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Abstract: We generalize an asset pricing model based on the Arbitrage Pricing Theory (APT) 
allowing beta to be time-varying. Making beta a random variable adds flexibility to the model 
because permits a non-linear relation between individual returns and the set of factors, and 
accounts for the effect of possible omitted variables. We integrate the conditional APT with a 
general linear stochastic process for beta. We analyze the behavior of the conditional expected 
return, the conditional variance and conditional covariance of individual asset returns as func- 
tions of the conditional moments of beta. On considering time-varying betas we introduce 
another source of uncertainty (risk) independent of the factors. We need to disentangle if this extra 
risk is systematic or non-systematic. To this end, we introduce a modified conditional APT model 
that rationalizes why the time variation of beta may represent extra systematic risk. For a sample 
of individual stocks, we test the hypothesis of time-varying beta and the feasibility of the modified 
conditional APT. We present a test for time-varying beta based on the conditional second moments 
of returns. We find that there is strong evidence against constancy of betas in favor of a random 
coefficient model, and that the time variation of beta is due to non-systematic behavior of the 
firms and investors should be able to diversify this risk away. 
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1 Introduction and Summary 

Asset pricing theories postulate that the expected excess return to an asset 
must be a function of its riskiness. In Finance, risk is often measured by 
an asset's beta. In the Capital Asset Pricing Model (CAPM) (Sharpe 1964), 
the expected excess return to asset i is equal to the expected excess return to 
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the market  portfolio times beta, where beta is a standardized measure of 
the covariance of the return to asset i with respect to the market return. In 
the Arbitrage Pricing Theory (APT) (Ross 1976), the expected excess return to 
asset i is the sum of the risk premia associated with a set of factors times beta, 
where beta measures the sensitivity of the individual return with respect to 
each factor. These theoretical models help the investor to discriminate among 
a cross-section of assets according to their risk that is measured by their beta. 
In their original formulation, these models assume that: 1. beta is constant 
over time, 2. there is a linear relation between the individual asset return and 
the market  portfolio (CAPM) or between the individual return and the set of 
factors (APT), and 3. there is a unique source of risk, the market portfolio in 
the CAPM, or if they allow for more than one source of risk as in the case of 
the APT, the theory is not specific to which sources should be included, hence 
any choice is bound to have omitted relevant sources of risk. 

The constancy of beta over time is a very restrictive assumption. In fact, 
this assumption has been proven to be wrong by different authors, among 
them, Fabozzi and Francis (1978), Olhson and Rosenberg (1982), Bos and 
Newbold (1984), Collins, Ledolter and Rayburn (1987), and Brooks, Faff and 
Lee (1992). If beta is time-varying, it implies a break of the linear relationship 
between the individual return and the market portfolio (or the set of factors). 
Furthermore,  the time variation of beta may reflect the influence of omitted 
variables in the CAPM or in the APT, as it has been shown in Leusner, 
Akhavein and Swamy (1996). 

The first contribution of this study is the generalization of an APT model 
to include time-varying betas. Time-varying betas will account for non-line- 
arities as well as for mispecification of the sources of risk. There are two 
methodological approaches to the modelling of beta. Leusner, Akhavein and 
Swamy (1996) chose a structural approach where beta is specified as a func- 
tion of a set of variables such as firm size, ratio of book-to-market  equity, 
dividend price ratio, default premium and the yield on the 10-year Treasury 
bill minus the 1-year Treasury bill rate. Our approach is a time-series ap- 
proach. We assume that the past history of beta summarizes all possible 
sources of risk. We postulate a general linear stochastic process for the time 
behavior of beta and we superimpose it on an asset pricing model of the APT 
type. We analyze the behavior of the conditional expected return, the condi- 
tional variance and conditional covariance of individual asset returns. If beta 
were constant, analyzing variance and covariance of individual asset returns 
will not provide additional information other than of that contained in the 
conditional mean. However, if beta is time-varying, the conditional prob- 
ability distribution of returns depends on the conditional probability distribu- 
tions of the betas. In other words, beta is a random variable and its statistical 
moments must drive the statistical moments of returns. We show that the 
critical moments of beta are its conditional expectation and its conditional 
non-central second moment.  The former affects the conditional expected return 
and the conditional covariance of the return with a factor and the latter 
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drives the conditional variance of returns. On discovering these relations, we 
raise some econometrics issues that affect the current literature in which 
regression equations have conditional variances and covariances as regres- 
sand and regressors. 

The second contribution of this paper is focused on what constitutes sys- 
tematic risk in an APT model with time varying betas. The starting point of 
analysis in an APT model is the existence of factor(s) that represent system- 
atic risk. When beta is a random variable, we introduce another source of un- 
certainty independent of the factor(s). The time variation of beta may account 
for other economic variables different from the factors. These variables may 
carry time-varying systematic components or time-varying idiosyncrasies or a 
mixture of time-varying systematic and idiosyncratic components. If the time 
variation of beta is systematic, it represents risk that cannot be diversified 
away and consequently it needs to be rewarded. On the other hand if the 
time-variation is purely idiosyncratic, it can be diversified away and it will not 
be rewarded. We propose a modified conditional APT that extracts the sys- 
tematic component from the time variation of beta and assigns a factor to 
it. If there is not systematic component in the time variation of beta, the pro- 
posed factor should not have any power in explaining the movements in con- 
ditional expected returns. 

