncertainty into account; it is parametric and
it does not presume that the conditional mean duration is cor-
rectly specified. In this sense, our tests may point pitfalls of the
model in both directions (mean and density) versus just one.

We consider an ACD model for trade durations (time inter-
vals between transactions) of the Airgas common stock from
March 1 to December 31, 2001 with a total of 32,366 obser-
vations. Let t1, t2, . . . , ti, . . . denote a sequence of transaction
times, then durations are defined as xi = tt − ti−1. Engle and
Russell (1998) introduced the ACD model for durations, which
is given by,

xi = ψiεi,
(5.1)

ψi = ω +
p∑

j=1

αjxi−j +
q∑

j=1

βjψt−j,

where ψi = E[xi|xi−1, xi−2, . . . , x1], εi is iid with density f (·),
and E[εi] = 1. We focus on the model proposed by Engle and
Russell (2009), which has p = 3 and q = 2. We estimate the
model with quasi-maximum likelihood under exponential den-
sity. Through a battery of standard tests, Engle and Russell
(2009) pointed out that this specification is successful in cap-
turing the time dependence in durations. With the autocontour
tests we aim to analyze the advantages and disadvantages of the
three most popular distributional assumptions on εi: (i) Expo-
nential, (ii) Weibull, and (iii) Burr. For Weibull and Burr dis-
tributions, we need to conduct a second step to obtain the es-
timates of the shape parameters. The estimates are κ̂ = 0.75
under Weibull and γ̂ = 0.05 and κ̂ = 0.77 under Burr. The Burr
density reduces to Weibull when γ = 0, thus the parameter es-
timates suggest that the distributions are empirically close to
each other.

We restrict our discussion to the t and J-statistics to save
space. We summarize the results in Figures 3 and 4. The ex-
ponential distribution is overwhelmingly rejected for all cover-
age levels. Figure 3(a) shows that rejection is the strongest in
the lower and the tail contours. For small coverage levels (1%,
5%, and 10%), the exponential density leaves too few obser-
vations outside the autocontours (negative t-statistics), thus we
need a different density that squeezes the contours inward. On
the contrary, for large coverage levels (90%, 95%, and 99%)
the exponential leaves too many observations outside the auto-
contour (positive t-statistics). This means that exponential dis-
tribution is not putting enough probability mass on large du-
rations. The Weibull density corrects these distortions to some
extent. In Figure 3(b) we see that the Weibull distribution does
a good job of assigning higher probabilities to large durations
so that the tests at the 90%, 95%, and 99% autocontours are
not statistically significant at conventional confidence levels.
However, Weibull overcorrects the probability mass of the very
small durations as the 1% autocontour t-test changes signs from
negative [Figure 3(a)] to positive [Figure 3(b)], but it cannot
place enough probability on just small durations, those within
the 5% and 10% autoncontours (the t-statistics are still nega-
tive). Since κ̂ < 1 the Weibull autocontours have asymptotes,
implying that extremely small durations can have substantial
probability mass, in fact more than empirically justifiable. This
finding on Weibull is in agreement with that of Bauwens et al.
(2004) where a different dataset was analyzed. However, we re-
ject the exponential distribution because it does not put enough
mass on the very small durations, whereas in Bauwens et al.
the exponential is rejected for the opposite reason. Furthermore,
they argued that the exponential assumption is adequate for the
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(a) Exponential distribution

(b) Weibull distribution

(c) Burr distribution

Figure 3. t-Statistics for ACD(3,2) model of Airgas transaction durations. Notes: t-statistic for selected autocontours for the residuals of the
exponential, Weibull, and Burr distributions ACD(3,2) models fitted to Airgas trade durations. Statistics outside the [−1.96,1.96] range are
significant at 5% level.

tail while we strongly reject this in our analysis. The perfor-
mance of the Burr distribution is similar to that of Weibull for
small and very small autocontours. However, unlike Weibull,
Burr overcorrects the tails and the tests keep on rejecting Burr
with respect to both 95% and 99% autocontours [Figure 3(c)].

