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Summary

Asymmetric information models of market microstructure claim that variables
such as trading intensity are proxies for latent information on the value of finan-
cial assets. We consider the interval-valued time series (ITS) of low/high returns
and explore the relationship between these extreme returns and the intensity of
trading. We assume that the returns (or prices) are generated by a latent process
with some unknown conditional density. At each period of time, from this den-
sity, we have some random draws (trades) and the lowest and highest returns are
the realized extreme observations of the latent process over the sample of draws.
In this context, we propose a semiparametric model of extreme returns that
exploits the results provided by extreme value theory. If properly centered and
standardized extremes have well-defined limiting distributions, the conditional
mean of extreme returns is a nonlinear function of the conditional moments of
the latent process and of the conditional intensity of the process that governs
the number of draws. We implement a two-step estimation procedure. First, we
estimate parametrically the regressors that will enter into the nonlinear func-
tion, and in a second step we estimate nonparametrically the conditional mean
of extreme returns as a function of the generated regressors. Unlike current mod-
els for ITS, the proposed semiparametric model is robust to misspecification of
the conditional density of the latent process. We fit several nonlinear and linear
models to the 5-minute and 1-minute low/high returns to seven major banks
and technology stocks, and find that the nonlinear specification is superior to
the current linear models and that the conditional volatility of the latent pro-
cess and the conditional intensity of the trading process are major drivers of the
dynamics of extreme returns.

1 INTRODUCTION

Most of the financial literature has focused on the dynamics of average returns and other moments of the return distribu-
tion. We have numerous empirical studies of volatility dynamics as well as information models of market microstructure
that claim that variables such as trading volume (or trading intensity) are proxies for latent information on the value of
financial assets (see; Easley & O'Hara, 1992). Much less attention has been paid to the dynamics of extreme returns and
to the links between information, proxied by trading intensity, and extreme returns.

We explore the modeling of interval-valued time series (ITS) of extreme returns, which is defined as the collection of the
intervals formed by the highest and the lowest returns in a given period of time. We propose a new semiparametric model
that explains the generation of extreme returns as a function of volatility and trading intensity. Unlike current models for
ITS discussed in subsequent paragraphs, the main advantage of this approach is that it does not rely on the assumption
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of normality and, thus, it is robust to distributional assumptions. Additionally, asymptotic results of extreme value the-
ory dictate nonlinear functional forms for extreme values as a function of the moments of the underlying process. The
nonlinearity is also different for different distributional assumption of the process. Thus, on proposing a semiparametric
approach, we robustify the modeling of extreme returns not only against the misspecification of the conditional density
of the return process but also against unknown nonlinear functions between extreme returns and volatility and trades.

Though a link between trading volume and volatility has already been established, the link between trading volume
and extreme returns has not been analyzed in much detail. A sample of most representative results on volume and volatil-
ity follows in historical order. Lamoureux and Lastrapes (1990) find that identical latent factors drive trade volume and
return volatility. Andersen (1996) proposes a model in which informational asymmetries and liquidity needs motivate
trading, which in turn drives the dynamics of a stochastic volatility model. Engle (2000) analyzes an autoregressive condi-
tional duration model and a generalized autoregressive conditional heteroskedasticity (GARCH) model to conclude that
the absence of trading means either bad news or no news and translates into low-volatility regimes. With high-frequency
data (5-minute intraday data), Darrat, Rahman, and Zhong (2003) find evidence of significant lead–lag relations between
volume and volatility in agreement with the sequential information arrival hypothesis. Fleming and Kirby (2011) analyze
the joint dynamics of trading volume and realized volatility and find that there is strong correlation between the inno-
vations to volume and volatility. Sita and Westerholm (2011) find that trade durations (inversely related to trade volume
in equity markets) have forecasting power for returns but only within the trading day. One can argue that the range of
the interval of extreme returns is a very good volatility estimator (Parkinson, 1980) and, in this sense, the result of the
aforementioned studies may apply. However, the dynamics of the low/high interval are richer than those of the range
itself because the modeling of the interval captures not only variability but also the dynamics of the bounds themselves.
For instance, Ning and Wirjanto (2009) find that there is a significant and asymmetric return–volume dependence at the
extremes. The largest returns tend to be associated with extremely large trading volumes but the lowest returns tend not to
be related to either large or small volumes. In this context, our work offers a joint modeling of volatility, trading intensity
and extreme returns with high-frequency data that combines parametric and nonparametric specifications. We proceed
by building on the statistical framework that we proposed in our previous work.

The intervals formed by extreme returns have statistical properties that can be exploited. This is in contrast to the mod-
eling of a classical time series of returns, for which it is very difficult to find any time dependence in the average return. For
instance, in González-Rivera and Lin (2013), the authors estimate a constrained bivariate linear system for the daily low-
est/highest returns of the S&P 500 index and find that there is statistically significant dependence with adjusted R-squared
(in-sample) of about 50%. Although this work generalizes specifications of previous regression models on lower/upper
bounds or center/radius of intervals (see the references herein), it relies on the assumption of bivariate normality. In
a subsequent analysis, unlike the regression-type models just mentioned, Lin and González-Rivera (2016) propose an
alternative modeling approach by pondering how interval-valued data are generated. They consider the lower and upper
bounds of the interval as the realizations of minimal and maximal order statistics coming from a sample of Nt random
draws from the conditional density (at time t) of a latent random process {Yt}. Through the statistical implementation of
this approach to prices of agricultural commodities, they also find that their models provide a very good fit for extreme
returns with average coverage rates (percentage overlap of the actual low/high interval with the fitted interval) of 83%.
However, there are also some disadvantages to this approach. First, the joint probability density function (PDF) of min-
imal and maximal order statistics degenerates as the number of random draws goes to infinity. Second, the normality
assumption on the latent random process {Yt} may be too restrictive.