The third contribution of this paper consists of testing the maintained hy- 
pothesis of time-varying beta and the likelihood of the proposed modified 
conditional APT. A common feature of the studies dealing with time-varying 
coefficients is that are generally based on state-space models estimated with 
Kalman filter techniques. We offer an alternative test based on conditional 
second moments. The test takes advantage of the first contribution of this 
paper that explains the behavior of the conditional covariance and variance 
of returns. We construct a system of two seemingly unrelated regressions. The 
regressand of the first equation is the conditional variance of the individual 
stock return, and the regressand of the second equation is the conditional 
covariance of the return with a factor, that is the market portfolio. In both 
equations, the regressor is the conditional variance of the market portfolio. 
The test consists of imposing a non-linear restriction across these two equa- 
tions. Under the null hypothesis of constant beta, the non-linear restriction 
amounts to test that the variance of beta is equal to zero. This type of statis- 
tical testing has been well documented by Gallant (1987). For  the sample 
under study we are able to strongly reject the constancy of beta. Con- 
sequently, we need to address the question on the validity of the proposed 
modified APT, which postulates that there are systematic components on the 
variance of beta. The risk implied by the time-variation of beta is a con- 
troversial issue. Empirical studies offer different answers. Chen and Keown 
(1981) claim that random diversification of portfolios reduces to tiny amounts 
the extra risk induced by time-varying beta. In Schwert and Seguin (1990) 
time-varying beta represents risk to be rewarded. In Ferson and Harvey 
(1991), the proportion of the variance of returns due to variation in beta is 
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very small compared to the variation in the corresponding risk premium. For  
the sample under study, we reject the modified APT implying that the time 
variation of beta represents unsystematic risk which can be diversified away. 

The organization of the paper is the following. In section 2.1, we present an 
APT model with time-varying betas, summarizing the first contribution of 
this paper in Proposit ion 1. In section 2.2, the modified APT model is intro- 
duced. In section 3.1, we perform the empirical testing for constancy of beta, 
and in section 3.2, the testing of the modified APT model is addressed. 

2 Models with Time-Varying Beta 

In this section, we compare a dynamic APT model with constant betas to a 
dynamic APT model with time-varying betas. Let us assume, without loss of 
generality, that there is one dynamic factor that drives the returns. Let R i t  be 
the excess return to asset i; Pit the conditional expected excess return to asset 
i; ft the dynamic factor with mean zero; bi the sensitivity of asset i to the fac- 
tor; and eit the idiosyncratic noise, with mean zero and constant variance over 
time. We can write 

R i t  = JZit -Jr" b i f t  -]- '~it 

Following an argument as in Ross (1976), the conditional expected return will 
approximately be 

f l i t  = bi,~t 

where ,~t is the time-varying risk premium of the factor ft. The conditional 
variance of asset i is 

vart_l (Rit) = b2vart-1 ( f  t) + var(eit) 

that is split into a systematic or non-diversifiable component,  b2vart_l(ft), 
and a non-systematic or diversifiable component, var(eit). The covariance of 
asset i with the factor ft is 

covt-1 (Rit, ft) = bivart-1 (ft) 

In this model the beta, bi, fully characterizes the asset i. The conditional mean 
and the systematic part of the conditional variance depend on bi. Further- 
more, bi is the traditional ratio of the conditional covariance between the 
individual return and the factor divided by the conditional variance of the 
factor. The unique attribute of asset i is bi, and analyzing the conditional 
mean of returns will suffice to estimate bi. 
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Now, let us consider a one-dynamic factor model with time-varying betas bit. 

Rit = [lit + bitft + git (1) 

Let us assume that {bit} is a stationary stochastic process. According to the 
Wold's decomposition, a general process for bit can be written as 

GO 

hit = hi + E @jai,t-j (2) 
j=0 

where ~0 = 1 and air is a white noise process, statistically independent of the 
factor ft, and uncorrelated with the idiosyncratic noise eit, 

2 E(ait) = O, E(a2t) = ffai, E(aitft) = E(aitft 2) = O, E(aiteit) = 0 (3) 

The following proposition characterizes the conditional moments of Rit. 

Proposition 1: Under (I) ,  (2), and (3), the first  and second conditional moments 
o f  Rit are 

l - ( i )  l'it = Et-l(bit)2t + 20 
I- (ii) vart_~ (Rit) = Et-1 (b~t)vart-1 (ft) + var(eit) 
1- (iii) covt-1 (Ru, ft) = Et-I (bit)vart-l(Jet) 

Proof." 

1-(i). The formal proof follows the same steps as in Ross (1976). Here we 
present an heuristic argument. 