The J-statistics, which aggregate information from all auto-
contours, are plotted in Figure 4. It is clear that all three distri-

butions are rejected by the data even though Weibull and Burr
provide a clear improvement over Exponential. This pessimistic
view is also shared by Bauwens et al. (2004). However, these
results give a direction to search for new densities. The Weibull
is a good starting point because it attaches the right probability
mass to the tails (very large durations) and to durations within
the middle contours, but it needs some corrections for the very
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Figure 4. J-statistics for ACD(3,2) model of Airgas transaction durations. Notes: J-statistic based on all 13 autocontours for the residuals of
the Exponential (left-scale), Weibull, and Burr (right-scale) ACD(3,2) models fitted to Airgas trade durations. 5% critical value is 22.3.

small and small durations. These adjustments can be made non-
parametrically so that the proposed density enjoys a parametric
and a nonparametric component.

It is illustrative to look at a scatterplot of the data together
with the autocontours under various distributional assumptions.
In Figure 5 we show a subset of the data (first 7500 obser-
vations). In Figure 5(a), we plot the raw durations divided by
the sample mean. This is the case where dynamics are ignored
and an iid exponential assumption is imposed. In Figures 5(b)
through (d) we plot the ACD(3,2) residuals under Exponen-
tial, Weibull, and Burr distributions. In these three panels we
can observe the success of the ACD model in capturing the du-
ration dynamics and the failure of the exponential distribution
to capture mainly the probability of very small and large dura-
tions. Figure 5(c) shows that Weibull provides a great improve-
ment over Exponential. By transforming the boundaries of the
autocontours from straight lines to curves bended toward the
origin, Weibull assigns relatively more probability mass to both
small and large durations. However, because of the autocontour
asymptotes, it assigns unnecessarily large probabilities to very
small durations and leaves out too many observations outside
the 1% autocontour. Figure 5(d) clearly illustrates the failure of
Burr to improve over Weibull, mainly when large durations are
concerned.

6. CONCLUSION

The methodological advances in two fronts of time series
analysis—nonlinear models with nonnormal density functions,
and density forecasting—emphasized the need for developing
dynamic specification tests for the joint hypothesis of iid-ness
and density functional form. In this article we propose a new
battery of tests that rely on the fundamental properties of in-
dependent random variables with identical distributions and
we introduce a graphical device, the autocontour. We believe
that our approach brings considerable advantages over existing
methods. Our tests are very powerful against violations of both
hypotheses, iid-ness, and density function; they have parametric

convergence rates and standard limiting distributions; and they
take into account the uncertainty introduced by parameter esti-
mation. A comparison with Hong and Li’s tests, which are non-
parametric, shows that the autocontour tests are more powerful
to detect nonlinear dependence and deviations from the hypoth-
esized density function. We applied our tests to ACD models
and conclude that none of the conditional densities assumed in
the literature provides a good fit to model trade durations. Con-
trary to the standard findings in returns data, where the problem
is the leptokurtosis generated by very large returns, in duration
data the problem lies on the probability assigned to very small
durations, which is substantially more (Weibull/Burr densities)
or substantially less (Exponential density) than empirically is
justifiable.

While we introduced our methodology within the context of
pair-wise independence, it can also be extended to higher di-
mensions. On going further than the bivariate case we will be
losing the graphical representation of the autocontour, which is
helpful for understanding the modeling problem; however, once
the analytical functional form of the autocontour is obtained,
the indicator variable is easy to construct and the proposed t-
tests and chi-squared tests will follow naturally.

APPENDIX A: CONSTRUCTION OF
THE AUTOCONTOURS

In case of standard normal distribution the joint density of
interest is given by

f (εt, εt−k) = 1

2π
exp

(
−1

2
(ε2

t + ε2
t−k)

)
. (A.1)

For a fixed value of this density, say f α , we have ε2
t + ε2

t−k = aα

where aα = −2 ln(2π f α). Thus, autocontours are circles with
radius

√
aα , which can be computed by numerical integration

using the following equation,∫ √
aα

−√
aα

∫ g(εt)

−g(εt)

f (εt, εt−k)dεt dεt−k = α, (A.2)
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(a) Standardized durations and exponential autocontours (b) ACD residuals and exponential autocontours

(c) ACD residuals and Weibull autocontours (d) ACD residuals and Burr autocontours

Figure 5. Data and autocontours under different distributions. Notes: Panel (a) presents the results for durations standardized by the sample
mean. Panels (b), (c), and (d) are based on ACD(3,2) residuals. εt is on the vertical axis and εt−1 is on the horizontal axis. A color version of
this figure is available in the electronic version of this article.

where g(εt) =
√

aα − ε2
t . Alternatively, one can get the a val-

ues based on the cdf of a chi-squared random variable with 2 de-
grees of freedom due to the normality assumption, e.g., for 90%
autocontour a0.9 = 4.61.