To overcome these drawbacks and, in particular, the restrictions imposed by the distributional assumptions, we propose
a new two-step semiparametric model that exploits the extreme property of the lower and upper bounds of the interval.
We maintain the general setup of Lin and González-Rivera (2016) by assuming that there is a latent process {Yt} with
conditional density 𝑓Yt (.), from which, at every moment of time, there are Nt random draws and the lower and upper
bounds of the interval are the realized extreme observations of Yt over the sample of draws. However, we will not assume
any particular functional form of 𝑓Yt , so that the estimation procedure is robust to density misspecification of the under-
lying stochastic process. We will only need conditional moments of the latent process and we will rely on limiting results
provided by extreme value theory to estimate the conditional mean of the lower and upper bounds of the interval. The
proposed estimation procedure consists of two steps. First, we obtain parametric estimates of the conditional mean and
conditional variance of the latent process {Yt} and estimates of the conditional trading intensity of the process {Nt}. Sec-
ond, with the generated conditional moments of the first step as the regressors, we specify a nonparametric model for the
conditional means of the lower and upper bounds. We propose a nonparametric function because, according to extreme
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value theory, the conditional mean of an extreme value is often a nonlinear function that is difficult to estimate paramet-
rically. Thus this semiparametric approach is a natural vehicle to analyze the role of trading intensity jointly with the
statistical properties of the latent return process on the generation of extreme returns.

We fit the proposed semiparametric model to the time series of intervals of low/high returns at the 5-minute and
1-minute frequencies in the trading days of June 2017 for seven very liquid stocks: three major banks—Wells Fargo, Bank
of America, and JP Morgan—and four giant technology stocks—Amazon, Apple, Google, and Intel. We find that the pro-
posed semiparametric model is superior to the current linear specifications and that there is a nonlinear relationship
between extreme returns and intensity of trading with a somehow more intense response from the low returns.

The organization of this paper is as follows. In Section 2, we provide the basic assumptions for estimation of the model.
In Section 3, we present the two-step estimation procedure and establish the asymptotic properties of the second-step
nonparametric regression with generated regressors. In Section 4, we analyze several models to explain the relationship
of extreme returns to intensity of trading and volatility. Finally, we conclude in Section 5. In the Appendix, we discuss
relaxing the i.i.d. assumption maintained in the data-generating process (DGP). Owing to space limitations, detailed
regularity conditions and the proof of Theorem 1, TAQ data cleaning procedure, some intermediate empirical results, and
additional tables and figures are relegated to the online Supporting Information.

2 BASIC ASSUMPTIONS

We describe the DGP of the interval-valued time series. We need several assumptions that are not too restrictive, and they
accommodate many of the processes frequently encountered in financial data.

Assumption 1 (DGP). Let {Yt ∶ t = 1, … ,T} be an underlying stationary stochastic process. The continuous random
variable Yt at time t has conditional density 𝑓 (𝑦t|t−1), where t−1 is the information set available at time t. At each
time t, there are Nt independent draws from 𝑓 (𝑦t|t−1) collected in a set t ≡ {𝑦it ∶ i = 1, … ,Nt} with random sample
size Nt, which is assumed to follow a conditional distribution H(nt|t−1).

Let ylt and yut denote the smallest and largest values in the sample t at time t:

𝑦lt ≡ min
i

t = min
1≤i≤Nt

{𝑦it},

𝑦ut ≡ max
i

t = max
1≤i≤Nt

{𝑦it}.

Then, {(ylt, yut) ∶ t = 1, … ,T} is the observed interval time series (ITS) of lower and upper bounds.

The intuition behind Assumption 1 is straightforward. For instance, suppose that we have financial data and we choose
a frequency, say, every 5 minutes. During these 5 minutes trading takes place and, for every transaction, we observe a
return (price). Then, in each block of 5 minutes, we will observe the lowest return, the highest return, and the number of
trades. Our assumption means that the conditional density of returns 𝑓 (𝑦t|t−1) is updated every 5 minutes according to
some dynamic specification. The number of trades during the 5-minute time interval represents the number of random
draws nt from the conditional distribution of returns. Then, the lowest and the highest returns (ylt and yut) are the two
extremal (minimal and maximal) observations in the sample t of size nt.

Given this data-generating mechanism, our analysis of ITS data proceeds with the analysis of extremal observations
{(ylt, yut)} based on the results of the extreme value theory. The asymptotic theory for maxima (and minima) is very
different from the theory applied to averages. Once the average is properly centered around its mean and standardized
by its standard deviation, central limit theorems provide a normal limiting distribution. In contrast, the centering and
standardizing terms in the limit theorems for maxima (minima) are more difficult to derive because they depend on
the tail characteristics of the assumed underlying density. The key result in extreme value theory is the Fisher–Tippett
theorem (Fisher & Tippett, 1928; Gnedenko, 1943), which provides the limiting distributions of properly centered and
standardized maxima (minima).1 The three limiting distributions are Fréchet, Weibull, and Gumbel, which can be nested
into a one-parameter generalized extreme value (GEV) distribution H𝜉 , defined as

H𝜉(x) =
{

exp{−(1 + 𝜉x)−1∕𝜉} if 𝜉 ≠ 0
exp{− exp(−x)} if 𝜉 = 0,

1We only consider continuous random variables; therefore the existence of a nondegenerate limiting distribution should always hold.
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in which 𝜉 is a shape parameter and 1 + 𝜉x > 0. Then, (i) 𝜉 = 𝛼−1 > 0 corresponds to the Fréchet distribution, (ii) 𝜉 = 0
corresponds to the Gumbel distribution, and (iii) 𝜉 = −𝛼−1 < 0 corresponds to the Weibull distribution. For more detail,
see theorem 1.1.3 and its discussion in de Haan and Ferreira (2000).