The goal is to form a riskless arbitrage portfolio of assets, Rpt. Let the indi- 
vidual returns follow model (1). An arbitrage portfolio is constructed with N 
assets, each one with weight wi, 

N N N N 

ept : E wiRi' : E Wi[~it ~- E wibitft -4- E Wi~it 
i=1 i=1 i-1 i=1 

If bit follows the process described by (2) then, 

= Z + F_, w, b, + q.ja,,,_j f, + + 
i=l i=1 j=l  i=l i=1 

If N is large enough, we can invoke the law of large numbers and Y]i wiait 
and Y-]~i wieit will approach zero asymptotically. Because this portfolio is an 
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arbitrage portfolio which does not require a change in wealth, 

N 

L; wi = -  0 (4) 
i=l 

and because we require the portfolio to be riskless 

N oo N 

E wi(bi-}- E I/IJ ai,t-j) = E wiEt- l (b i t )=0 (5) 
i=1 j=l  i=t 

Since the portfolio is riskless and it does not involve new wealth, the return 
should be zero 

N 

Rpt = E wittit = 0 (6) 
i=l 

Putting together (4), (5), and (6), we can conclude that, at time t, the condi- 
tional mean ttit is spanned by the vectors 1 and Et-1 (bit) 

[git = 20 -[- Et-1 (bit)2t 

1-(ii). F rom (1) 

vart_l (Rit) = vart_l (bitft) + var(eit) + 2 covt-l (bitft, eit) 

Because of independence between ait and ft, 

vart_l (bitft) = Et-1 (b~t)vart-1 ( ft) 

where 

2 + E I[IJ ai't-j Et-l(b 2) = vart-l(bit) + (Et-l(bit)) 2 = cra + bi 
j=l  

Furthermore 

covt-l (bitft,,~it) = 0 

because ft and sit are uncorrelated. 
1-(iii). Multiply both sides of (1) by ft and apply conditional expectation. 
Proposition 1 explores the dynamics of a given asset. Three remarks are in 

order. 

First, note that if the betas are time-varying and we estimate a model with 
constant betas, the error term must be heteroscedastic. 2 From (2) we calculate 

2 For a survey on the econometrics of time varying parameters models see Raj and Ullah 
(1981). 
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the conditional expected value of bit 
O9 

Et-1 (bit) ~--- b i "q- ~ ~ljai,t-J 
]=1 

and we substitute it in I-(i), 
O9 

flit : bi,~,t -]- ~ ~Jjai,t-j~t -]- Ao 
j=l 

We see that the relation between the expected return and the risk premium 
associated with ft is non-linear due to the t e r m  ai,t-j.~t. If the estimation of flit 
proceeds as if beta were constant, that is considering just bi}Lt q- )~0, the error 
term must account for the non-linear part  ~ t  Ifijai,t-j,~t. Standard diagnostic 
tests in the error term will show that heteroscedasticity is present. 

Second, some articles as Schwert and Seguin (1990) or as Ng, Engle and 
Rothschild (1992) estimated regression models with conditional variances 
and covariances as regressand and regressors under the assumption of con- 
stant betas. These type of regressions should follow formulations as 1- (ii) and 
1-(iii) where the regression coefficients Et-l(bi 2) a n d  Et-l(bi t)  and generally 
time-varying. Assuming constant betas implies that regressions of type 1- (ii) 
and 1-(iii) should have constant regression coefficients. It  is necessary to test 
for t ime-varying betas before proceeding with the estimation of regressions 
I- (ii) and 1- (iii). 

Third, comparisons of the conditional moments  of returns are based on 
the conditional moments  of their beta. Since the conditional variance of the 
factor, vart_t (fi), and the risk premium on the factor, 2t, are common features 
for all assets, the characterization of the return to asset i depends on the 
moments  of bit. If  we consider the conditional distribution of Rit, we observe 
that the conditional mean of returns is a function of the conditional first 
moment  of bit (l-i),  the conditional variance of Rit is a function of the condi- 
tional non-central second moment  of bit (1-ii), and the traditional ratio (sys- 
tematic risk) of conditional covariance between the individual return and 
the factor to conditional variance of the factor is equal to the conditional 
expected value of bit (1-iii). This is an important  difference with respect to 
models with constant betas. In 1-(i), the systematic component  of flit is gov- 
erned by Et-l(bit), and in 1-(ii) the systematic component  of vart_l(Rit) 
depends on Et_t(b2). APT models with time-varying betas may  account for 
two potential sources of risk. Two assets may  have the same expected value of 
bit but different Et-t (b~). For  instance, consider two assets i and j such that 
asset i has a t ime-varying beta and asset j has a constant beta. Furthermore,  
let us assume that Et-t(bit) = bj. Given the definition of variance, we have 

vart-1 (bit) =- Et-1 (bi 2) -- (Et-1 (bit)) 2 = Et-1 (b 2) - b 2 >_ 0 

According to 1-(ii) and since Et_l(b 2) > b 2, assets with time-varying betas 
are more sensitive to changes in the variance of the factor than assets with 
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constant betas. The return to asset i is more uncertain than that of asset j. 
This example presents an interesting question. The time variation of beta 
induces some uncertainty that is not due to the factor. It may represent some 
other economic variables and it is our task to disentangle if these variables 
convey systematic or non-systematic risk. The next section offers some insight 
to this problem. 