In case of Student-t and exponential distributions the value
of aα can be computed by numerical integration along the lines
illustrated previously. For Weibull and Burr distributions, the
autocontours cannot be easily derived by integration, so we
need to resort to simulation methods. Further details on both
techniques can be found in the Supplemental Appendix.

APPENDIX B: MATHEMATICAL PROOFS

Please note that some of the following proofs are presented in
a compact form to save space. The interested reader is referred
to the Supplemental Appendix for a complete exposition.

Proof of Proposition 1

The result directly follows from the central limit theorem for
covariance stationary processes presented in Anderson (1971).

Proof of Proposition 2

Without loss of generality, let us consider the joint distribu-
tion of qk,i and ql,i. Let x ≡ λ1qk,i + λ2ql,i where λ1 and λ2 are
arbitrary constants and assume k < l. Then

x = λ1
√

T − k(p̂k
i − pi) + λ2

√
T − l(p̂l

i − pi).

Since all results are asymptotic we drop the first (l − k) obser-
vations on Ik,i

t to use the same scaling factor. Then we have

x = 1√
T − l

T−l∑
t=1

[λ1(I
k,i
t − pi) + λ2(I

l,i
t − pi)].
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Define et = λ1(I
k,i
t −pi)+λ2(I

l,i
t −pi), then x = 1√

T−l

∑T−l
t=1 et.

The first two moments of et and its autocovariance function are
given by

E[et] = 0,

Var(et) = (λ2
1 + λ2

2)pi(1 − pi)

+ 2λ1λ2 Cov(Il,i
t , Ik,i

t ) < ∞,

Cov(et, et−h) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λ2
1γ

i
k + λ1λ2 Cov(Ik,i

t , Il,i
t−k), if h = k

λ2
1γ

i
l + λ1λ2 Cov(Il,i

t , Ik,i
t−l), if h = l

λ1λ2 Cov(Il,i
t , Ik,i

t−l+k), if h = l − k

0, otherwise.

Therefore, Cov(et, et−h) < ∞ for ∀h. From the central limit

theorem (CLT) for covariance stationary processes, x
d→ N(0,

σ 2
x ) where σ 2

x = Var(et) + 2 Cov(et, et−k) + 2 Cov(et, et−l) +
2 Cov(et, et−l+k). Thus, we show that any linear combination
of qk,i and ql,i is asymptotically normal, establishing their joint
asymptotic normality.

Now let us focus on the elements of the asymptotic co-
variance matrix. Given that E[qk,i] = E[ql,i] = 0, we have
Cov(qk,i,ql,i) = E[qk,iql,i] where

E[qk,iql,i] = E

[
1√

T − l

T−l∑
t=1

(Ik,i
t − pi)

1√
T − l

T−l∑
t=1

(Il,i
t − pi)

]

= Cov(Ik,i
t , Il,i

t ) + Cov(Ik,i
t , Il,i

t−k)

+ Cov(Il,i
t , Ik,i

t−l) + Cov(Il,i
t , Ik,i

t−l+k) + o(1).

Proof of Proposition 3

Consider the joint distribution of zi,k and zj,k. Let x ≡ λ1zi,k +
λ2zj,k and define et = λ1(I

k,i
t − pi) + λ2(I

k,j
t − pj). This yields

x = 1√
T−k

∑T−k
t=1 et. The moments of et can be obtained as in

proof of Proposition 2 and x can be shown to be asymptotically
normal. Similar reasoning applies to the elements of the covari-
ance matrix.

Proof of Proposition 4

From assumption A1 in the main text we have,

√
T(θ̂T − θ0) = A−1 1√

T

T∑
t=1

st(θ0) + op(1).