It is said that the random variable Yt belongs to the maximum domain of attraction (MDA) of the extreme value distri-
bution H𝜉 [Yt ∈ MDA(H𝜉)] if the limiting distribution of standardized extremes—that is, c−1

ut (Yut − dut)—is the extreme
value distribution H𝜉 . The standardizing and centering terms, cut and dut, depend on t through the conditional distribu-
tion of Yt and the number of random draws Nt. Explicitly, we write cut ≡ cu[Nt, 𝑓 (𝑦t|t−1)] and dut ≡ du[Nt, 𝑓 (𝑦t|t−1)].
Based on Assumption 1 (DGP), the limiting distribution of maxima Yut conditioning on t−1 is

c−1
ut (Yut − dut)|t−1

d
−→H𝜉u , for each t = 1, … ,T, (1)

as the number of random draws Nt goes to infinity in probability, which follows directly from the Fisher–Tippett theorem
and lemma 2.5.6 in Embrechts, Klüppelberg, and Mikosch (1997). The same argument holds for the minima process {Ylt},
so that

c−1
lt (Ylt − dlt)|t−1

d
−→H𝜉l , for each t = 1, … ,T, (2)

as the number of random draws Nt goes to infinity in probability.
A key requirement to invoke the Fisher-Tippett theorem is that the maxima Yut and minima Ylt are drawn from an

i.i.d. random sample t, as stated in Assumption 1. However, under certain regularity conditions, the i.i.d. assumption
can be substantially relaxed to strict stationarity, which allows the yit sequence in t to be weakly dependent without
essentially affecting our model specification. We further discuss the regularity conditions in the Appendix.

Since we would like to build conditional mean models for the extremes, the above convergence in distribution
(Equations (1) and 2) is too weak. We need to impose restrictions on the first moments of Ylt and Yut to achieve stronger
convergence. To simplify notation, let Ỹlt(Nt) ≡ c−1

lt (Ylt −dlt) and Ỹut(Nt) ≡ c−1
ut (Yut −dut) be the appropriately standardized

maxima and minima, whose dependence on the number of random draws Nt is explicitly expressed.

Assumption 2. For all t, there exists 𝛿 > 0, such that

sup
n

E
[ ||Ỹlt(n)||1+𝛿|||t−1

]
= Ml < ∞, sup

n
E
[ ||Ỹut(n)||1+𝛿|||t−1

]
= Mu < ∞.

Given Assumption 2, and according to theorem 4.5.2 in Chung (2001), we have that for each t = 1, … ,T,

E
[

Ỹlt(Nt)||t−1
] p
−→E(Y𝜉l), E

[
Ỹut(Nt)||t−1

] p
−→E(Y𝜉u),

as Nt goes to infinity in probability. Since the conditional expectation of the GEV random variable Y𝜉u is E(Y𝜉u) =
[Γ(1 − 𝜉u) − 1]∕𝜉u, where 𝛤 (·) is the Gamma function, the conditional expectations of the extrema are

E(Yut|Nt;t−1) = du[Nt, 𝑓 (𝑦t|t−1)] + cu[Nt, 𝑓 (𝑦t|t−1)]
Γ(1 − 𝜉u) − 1

𝜉u
+ o(cu),

E(Ylt|Nt;t−1) = dl[Nt, 𝑓 (𝑦t|t−1)] + cl[Nt, 𝑓 (𝑦t|t−1)]
Γ(1 − 𝜉l) − 1

𝜉l
+ o(cl).

The conditional mean functions of the upper and lower bounds depend on the centering and standardizing terms associ-
ated with the assumed conditional density 𝑓 (𝑦t|t−1). Even for some common densities like normal or Student's t, these
terms are nonlinear on the moments of interest.2 Therefore, we propose to estimate the conditional mean functions non-
parametrically so that they are robust to density misspecification of the underlying stochastic processes. In doing so, we
also avoid the difficult task of calculating the associated standardizing and centering terms. Then, we write

2If yt is normally distributed N(𝜇t , 𝜎
2
t ), we have

cu(nt , 𝜇t , 𝜎t) =
1

𝜎t
√

2 ln nt

; du(nt , 𝜇t , 𝜎t) = 𝜇t + 𝜎t
√

2 ln nt − 𝜎t
ln(4𝜋) + ln ln nt

2(2 ln nt)1∕2 .
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E(Yut|Nt,t−1) = mu[Nt, 𝑓 (𝑦t|t−1), 𝜉u], (3)

E(Ylt|Nt,t−1) = ml[Nt, 𝑓 (𝑦t|t−1), 𝜉l], (4)

where ml(·) and mu(·) are the conditional mean functions depending on the conditional density of the underlying process
𝑓 (𝑦t|t−1), the number of random draws Nt, and the shape parameters of the limiting GEV distribution 𝜉l and 𝜉u. Note
that 𝜉l and 𝜉u are constant, and therefore can be innocuously excluded from the functions.

We also assume that the conditional density 𝑓 (𝑦t|t−1) is indexed by a finite-dimensional parameter. We will include
the first two moments of the underlying random process Yt in a parameter vector 𝜃t—that is, 𝜃t = (𝜇t, 𝜎t)—to capture the
location and the scale of the conditional distribution of Yt at time t. Similarly, for the number of random draws Nt, we
assume that the conditional distribution H(nt|t−1) is indexed by the first moment of Nt, denoted by 𝜆t. Formally:

Assumption 3.

(i) For any time period t, the conditional density 𝑓 (𝑦t|t−1) is indexed by the first- and second-order conditional
moments 𝜃t ≡ 𝜃(t−1) ∈ Θ ⊂ R2, where 𝛩 is a compact subset of the Euclidean space; that is, 𝑓 (𝑦t|t−1) =
𝑓 (𝑦t; 𝜃t) for all t.

(ii) For any time period t, the conditional distribution H(nt|t−1) is indexed by the first-order conditional moment
𝜆t ≡ 𝜆(t−1) ∈ Θ ⊂ R, where 𝛩 is a compact subset of the Euclidean space; that is, H(nt|t−1) = H(nt; 𝜆t) for all t.