2.2 A Part icular  Process  f o r  bit and a Modi f ied  A P T  

Among the possible linear models that equation (2) describes, there is one that 
deserves particular attention. This is the Hildreth-Houck random coefficient 
model (Hildreth and Houck 1968) 

bit = b i q- ait 

where ait is white noise. This model has been the most successful in explaining 
the time behavior of beta. Bos and Newbold (1984) find a strong rejection of 
constancy of betas. They tested a random coefficient model against a first- 
order autoregressive stochastic parameter model and they could not find 
strong evidence against the random coefficient model. They thought that 
their asymptotic test statistic was lacking power in finite samples. Brooks, 
Faff and Lee (1992) analyzed the same hypothesis with an approximate point- 
optimal invariant test (King 1987), that has good small-sample properties, 
and they validated the Bos and Newbold results. Collins, Ledolter and Ray- 
burn (1987) tested a random coefficient model against a more general alter- 
native, ARMA(1,1) and they found that for individual stocks, the evidence 
against the random coefficient model is weak. In portfolios, there is more 
evidence of autocorrelated beta but we suspect that this may be due to the 
cross-correlation among the individual stocks of the portfolio. Their analysis 
relies in regression models with time-varying coefficients and likelihood ratio 
tests. 

For  a random coefficient model, note that there is no distinction between 
the conditional and unconditional moments of bit, 

E t - l (b i t )  = E(bit) = bi Et-1 (b 2) = E(b~)  = b~ + tT~i 

Under the random coefficient model, we compare two possible scenarios that 
give rise to two models of expected returns. In the first scenario, we assume 
that the time variation of beta does not represent any extra risk, in the second 
scenario, we assume that the time variation of beta implies extra risk and we 
present a new model: a modified conditional APT, which incorporates an 
extra factor to account for the risk induced by the time variation of beta. 
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Model I. Time-Varying Beta Does Not  Represent Extra Risk 
For  a random coefficient model for beta and according to Proposition 1, the 
conditional distribution of returns is 

flit = bi)~t + 20 

vart-l(R,t) = (b 2 + a2i)vart_l(ft) + var(eit) 

COVt--1 (Rit,  f t )  = bivart_l  (j~ 

(7) 

The conditional expected return depends on the mean of bit, which is a 
constant; and the systematic part of the conditional variance depends on the 
non-central second moment of bit, which is also a constant. The decom- 
position of the conditional variance of the return says that there is a portion 
of the variability of the return that is driven by the variance of the factor, that 
is (bE + a~)vart_l(ft)  and another portion that is driven by the idiosyncratic 
risk of the firm, that is var(eit). It is clear that the term b2vart_l(fi) constitutes 
systematic risk. However, the term a2ivart_l (ft) does not constitute systematic 
risk according to the reading of equation (7), that says that the expected 
returns depend on the constant component of bit which is bi. The only sys- 
tematic risk, specific to asset i, in this model is bi. Further reading of the set of 
equations (7) says that bi is the conditional covariance between the individual 
return and the factor divided by the conditional variance of the factor. Any 
time-variation of beta that is contained in ait should be understood as diver- 
sifiable risk and it will not be priced. 

Model 2. Time-Varying Beta Does Represent Extra Risk 
To motivate the second possible scenario, consider two assets i and j such that 
bi = bj but asset i has a time-varying beta that follows the random coefficient 
model and asset j has a constant beta. Let us assume that the idiosyncratic 
component is the same for both assets. Under these assumptions and accord- 
ing to Model 1, we have 

flit = ktjt var t - l (R i t )  > var t - l (Rjr )  covr - l ( e i t ,  f t )  = cov t - l (R j t ,  f t )  

These two assets have the same expected return but asset i has higher vari- 
ance. If the investors perceive the asset with higher variance as systematically 
riskier, given that they are receiving the same expected return, they will switch 
their investment from asset i to asset j. The higher demand of asset j will press 
its price upwards, decreasing its return, and the lower demand of asset i will 
depress its price and it will increase its return. Consequently, luit > ktjt. This 
represents a contradiction with our set of assumptions, concluding that equa- 
tion (7) and Model 1 are unsustainable. Hence, if assets with higher variance 
are perceived as riskier then there must be a risk premium associated with the 
time variation of beta. The investors are demanding higher compensation in 
order to hold asset i. 
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We design a modified APT model which considers the time variation of 
beta as systematic risk. Suppose that the stochastic disturbance air in the ran- 
dom coefficient model for bit can be decomposed as follows ait ~- aai~t, where 
~t is i.i.d, with mean zero and variance one. The return to asset i can be writ- 
ten as 

Ri t  ~- flit -]- b i f t  q- ai t f t  -~- 8it = /d i t  q- b i f t  q- 6rai~tft -]- eit 