Defining x ≡ λ1
√

T(p̂k
i −pi)+λ2

√
T(θ̂T −θ0)

′D and suppress-
ing the argument of the score we obtain,

x = 1√
T

T∑
t=1

[λ1(I
k,i
t − pi) + λ2s′

tA
−1D] + op(1).

Now, let et = λ1(I
k,i
t − pi) + λ2s′

tA
−1D, then x = 1√

T

∑T
t=1 et +

op(1). The moments of et are given by

E[et] = 0,

Var(et) = λ2
1pi(1 − pi) + λ2

2D′A−1BA−1D

+ 2λ1λ2 Cov(Ik,i
t , s′

t)A
−1D,

Cov(et, et−h) = (h = k)[λ2
1γ

i
k + λ1λ2 Cov(Ik,i

t , s′
t−k)A

−1D].

Assumptions A2 and A3 guarantee finiteness of the vari-
ance and covariance terms. Applying the CLT, we have x

d→
N(0, σ 2

x ) where σ 2
x = Var(et) + 2 Cov(et, et−k). The variables

on the right-hand side of Equation (3.1) are both asymptot-
ically normal due to Proposition 1 and assumption A1. We
just showed asymptotic normality of their linear combinations,
which completes the proof.

Proof of Proposition 5

Let θ0 = (μ0, σ
2
0 )′. In this case the indicator series is con-

structed as follows Ik,i
t (zt(θ0)) = (zt(θ0) − aαi > 0), where

zt(θ0) = ε2
t (θ0) + ε2

t−k(θ0). From the mean value expansion in
the text we need the following:

V12 ≡ lim
T→∞ E

[√
T(p̂k

i (θ0) − pi)S′(θ0)
]
, (B.1)

D ≡ lim
T→∞ E

[
∂ p̂k

i (θ)

∂θ

∣∣∣∣
θ=θ0

]
. (B.2)

From the properties of the QML estimator

V12 = Cov
(
Ik,i
t (zt(θ0)), s′

t(θ0)
)

+ Cov
(
Ik,i
t (zt(θ0)), s′

t−k(θ0)
) + o(1).

For the model under consideration, we have s′
t = (εt/σ0, (ε

2
t −

1)/2σ 2
0 ). Hence, we need to obtain (i) E[Ik,i

t εt], (ii) E[Ik,i
t εt−k],

(iii) E[Ik,i
t ε2

t ], and (iv) E[Ik,i
t ε2

t−k] to get the covariance term. It
can be shown that (i) and (ii) are both zero and (iii) and (iv)

are given by 1 − ∫ √aαi√−aαi

∫ g(εt)

−g(εt)
ε2

t f (εt−k)f (εt)dεt−k dεt, where

g(εt−k) =
√

aαi − ε2
t−k. Therefore, we conclude that V12 =

(0, (E[Ik,i
t ε2

t ] − pi)/σ
2
0 ).

Now let us concentrate on D. Let D = (D1,D2)
′ then we have

D1 = − 2

σ0

(
lim

T→∞
1

T

T∑
t=1

E
[
δ
(
zt − aαi

)
(εt + εt−k)

])
, (B.3)

D2 = − 1

σ 2
0

(
lim

T→∞
1

T

T∑
t=1

E
[
δ
(
zt − aαi

)
zt
])

, (B.4)

where δ(x) is the Dirac delta function (see Arfken 2005 for fur-
ther details on Dirac delta function and Phillips 1991 for a sim-
ilar application). To simplify D1 and D2, we use the following
properties of the Dirac delta function:

δ(x − a) = 0 for x �= a, (B.5)∫ ∞

−∞
h(x)δ(x − a)dx = h(a), (B.6)

δ(x2 − a2) = 1

2a
[δ(x − a) + δ(x + a)], (B.7)

where a is a finite constant and h is any continuous func-
tion. Using Equations (B.5) through (B.7), we can show that
D1 = 0. Applying Equation (B.6) directly to Equation (B.4)
yields E[δ(zt −aαi)zt] = aαi fzt(aαi), which completes the proof.
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SUPPLEMENTAL MATERIALS

Supplemental Appendix: This document contains an extend-
ed literature survey, additional Monte Carlo simulation re-
sults, and a more detailed exposition of some of the mathe-
matical proofs. (Autocontour_Supp_Apdx.pdf)
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