(iii) Let 𝛹1 and 𝛹2 be compact subsets on some finite k-dimensional Euclidean space Rk. The expectational models
1(Ψ1) and 2(Ψ2) are correctly specified for 𝜃t ≡ (𝜇t, 𝜎

2
t ) and 𝜆t, respectively; that is,

𝜇t ≡ E(Yt|t−1) = 𝜇(t−1, 𝜓
o
1 ),

𝜎2
t ≡ E[(Yt − 𝜇t)2|t−1] = 𝜎2(t−1, 𝜓

o
1 ),

𝜆t ≡ E(nt|t−1) = 𝜆(t−1, 𝜓
o
2 ),

almost surely for each time t with some 𝜓o
1 ∈ Ψ1 and 𝜓o

2 ∈ Ψ2. In addition, the point-valued time series {𝑦t}T
t=1

(e.g., returns based on closing prices), and {nt}T
t=1, used to estimate the parameters in the specifications 1 and

2, satisfy regularity conditions such that the estimates �̂�1 and �̂�2 are
√

T-consistent.

Given Assumption 3(i), the conditional expectations of maxima and minima in Equations (3) and (4) can be further
simplified to

E(Ylt|Nt,t−1) = ml(Nt, 𝜃t), E(Yut|Nt,t−1) = mu(Nt, 𝜃t). (5)

For these conditional expectations, observe that the conditioning information set includes not only past information
t−1 but also the number of random draws Nt in the current period. Since Nt is not observable until time period t ends,
econometric models directly built upon Equation (5) cannot be used to forecast future extreme returns in practice. To
overcome this drawback, we integrate out the random variable Nt in Equation (5) so that the conditioning information
set only contains t−1, which is available at the beginning of time t. With assumption 3(ii), we can calculate the marginal
expectations of the extremes as

E(Ylt|t−1) = Ml(𝜃t, 𝜆t) ≡ ∫ ml(s, 𝜃t)dH(s; 𝜆t), (6)

E(Yut|t−1) = Mu(𝜃t, 𝜆t) ≡ ∫ mu(s, 𝜃t)dH(s; 𝜆t). (7)

If yt has t-distribution with mean 𝜇t and degrees of freedom 𝜈t, we have du(nt, 𝜇t, 𝜎t) = 0 and cu(nt, 𝜇t, 𝜈t) is the solution to the following reduced-form
model:

1
nt

= 1
2
− (c − 𝜇t)Γ

(
𝜈t + 1

2

)
·

2F1

(
1
2
; 𝜈t+1

2
; 3

2
; − (c−𝜇t )2

𝜈t

)
√
𝜋𝜈tΓ

(
𝜈t
2

) ,

where 2F1 is the hypergeometric function.
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Assumption 3(iii) is a high-level assumption. In the framework of QMLE, it requires that the quasi log-likelihood func-
tion obeys the strong uniform law of large numbers (SULLN). Primitive conditions are available in the literature; see
Domowitz and White (1982), among others.

3 ESTIMATION

We propose to estimate Equations (6) and (7) in two steps. First, we will generate the regressors 𝜃t and 𝜆t, and secondly
we will estimate nonparametrically the conditional mean functions.

If the parameter 𝜆t and 𝜃t were known, we could directly use nonparametric methods to estimate the following two
conditional mean models:

Ylt = Ml(𝜃t, 𝜆t) + 𝜀lt, (8)

Yut = Mu(𝜃t, 𝜆t) + 𝜀ut. (9)

However, in most situations the regressors 𝜆t and 𝜃t are unknown. We will estimate them by proposing some parametric
models that, according to Assumption 3(iii), must be well specified. Consequently, our objective is the estimation of
nonparametric conditional mean functions of generated regressors:

Ylt = Ml(𝜃t, 𝜆t) + vlt, (10)

Yut = Mu(𝜃t, 𝜆t) + vut. (11)

To estimate 𝜃t ≡ (𝜇t, 𝜎
2
t ), we work with a point-valued time series. If we are modeling returns, we can follow the standard

practice of choosing the series of returns calculated at the end of each time period. Alternatively, we could also choose the
series of the centers of the intervals as a realized sample path of the underlying process {Yt} and specify the dynamics of
the conditional mean of the centers. The specification of the dynamics of the variance could be based on the time series
of ranges of the intervals. Similarly, we work with the realized sample path {nt}, specify and estimate the dynamics of the
conditional intensity 𝜆t = E(Nt|t−1).

It is possible to avoid these generated regressors by directly inserting into the nonparametric functions those observed
regressors in the information set t−1 that drive the conditional moments 𝜇t, 𝜎

2
t and 𝜆t. The drawback of this approach

is that the number of regressors could be very large, so we face the curse of dimensionality of nonparametric models.
The generated regressor approach offers a more parsimonious model, though we need to take into account the extra
uncertainty generated by the estimation of the regressors.

There are two important differences with the approach in Lin and González-Rivera (2016). There, the estimation
methodology is maximum likelihood and the log-likelihood function is based on the joint density of the lowest and the
highest rank-order statistics of the random sample t ≡ {𝑦it ∶ i = 1, … ,Nt}. Although we assume conditional normality
for the underlying process {Yt}, a QML estimator may not exist because, as we discussed there, the joint density of the
ordinal statistics does not belong to the quadratic exponential family and the consistency of the QML estimator cannot
be guaranteed. The approach that we propose here is robust to distributional assumptions:

(i) With the realized sample paths of point-valued time series—that is, {yt} and {nt}, associated with the underlying
stochastic processes {Yt} and {Nt}—we estimate consistently the conditional moments (𝜃t, 𝜆t).

(ii) With the maxima and minima of the interval-valued time series ({ylt}, {yut}) and the parametrically generated
covariates (𝜃t, 𝜆t), we estimate nonparametrically the two conditional mean functions (Equations (10) and (11)).

The second difference is related to the feasibility of the order statistics approach when the number of draws Nt is very
large. A quick look at the log-likelihood function based on the joint density of the ordinal statistics reveals that, for a large
number of trades, the function will explode, and the optimization exercise will not have a solution. Hence the extreme
value approach proposed here is general enough to provide both time feasibility and robustness.