= flit "q- b i f t  -~- aaigt -}- 8it (8) 

where gt ~- ~ t f t .  This is a two-factor model where fi and gt are the factors. 
Following the same kind of arguments as in the previous section, we can write 
the conditional distribution of returns as 

flit = biJ~t q- Crail'] t + 20 

vart-1 (Rit)  = (b 2 + a2ai)vart-1 ( f t )  + var(eit) 

covt_l (Rit, f i )  = bivart-1 ( f t)  

covt-  l ( Rit, gt) = Cgait)art-1 (gt ) 

(9) 

where t/t is the risk premium associated with the new factor gt. This model is 
consistent with the second scenario, where Pit > Pit. Investors expect higher 
return to asset i because carries an extra risk premium due to the factor gt. In 
fact, a reading of the first and the last equation in (9) says that asset i is 
exposed to extra systematic risk and its sensitivity to it is summarized by aai. 
Furthermore,  aai is equal to the covariance between the return to asset i and 
the factor gt divided by the variance of the factor gt. 

Comparing both models, in particular equation (7) with equation (9), it is 
easy to see that the time-variation of beta will be priced if and only if aait h is 
statistically significant in explaining conditional expected returns. In order to 
test the validity of the modified APT model we proceed as follows. Consider 
the first equation in (9) to which we apply unconditional expectation. We 
have 

E(Pit ) = biE(At) + aaiE(rlt) + 20 (10) 

note that E(I.tit) = E(Ri t )  because the expectation of the conditional expecta- 
tion of a random variable is its unconditional expectation. Equation (10) offers 
the grounds to perform a cross-section regression, where the dependent vari- 
able is the unconditional expected return, E(Ri t )  and the regressors are bi and 
aai. The hypothesis of interest is H o : E ( q t ) =  0. A rejection of this null 
implies that the time variation of beta is systematic risk and that Model 2 
should be accepted. The contrary implies that the time variation of beta is 
diversifiable risk and that Model 1 should be accepted. This test is performed 
in section 3.2. 
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3 Empirical Study 

This empirical study is based on the results of Proposition 1. We pursue two 
objectives: first, to introduce a test for the constancy of betas and the feasi- 
bility of the random coefficient model, and secondly, to offer some insights 
into the pricing of the time variation of beta, according to the test described in 
section 2.2. 

Schwert and Seguin (1990) empirically validated a single factor model of 
heteroscedasticity in stock returns, where the variance of the market portfolio 
was driving the variance and covariance of individual stocks. According to 
their results, the factor is the return to the market portfolio, Rmt. We proceed 
in our empirical study with ft = Rmt. We need to extract the conditional var- 
iances and covariances of the individual returns and the market portfolio. The 
sample used in this study is the same as that in Gonzfilez-Rivera (1996). The 
sample consists of the stock returns of the United States computer companies 
recorded in the Center for Research in Security Prices (CRSP) tapes of the 
University of Chicago, under the Standard Industry Classification (SIC) codes 
of 3573, 3574, 7372 and 7379. The frequency of the data is weekly, running 
from July 7, 1962 to December 29, 1987. The NYSE value-weighted index is 
used as a proxy for the market portfolio. 

The extraction of the conditional variances and covariances is performed 
through the design of a bivariate GARCH model, where each stock in the 
sample is paired with the market portfolio. The system is 

Rt = d + et 

gtlJt_l ~ n ( o ,  n t )  

Ht = Ct C + At et-lert_lA + BIHt_IB (11) 

where d is a 2 x 1 vector of constants, C, A, and B are 2 x 2 parameter 
matrices, 

Rt ~,Rmt fl et kflmt.] 

Jr-1 is the information set containing information on the vector Rt up to time 
t -  1, and the elements of Ht are hit =- vart-l(Rit), himt =- covt-l(Rit,  Rmt), and 
h,,t - vart_l (Rmt). Since Ht is a variance-covariance matrix, we need to ensure 
that is positive definite. Engle and Kroner  (1995) showed that the specifica- 
tion in (11) guarantees that Ht is positive definite. The model is estimated 
using quasi-maximum likelihood method (QMLE). The likelihood function is 
written under the assumption of conditional normality. 

N 1 1 , -1 
It = - ~ l o g  2~ - -~ log [Ht] - "~,~tHt et 

L(O) = Z It(O) 
t 
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where It is the log-likelihood of observation t. Under standard conditions, the 
Q M L E  estimator is consistent and asymptotically normally distributed with 
variance covariance matrix d - l N d  -1, where ~r is minus the expectation 
of the Hessian and N is the expectation of the outer product of the score 
(Bollerslev and Wooldridge 1992). 