Under Assumption 3(iii) and within a QMLE framework, the first-step estimators (𝜃t, 𝜆t) enjoy standard asymptotic
properties. Now, we focus on the asymptotics of the second-step nonparametric estimator. In this respect, we follow
Conrad and Mammen (2008), who estimate a semiparametric GARCH-in-mean model in which the dynamics of the con-
ditional variance are parametrically specified, and the dependence of the return on its conditional variance is estimated by
nonparametric kernel smoothing methods. Our two-step estimator is similar to their iterated estimator but much simpler.
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First, the latent regressors in our model are generated parametrically, while their first-step estimators have both para-
metric and nonparametric components. Second, because the conditional variance enters the nonparametric conditional
mean function and depends on past error terms, the estimator in Conrad and Mammen needs an iterative estimation
procedure. In contrast, our first-step estimates are obtained from parametric models based on realized sample paths of
the underlying process. Hence an iterative estimation procedure is not needed for our two-step estimator. The only diffi-
culty is that our nonparametric conditional mean functions involve multiple generated covariates as opposed to a single
covariate in Conrad and Mammen. Therefore, we need an adaptation of their theorems to show that the oracle property
of a kernel-based nonparametric estimator also applies to our two-step estimator.

Before stating Theorem 1, we first introduce some terms to simplify notation. Let ht ≡ ht(𝜓0) = (𝜃t(𝜓0), 𝜆t(𝜓0)) be
the finite q-dimensional random process of true moments and ĥt ≡ ht(�̂�) be their estimates obtained in the first-step
estimation. Let 𝜎2

𝑗
(x) = E(𝜀2

𝑗t|ht = x) be the conditional variance of the error terms 𝜀jt (j = l and u) in Equations (8) and
9, fh(x) the q-dimensional unconditional PDF of ht, and I the codomain of ht = (𝜃t, 𝜆t).

Theorem 1 (Asymptotic properties of the two-step local linear estimator). For j = l and u, assume that Mj(x), fh(x)
and 𝜎2

𝑗
(x) are twice differentiable and that the codomain of ht, denoted by I, is compact. K(v) =

∏q
𝓁=1 k(v𝓁) is a bounded

second-order kernel, 𝜅r,s = ∫ k(v)rvsdv for nonnegative integers r and s, the vector b = (b1, … , bq) are the bandwidths
for the q variables in ht with Tb1 … bq → ∞. Given Assumptions 1–3 and the regularity conditions stated in Supporting
Information Section S.1, we have

(i) (Asymptotic equivalence) For j = l and u, the two-step local linear estimators MLL
𝑗
(x) and ∇MLL

𝑗
(x) with generated

covariates ĥt is asymptotic equivalent to the infeasible estimators M∗LL
𝑗

(x) and ∇M∗LL
𝑗

(x) in the sense that

sup
x∈I

|||||
(

MLL
𝑗
(x)

Db∇MLL
𝑗
(x)

)
−
(

M∗LL
𝑗

(x)
Db∇M∗LL

𝑗
(x)

)||||| = op(T(𝜂+−1)∕2 + T−2𝜂
+ ),

where Db is a q×q diagonal matrix with the sth diagonal element given by bs, 𝜂+ =
∑q

𝓁=1 𝜂𝓁 , T−2𝜂
+ =

∑q
𝓁=1 T−2𝜂𝓁 , and

the two terms T(𝜂+−1)∕2 and T−2𝜂
+ are the orders of the leading variance and bias terms for the infeasible estimator

M∗LL
𝑗

(x) respectively.
(ii) (Asymptotic normality) For j = l and u, we further assume that E(Y 2+𝜈

𝑗t ) < ∞ for some 𝜈 > 0. Then the limiting
distribution of the feasible two-step local linear estimator is the same as that of the infeasible estimator; that is,

D(T)
⎡⎢⎢⎣
(

MLL
𝑗
(x)

∇MLL
𝑗
(x)

)
−
(

M𝑗(x)
∇M𝑗(x)

)
−
⎛⎜⎜⎝

𝜅1,2

2

q∑
𝓁=1

b2
𝓁M(2)

𝑗
(x)

0

⎞⎟⎟⎠
⎤⎥⎥⎦

d
−→N (0,Σ) ,

where

D(T) =
(√

Tb1 … bq 0
0

√
Tb1 … bqDb

)
, Σ =

⎛⎜⎜⎝
𝜅

q
2,0𝜎

2
𝑗
(x)

𝑓h(x)
0

0
𝜅

q−1
2,0 𝜅2,2𝜎

2
𝑗
(x)

𝜅1,2𝑓h(x)
Iq

⎞⎟⎟⎠ ,
and Iq is an identity matrix of dimension q.

We provide a proof of Theorem 1 in Supporting Information Section S.2. Essentially, the regularity conditions require
that (a) the process from which the true moments ht will be estimated be stationary and 𝛽-mixing; (b) the estimates ĥt

converge to their true values at the
√

T-rate, which is fast enough; (c) the dynamic specifications in Assumption 3(iii)
can be well approximated by linear functions of parameters 𝜓 in a neighborhood of their true values 𝜓0; (d) the error
terms 𝜀lt and 𝜀ut have conditional subexponential tails; and (e) some other regularity conditions on the kernel functions
controlling the bias terms of the local linear smoothing.

4 EXTREME RETURNS AND INTENSITY OF TRADING

We model the interval-valued time series of the low/high returns to seven stocks in the US financial and technology
sectors. The financial stocks correspond to three banks: Wells Fargo Corporation (WFC), Bank of America (BAC), and JP
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Morgan Chase (JPM), which are traded in the New York Stock Exchange. The technology stocks correspond to the four
tech giants Apple (AAPL), Amazon (AMZN), Google (GOOG), and Intel (INTC), which are traded in the Nasdaq Stock
Market. All these stocks are very liquid as their trading volumes are very high. We analyze the time series at the 5-minute
and 1-minute frequencies from June 1 to June 30, 2017, for a total of 22 trading days. The data are retrieved from the NYSE
Trade and Quote (TAQ) database that provide all trades and quotes occurring on the trading days of June 2017 for all
those stocks. We record the stock price of every trade and split the trading day into 5-minute and 1-minute periods so that
for each stock we have two time series to model. We compute the log-returns with respect to the last price of the previous
period and report the returns in basis points (1 basis point is defined as 1 per ten thousand that is, 1 basis point = 1‱):

𝑦ut ≡ log(Phigh,t∕Pclose,t−1) × 10, 000‱ (the highest return),
𝑦lt ≡ log(Plow,t∕Pclose,t−1) × 10, 000‱ (the lowest return),
𝑦ct ≡ log(Pclose,t∕Pclose,t−1) × 10, 000‱ (close-to-close return),

where Phigh,t and Plow,t are the highest and lowest price in the period t, and Pclose,t−1 is the last price in the previous period
(t − 1). Given the interval-valued return [ylt, yut], the center ct and range rt are defined as

ct ≡ 𝑦lt + 𝑦lt

2
= log(

√
Phigh,tPlow,t∕Pclose,t−1) × 10, 000‱,

rt ≡ 𝑦ut − 𝑦lt = log(Phigh,t∕Plow,t) × 10, 000‱.

The total number of observations is 1,716 (22 days × 78 observations per day) at the 5-minute frequency, and 8,580 (22
days × 390 observations per day) at the 1-minute frequency.

The complexity of the estimation generates a sheer number of models and, due to space constraints, we will only report
a subset of results.3 We showcase our modeling strategy for one bank stock (BAC) and for one technology stock (AMZN)
and provide additional online Supporting Information on the description and estimation results of the five remaining
stocks.

Prior to the analysis, we analyze the outliers in the samples. We implement a modified version of Tukey's fences (Tukey,
1977) for identification and removal of outliers that is more conservative than that provided by Brownless and Gallo
(2006) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009). The detailed procedure is explained in Supporting
Information Section S.3.

In Table 1, we start by reporting descriptive statistics for BAC and AMZN lowest and highest returns as well as the
close-to-close returns and the time series of the number of trades, at both 5-minute and 1-minute frequencies. We also
report the characteristics of the time series of the center and range of the low/high interval of returns. These series are
also plotted in Figure S2.

As expected, the highest returns are positively skewed and the lowest returns negatively skewed, both with large kurto-
sis. There is a mild positive correlation or no correlation between the highest and the lowest returns, and a mild negative
correlation between the center and range series. The number of trades series exhibit overdispersion with a variance much
larger than the mean, favoring a negative binomial distribution. The 1-minute time series are much less volatile than the
5-minute series, which is expected. On average, the number of trades at the 5-minute frequency is about five times the
number of trades at the 1-minute frequency. For BAC, the close-to-close returns and the center series are very similar,
and they seem to be symmetric around a median (or mean) of zero with no much skewness and mild kurtosis. The range
series is positively skewed with large kurtosis. These features hold at both frequencies and are also present in the JPM and
WFC series (see Supporting Information Tables S3 and S4). For AMZN, we observe similar features to those in BAC but
more pronounced; there is more volatility, more skewness, and more kurtosis in the AMZN and other tech return series
than those in the banking time series. A distinctive feature for AMZN and the rest of the technology stock returns is that
the lowest returns tend to be more volatile and more skewed than the highest returns. Even after removing outliers, the
lowest returns tend to be much larger in magnitude than the highest returns (see Supporting Information Tables S5, S6,
and S7).

3The first-step estimation involves searching for the best models for the conditional mean and the conditional variance of the latent process, and for
the conditional intensity of the number of trades. With seven stocks and two frequencies, we end up with 42 final models (7× 2× 3). In the second-step
estimation, we search for the best nonparametric specification for low and high returns. We entertain six nonparametric models and two linear models.
With seven stocks and two frequencies, we end up with 112 final models (7 × 2 × 8).
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4.1 Conditional moments of the latent process
We proceed to model the conditional moments of the underlying latent process Yt. We implement two different approaches
to model the dynamics of Yt. First, we consider the center and range of the low/high intervals as good proxies for the
location and scale of the conditional PDF of Yt. We will call this approach the “interval value approach for Yt." Second, we
simply use the close-to-close returns series {yct} as a realized sample path of the underlying latent processes Yt and model
its conditional moments. We will call this approach the “point value approach for Yt.” Owing to space constraints, we
report the estimation results for the interval value approach here and those for the point value approach in the Supporting
Information (see Section S.4).

We model the dynamics of the center and range series separately. In all our specification searches, we select the best
model—that is, optimal number of lags—by minimizing the Akaike information criterion (AIC). This criterion is rather
conservative as it tends to choose models with a large number of lags. In our modeling strategy, we prefer to be conservative
in the first-step estimation to guard against potential misspecification. As we have described in the previous sections,
the estimated conditional moments of the latent process are inputs into the final nonparametric models of the low/high
returns and they need to be correctly specified for the results of Theorem 1 to go through. Thus we prefer less parsimonious
models, even at the cost of carrying some noise into the second-step estimation. In addition, each specification needs to
pass standard diagnosis tests; that is, the residuals must be white noise and the pseudo Pearson residuals must have zero
mean and unit standard deviation.

For the center series {ct}, we fit simple autoregressive moving average (ARMA) models. The preferred specifications
for the center series of BAC are ARMA(3, 1) (5-minute frequency) and MA(2) (1-minute frequency). For AMZN, AR(1)
(5-minute frequency) and ARMA(1, 2) (1-minute frequency). In the top panel of Table 2, we report the estimations results
of the ARMA models for the center series of BAC and AMZN at 5-minute frequency (see Supporting Information Table
S9 for results at the 1-minute frequency). In Figure 1 and Supporting Information Figure S3, we plot the fitted time series
versus the actual series at the 5-minute and 1-minute frequency respectively.

As expected, the time dependence in the conditional mean is very weak in both stocks and it only reflects some
microstructure noise. In the case of BAC, the mean is zero and in the case of AMZN the mean is negative. In comparison
with the actual values of the center time series, the conditional means are practically zero. This is evident in the time series
plots of the center series in Figure 1. We will call ĉt the fitted value for the center that proxies the estimated conditional
mean of the latent process.