3.1 Constancy of Beta 

In this section we propose a test for constancy of beta based on the condi- 
tional second moments of individual returns. The test takes advantage of the 
results 1- (ii) and 1- (iii) of Proposition 1, exploiting the restrictions imposed 
in the conditional variance and covariance of individual returns by time- 
varying betas. According to the APT model with time-varying betas where 
the beta follows a random coefficient model (equations (7)), the conditional 
variance and covariance of individual returns are driven by the conditional 
variance of the market portfolio in the following fashion 

hit 2 2 2 = (b i + asi)hmt + Oil 

himt = bihmt 

This behavior suggests that a test for constancy of beta can be performed 
comparing the coefficients of hint. We write the above equations in a regres- 
sion framework as 

hit ~- 701i -[- 71ihmt -}- vt 

himt = 702i -~- 72ihmt q- vt 

(12) 

The test for constancy of beta consists of a non-linear cross-equation restric- 
tion of the following form 

H 0 :  71i = 722i H I :  71i > 72/ (13) 

The null hypothesis contains model (12) under constant betas. A similar way 
2 = 0. The alternative hypothesis contains to write the null in (13) could be trai 

the model (12) under the hypothesis of a random coefficient model for beta. 
Model (12) constitutes a system of two equations where the conditional 

variance of the market  portfolio is a common regressor. Both equations of 
model (12) are estimated jointly because the restriction contained in the null 
hypothesis (13) imposes a common parameter across equations. 

The test for constancy of beta is based in a minimum distance criterion 
(Gallant 1987). It compares two objective functions: Q0 (under the null) and 



The Pricing of Time-Varying Beta 357 

Q1 (under the alternative hypothesis). The test is asymptotic  and is distri- 
buted as a Z 2 with as many  degrees of freedom as restrictions are tested. The 
test is 

T = n(Qo - Q1) (14) 

The objective function (Q) to minimize is 

Q ~  ! --i r (Sol s | I ) r / n  

where r is a vector of stacked residuals for the two equations, S is an esti- 
ma tor  of the variance-covariance matrix of the errors across equations, and n 
is number  of observations. 

Table I displays the results of the estimation of system (12) and the testing 
of the hypothesis (13) for 81 stocks. Columns (1) and (3) contain estimates of 
~1 and Y2 and columns (2) and (4) contains their respective t-test for the null 
hypothesis 71 = 0 and ~'2 = 0. Column (5) contains the T test (14) for the hy- 
pothesis (13). The T test is x2-distributed with one degree of freedom. Given 
that the regressor hmt has to be estimated before we proceed with the esti- 
mat ion of the system (12), a generated regressor problem may occur (Pagan 
1984) and the OLS standard errors of the estimates of the parameters  of the 
model may be biased downwards. Nevertheless, the actual setting corresponds 
to the conditions stated in theorem 3 of Pagan (1984) and for the cases in 
which we are interested, the asymptotic t-statistics are valid. In general, very 
little is known about  the generated regressor problem caused by G A R C H  
estimates of conditional variances. 

The empirical results for our sample of individual stocks are in agreement 
with the findings of Schwert and Seguin (1990) for size-ranked portfolios. The 
variance of the market  portfolio is a very strong factor driving the variances 
of individual returns. Only two stocks have statistically non-significant ~1 and 
one stock has a non-significant ~2 at the conventional 5% significance level. 
The test T rejects the null hypothesis )q~ = )J22 for 64 stocks at the statistical 
level of 5%, hence we reject the constancy of betas in favor of the random 
coefficient model. 

An indirect check on the validity of the random coefficient model can be 
designed through the comparison of two estimators of bi = E(bit). On one 
hand, we have the estimator ~2i obtained from the system of equations (12). 
On the other, we have obtained the quantities himt and h,,t from the bivariate 
G A R C H  system (11). We construct an estimator of beta as bit = hirer~hint. We 
average bit over time to give us the mean of bit. We run a cross-sectional 
regression of the type 72i = a + bE(bu).  If Pzi and E(t)it) are both estimators of 
bi, it must be the case that  a = 0 and b = 1. The estimates are ~ = -0 .65  with 
a t = -1 .65  and b --- 1.38 with a t = 1.51 for the respective null hypothesis. 
These tests fail to reject the null hypotheses a = 0 and b = 1. It  is likely that 
the t-statistics are biased upwards, but even so, it makes our null hypotheses 
more likely to be true. 
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Table I. hit = 7mi + 7uhra + vt himt = 702i -~ ~2ihmt + vt; T test for Ho : ~'li = ~'2i 

Stock (1) (2) (3) (4) (5) 

~1i t(~li) Y2i t (~32i) T test 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