For the range series {rt}, we specify a conditional autoregressive range model with Burr distribution (CARR-Burr). Since
the original range series {rt} exhibit strong diurnal patterns, we first remove the intraday seasonality for each weekday
separately by cubic B-spline smoothing; that is,

r∗t(d) =
rt(d)

𝑓d(it(d))
, 𝑓d(it(d)) = exp

(
b0 +

Ld∑
𝑗d=1

b𝑗d B𝑗d (it(d))

)
, (12)

where {B𝑗d (·) ∶ 𝑗d = 1, … ,Ld} are B-spline basis functions, t(d) selects those observations on weekday d ∈ {Monday,
Tuesday, Wednesday, Thursday, Friday}, and it(d) is the fraction of time in the trading day for the tth observation, such that

it(d) =
{

1, if t(d)mod D = 0
t(d)∕D − ⌊t(d)∕D⌋ , otherwise,

where D is the total number of observations in each day. We have D = 78 for the series in 5-minute frequency and
D = 390 for the series in 1-minute frequency. After taking natural logarithm on both sides of Equation (12), we obtain
the coefficient estimates b̂𝑗 and 𝑓d(it(d)) by ordinary least squares and the number of splines Ld is selected by general-
ized cross-validation (reported in Supporting Information Table S8); and the estimated intraday seasonality for each time
period t is 𝑓 (t) = 𝑓d(it(d)) if the time period t is in weekday d.

1130



LIN AND GONZALEZ-RIVERA

BAC AMZN
Coeff. SE Coeff. SE

Center series: ARMA models
Intercept -0.9051 (0.2248)
AR(1) -0.6943 (0.2164) 0.0579 (0.0241)
AR(2) 0.0098 (0.0299)
AR(3) 0.0106 (0.0252)
MA(1) 0.7194 (0.2150)
𝜎2 69.84 77.1
Log-like. −6,076.12 −6,161.97
AIC 12,162.24 12,329.93

Range series: CARR modelsa

𝜔 0.1918 (0.0499) 0.0567 (0.0157)
𝛼1 0.1615 (0.0219) 0.2650 (0.0228)
𝛼2 0.2486 (0.0384) 0.1337 (0.0322)
𝛼3 0.1512 (0.0251) -0.1163 (0.0304)
𝛼4 0.1705 (0.0365)
𝛼5 0.1776 (0.0207)
𝛼6 -0.0592 (0.0308)
𝛽1 -1.1157 (0.1684) 0.0085 (0.0509)
𝛽2 0.2269 (0.1411) 0.8488 (0.0293)
𝛽3 0.9194 (0.1005) -0.8550 (0.0655)
𝛽4 0.2320 (0.1418) -0.3783 (0.0254)
𝛽5 0.7572 (0.0401)
𝜅 3.7189 (0.1295) 5.6709 (0.2478)
𝜎2 0.4743 (0.0643) 1.3530 (0.1251)
Log-like. −833.01 −635.71
AIC 1,686.02 1,299.41

Statistic p-value Statistic p-value
Ljung–Box test on standardized residualsb

Q(50) 38.0931 0.8912 41.4138 0.8011
Q(100) 89.5671 0.7635 78.8183 0.9419
Q(200) 151.2688 0.9958 170.3999 0.9365

aIf the two null hypotheses for distributional parameters 𝜅 = 1
and 𝜎2 = 0 are true, the Burr distribution reduces to the expo-
nential distribution. bFor the pseudo-Pearson residuals, the mean
and standard deviation are 0.001 and 0.9835 for BAC respectively,
and −0.0090 and 0.9322 for AMZN respectively.

TABLE 2 Models for center and range series of low/high return interval for
BAC and AMZN at 5-minute frequency

Then, we specify the conditional autoregressive range model with Burr distribution, CARR(p, s)-Burr, for the adjusted
range r∗t :

r∗t = 𝜓t𝜀t,

𝜓t = 𝜔 +
p∑

i=1
𝛼ir∗t−i +

s∑
𝑗=1

𝛽𝑗𝜓t−𝑗 ,

𝜀t|t−1 ∼ gBurr(·; 𝜃),

where 𝜓 t is the conditional mean of the adjusted range based on the information set available at time t. The normalized
adjusted range 𝜀t = r∗t ∕𝜓t is assumed to be standardized Burr distributed with density function gBurr(·; 𝜃) with unit mean
and shape parameters 𝜃 ≡ (𝜅, 𝜎2). We impose the restriction

∑r
i=1 𝛼i +

∑s
𝑗=1 𝛽𝑗 < 1 to ensure that the series r∗t is stationary.

As with the center series, the optimal lags p and s in CARR(p, s)-Burr are selected by AIC and the adequacy of the models is
assessed with standard diagnostics. The selected model for the range series of BAC is CARR(3, 4) (5-minute frequency) and
CARR(5, 6) (1-minute frequency). For AMZN, CARR(6, 5) (5-minute frequency) and CARR(9, 10) (1-minute frequency).

We denote r̂∗t as the fitted range with diurnal pattern adjustment and r̂t = r̂∗t 𝑓 (it) the fitted range for the original range.
In the bottom panel of Table 2, we report the estimation results of the CARR-Burr models for the range series of BAC and
AMZN at 5-minute frequency (see Supporting Information Table S8 for results at the 1-minute frequency). Both series
have large persistence: For BAC the persistence is about 0.82 (obtained by

∑
𝛼i +

∑
𝛽𝑗), while that of AMZN is 0.95.
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FIGURE 1 First-step estimation for BAC and AMZN at 5-minute frequency: (a) BAC: center and ARMA fit; (c) BAC: range and
CARR-Burr fit; (c) BAC: # of trades and ACI-NB fit; (d) AMZN: center and ARMA fit; (e) AMZN: range and CARR-Burr fit; (f) AMZN: # of
trades and ACI-NB fit [Colour figure can be viewed at wileyonlinelibrary.com]

The shape parameters 𝜅 and 𝜎2 are significantly different from 1 and 0 respectively for both stocks, so that the empirical
conditional standardized probability density is far from exponential. Standard diagnostic tests indicate that the fitting is
adequate. The standardized residuals have zero mean and unit standard deviation. The Q-statistics of the standardized
residuals show no residual dependence left in the data. We plot the fitted range series in Figure 1. For the remaining five
stocks, the preferred specifications for the center and range series are in Supporting Information Table S11.