5.12 
5.76 
7.92 
9.29 
8.98 

14.24 
4.49 

10.43 
5.12 
5.47 

11.56 
9.60 
0.17 
1.21 
6.61 
5.17 
3.90 
4.49 

26.15 
10.70 

1.81 
5.51 
4.83 
3.05 
2.56 
8.71 
8.28 

15.13 
0.93 
4.01 

13.35 
7.50 
7.35 
2.90 

34.12 
1.65 
9.51 
9.28 

12.58 
2.03 
9.41 
8.94 
4.65 

11.15 
5.68 
3.18 
0.96 
5.25 

8.6 
14.7 
38.2 
11.8 
19.0 
18.7 

5.0 
7.5 

11.1 
48.5 
23.0 
23.1 

1.5" 
6.3 

43.5 
15.5 

6.9 
7.7 
5.8 
9.0 

19.1 
34.0 
19.1 
13.0 
57.1 
37.9 
25.6 

3.7 
0.8* 

26.0 
16.4 
28.7 
25.t 
30.0 

6.7 
12.7 
31.0 

7.5 
5.1 

17.0 
14.3 
12.6 
22.9 
13.2 
15 

8.1 
90.3 
12.9 

1.63 
1.09 
2.63 
1.93 
1.10 
2.43 
2.26 
1.30 
1.39 
1.50 
2.87 
2.28 

-0 .17  
0.62 
2.37 
2.04 
1.84 
1.42 
0.95 
3.12 
0.96 
2.29 
0.76 
0.99 
1.51 
2.68 
2.06 
1.02 
0.62 
1.76 
3.20 
1.57 
2.31 
1.59 
5.31 
0.74 
1.97 
0.38 
0.56 
0.89 
1.81 
2.05 
1.71 
1.37 
1.89 
1.56 
0.91 
1.10 

19.5 
12.8 
71.9 
18.0 
15.0 
21.8 
19.8 

5.4 
16.3 
32.4 
46.4 
51.4 

-5 .5  
14.7 
75.6 
57.4 
18.0 
23.7 

4.7 
17.2 
32.2 
58.6 

9.8 
13.3 

173.0 
59.7 
42.1 

7.7 
3.4 

90.5 
33.1 
36.3 
54.3 
89.0 
13.6 
10.6 
47.3 

2.4 
2.4 

18.9 
17.1 

8.9 
50.6 
16.1 
19.5 
21.0 

128.2 
15.5 

24.4 
164 
387 

69.3 
306 
147.3 

0.6* 
55.6 
68.4 

432 
126 
197 

1.5" 
26.0 
42 
18.8 

1.4" 
25.3 
26 

1.2" 
58.7 

2.9* 
237.6 

50.1 
37 

268 
313.3 

13.0 
0.2* 

65 
38.4 

475 
170 

18 
1.4" 

77.1 
406 

55.4 
26 
98.6 
90.1 

22 
81 

137 
57.2 

1.5" 
105 
121.1 
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Table I (continued) 

Stock (1) (2) (3) (4) (5) 

~li t(ffli) ~2i t(~2i ) T test 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 

1.16 
8.16 
1.40 
6.41 
3.28 
2.47 

10.98 
4.86 
4.20 

17.17 
14.55 

1.61 
2.58 

17.08 
5.83 
1.15 
4.04 

302.16 
1.60 
0.86 
5.08 

20.9 
19.9 
73.5 
31 

4.9 
17.8 
25.7 
18.4 
87.5 
29.1 

8.5 
11.8 
21.9 
11.2 
19.3 
2.9 
3.2 
2.2 

20 
2.9 
6.7 

1.02 
1.66 
1.10 
1.56 
0.94 
0.24 
0.55 
1.64 
2.06 
2.15 
3.09 
1.25 
1.04 

-0 .05  
2.07 
0.78 
2.06 

-5 .20  
1.27 
0.60 
0.88 

67.5 
26.3 

185.0 
34.7 

9.8 
5.1 
5.6 

52.2 
220.7 

49.3 
17.8 
65.6 
43.9 
-0 .3*  
35.6 
18.8 
18 

-3 .84  
85.7 
11.7 
19.6 

31.84 
5.33 
4.15 

-0 .16  
2.12 
5.13 
2.32 

10.34 
3.38 
1.14 
2.95 

-2 .86  

5.8 
9.1 
8.0 

- 0 . 1 "  
4.3 

33 
69.4 
17.5 
34.3 
14.6 

5.1 
- 1 "  

-4 .42  
-0 .11  

1.58 
0.49 
1.35 
1.93 
1.46 
2.61 
1.58 
1.16 
1.43 

-0 .42  

-10 .5  
-2 .1  
28.3 

5.6 
42.7 
42.8 

135.3 
19 
92.1 
44.9 
14.5 

-4 .9  

8.6 
162.4 
343 
513 

14.3 
291 
494 
106 

2.8* 
514 

22.7 
0.1" 

179 
106 

34.1 
2* 
0.04* 
4.7 
0* 
2.6* 

33 
6.3 

82 
18.4 
0.09* 
0* 

47.8 
101 

8.6 
196 

18 
4.17 
1.2" 

* Statistically non-significant at the 5% level. Z~(5%) = 3.84 
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3.2 Pricing of Time-Varying Betas 

G. Gonz~lez-Rivera 

In this section we apply the test proposed in section 2.2. Since beta is time- 
varying for the sample under study, we need to assess if the time variation of 
beta represents systematic risk or, to the contrary, represents non-systematic 
risk. Recall equation (10), 

E(Rit) = b i E ( 2 t )  4- aa iE( t l t )  4- 20 

Equation (10) is a cross-sectional model in which the regressors are bi and aai. 
The hypothesis of interest is H0 : E(rlt) = 0. If we reject the null hypothesis, 
the time variation of beta represents systematic risk. A failure to reject the 
null implies that there is not sufficient statistical evidence to validate the 
modified APT model and the extra risk induced by the time variation of beta 
is diversifiable. 

We have two estimators of bi, these are 72i and E(t)it), and an estimator of 
O'ai can be constructed as 7u - -  ~2î 2 : O.ai .^2 In Table II we summarize the results 
of the cross-sectional regression. 

Models (1) and (2) approximate the bi regressor by the estimator 72i. The 
first moment of beta, bi is able to explain about 6% of the variability in 
expected returns. The second moment of beta, aai is not statistically signifi- 
cant at the 5% level. One of the implications of Proposition 1 is that regres- 
sions of the type presented above have to have heteroscedastic errors since the 
variance of the returns depend on the values of bi and aai. This is the reason 
why we present two types of t-ratios. The first one is the uncorrected OLS t- 

Table II. Cross-sectional regression E(Rit) = 50 + 51bi + 52aai 

bi ~ ~2i bi ~ E(bit) 

(1) (2) (3) (4) 

50 

51 

52 

R 2 

Adj.  R 2 
F 
(p-value) 

.10E-02 
(1.0) 
(1.2) 
.13E-02 
(2.4) 
(2.7) 

.07 

.06 
5.8 
(0.01) 

.17E-02 
(1.4) 
(1.7) 
.13E-02 
(2.4) 
(2.7) 
- . 40E-03  
(-.9) 
(-1.0) 
.08 
.06 
3.4 
(0.03) 

- . 3 E - 0 2  
(-1.7) 
(-1.4) 
.40E-02 
(3.4) 
(2.7) 

.13 

.12 
11.6 
(0.001) 

- . 2 E - 0 2  
(-1.2) 
(-1.2) 
.40E-02 
(3.4) 
(2.8) 
- . 30E-03  
(-0.9) 
(-1.0) 
.14 
.12 
6.1 
(0.003) 

t-statistics underneath the coefficient estimates, the first number is the OLS t-ratio, the second 
number is the White's consistent t-ratio. 
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ratio and the second one is based on a consistent estimator of the variance- 
covariance matrix that is robust against heteroscedasticity (White 1980). 
Residual plots, not presented here, indicate the presence of heteroscedasticity. 
Using robust t-ratios does not change the previous conclusions. Models (3) 
and (4) approximate the bi by the estimator E(bit). While the statistical signif- 
icance of the first moment of beta and the statistical non-significance of the 
second moment have been maintained, the R 2 has doubled in size. 12% of the 
variability of mean returns is explained by bi. Consequently, for the sample of 
individual American computer stocks, the previous results seem to indicate 
that the modified APT model should be rejected, implying that the time 
variation observed in beta is due to idiosyncratic behavior of the firms and 
investors should be able to diversify this risk away. 

4 Conclusions 

The traditional asset pricing models as CAPM and APT have been criticized 
in three fronts: 1. they assume that beta, as a measure of risk, is constant over 
time; 2. there is a linear relation between the individual asset return and the 
market portfolio (factors) in CAPM (APT); and 3. the market portfolio (fac- 
tors) may not be the only sources of risk and, consequently, there may be 
omitted variables in the specification of the asset pricing model. 

Allowing for betas that are time-varying is enough for removing the as- 
sumption on linearity and, at the same time, accounts for the possible effect of 
omitted variables. In this paper, we have generalized an APT model including 
time-varying betas. We have treated beta as a random variable and we have 
inquired on the consequences of this random behavior on the formation of 
conditional expected returns, conditional covariance and variance of returns. 
We have shown that the relevant statistical moments of beta affecting the 
statistical moments of returns are its conditional mean and its conditional 
non-central second moment. This result is summarized in Proposition 1. 

Under the assumption that beta is time-varying, we have designed a modi- 
fied conditional APT model that rationalizes why the time variation of beta 
may represent extra systematic risk. We have extracted the potential system- 
atic component from the time variation of beta and we have constructed the 
factor associated with this extra risk. If there is not systematic component in 
the time variation of beta, the proposed factor should not have any power in 
explaining conditional expected returns. We have offered an empirical test 
that assesses the validity of the modified APT model. 

We have conducted an empirical study with two objectives in mind. The 
first objective was to test the maintained hypothesis that beta is time-varying. 



362 G. Gonzfilez-Rivera 

We have presented an  a l ternat ive  test to the ones encounte red  in the current  
l i terature.  The test is based on  the results of P ropos i t ion  1 and  takes advan-  
tage of the restrict ions imposed in  the condi t iona l  second mome n t s  of re turns  
by the t ime behavior  of beta. F o r  the sample under  study, we have found that  
there is s t rong evidence against  cons tancy  of beta  in favor of a r a n d o m  coeffi- 
cient model.  The second objective of our  empirical  s tudy was to implement  a 
test tha t  will shed some light on  the type of risk conveyed by the t ime varia-  

t ion  of beta. We found that  t ime var ia t ion  of beta  does no t  represent  any  
addi t iona l  systematic risk. This f inding is in  agreement  with Chen  and  K e o w n  
(1981) and  in d isagreement  with Schwert and  Seguin (1990). 
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