4.2 Conditional trading intensity
We specify autoregressive dynamics in the conditional trading intensity to account for the temporal dependence in the
number of trades series {nt}. As in the range series {rt}, the number of trades series exhibits a clear diurnal pattern. We
remove the intraday seasonality for each weekday separately by spline smoothing on the original series; that is,

n∗
t = nt∕𝑓d(it(d)), (13)

where the intraday seasonality fd(it(d)) is defined and obtained as in the case of the range series explained in Section 4.1.
Then, for the adjusted numbers of trades n∗

t , we specify the model

𝜓t = 𝜔 +
p∑

i=1
𝛼in∗

t−i +
s∑

𝑗=1
𝛽𝑗𝜓t−𝑗 . (14)

Combining Equations (13) and (14), we propose the autoregressive conditional intensity (ACI) model:

𝜆t = 𝑓 (it)𝜓t and nt ∼ gNB(·; 𝜆t, d), (15)
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TABLE 3 Models for series of the number of trades for BAC and AMZN at 5-minute frequency

BAC AMZN
Coeff. SE Coeff. SE Coeff. SE Coeff. SE

Series of number of trades: autoregressive conditional intensity models
𝛼1 0.30 (0.03) 𝛽1 -0.06 (0.01) 𝛼1 0.50 (0.02) 𝛽1 -1.52 (0.04)
𝛼2 0.13 (0.01) 𝛽2 0.04 (0.01) 𝛼2 0.84 (0.05) 𝛽2 -1.30 (0.02)
𝛼3 0.12 (0.01) 𝛽3 -0.20 (0.01) 𝛼3 0.88 (0.04) 𝛽3 -1.16 (0.02)
𝛼4 0.12 (0.01) 𝛽4 -0.02 (0.01) 𝛼4 0.92 (0.03) 𝛽4 -0.93 (0.02)
𝛼5 0.11 (0.01) 𝛽5 -0.15 (0.01) 𝛼5 0.80 (0.02) 𝛽5 -0.10 (0.01)
𝛼6 0.11 (0.01) 𝛽6 -0.04 (0.01) 𝛼6 0.40 (0.02) 𝛽6 0.10 (0.03)
𝛼7 0.11 (0.01) 𝛽7 -0.30 (0.00) 𝛼7 0.17 (0.03) 𝛽7 0.70 (0.01)
𝛼8 0.15 (0.01) 𝛽8 -0.06 (0.01) 𝛼8 -0.16 (0.04) 𝛽8 0.95 (0.03)
𝛼9 0.10 (0.01) 𝛽9 -0.31 (0.01) 𝛼9 -0.30 (0.05) 𝛽9 0.30 (0.02)
𝛼10 0.22 (0.01) 𝛽10 -0.66 (0.01) 𝛼10 -0.13 (0.04) 𝛽10 -0.15 (0.01)
𝛼11 0.25 (0.01) 𝛽11 0.56 (0.01)
𝛼12 -0.02 (0.03) 𝛽12 0.15 (0.01)

𝛽13 0.10 (0.01)
𝜔 0.07 (0.00) 1∕d 0.07 (0.00) 𝜔 0.16 (0.01) 1∕d 0.08 (0.00)

Log-lik. −12,762.11 −11,364.11
AIC 25,578.22 22,772.22

Statistic p-value Statistic p-value
Ljung–Box test on standardized residualsa

Q(50) 38.0931 0.8912 41.4138 0.8011
Q(100) 89.5671 0.7635 78.8183 0.9419
Q(200) 151.2688 0.9958 170.3999 0.9365

aFor the pseudo-Pearson residuals, the mean and standard deviation are 0.0054 and 1.0433 for BAC respectively, and 0.0017
and 1.1379 for AMZN respectively.

where 𝜆t is the conditional trading intensity based on the information set available at time t. The number of trades Nt is
assumed to be negative binomial distributed with density function gNB(·; 𝜆t, d) with mean 𝜆t and dispersion parameter
d. We restrict

∑p
i=1 𝛼i +

∑s
𝑗=1 𝛽𝑗 < 1 to ensure that the series {nt} is stationary. We select the optimal number of lags p

and s by AIC and test the specification of the model with standard diagnostic statistics. The estimated conditional trading
intensity is denoted by 𝜆t.

For the BAC series, the preferred models are ACI(12, 13) (5-minute frequency) and ACI(12, 12) (1-minute frequency).
For the AMZN series, they are ACI(10, 10) (5-minute and 1-minute frequencies). We report the estimation results of
the ACI models for the number of trades series of BAC and AMZN at 5-minute frequency in Table 3 (see Supporting
Information Table S10 for the results at the 1-minute frequency) and we plot the estimated conditional intensity against
the actual number of trades in Figure 1. Both series have a strong persistence, being 0.75 for BAC and 0.81 for AMZN. The
pseudo-Pearson residuals have mean zero and variance one and their Q-statistics do not show any dependence, indicating
that these specifications are adequate. For the remaining five stocks, the preferred specifications for the number of trades
series are displayed in Supporting Information Table S11.

4.3 Nonparametric conditional mean for lower and upper bounds
From the modeling of the latent process Yt, we gather the estimated regressors—that is, conditional mean, range, and
intensity—that will be fed into a nonparametric regression to obtain the conditional means of the lower and upper
bounds—that is, ylt and yut—of the return interval. We propose and evaluate the following nonparametric regressions.

The first model has as regressors the estimated conditional centers ĉt (ARMA models), conditional mean ranges r̂t
(CARR-Burr models), and conditional intensity 𝜆t (ACI-NB models). It is the most general and parsimonious model:

Model 1: 𝑦𝑗t = M𝑗 (̂ct, r̂t, 𝜆t) + v𝑗t, for 𝑗 = l,u.

If the models for centers, ranges, and intensity have short dynamics, we could avoid the first estimation step and directly
include original regressors such as ct−1, rt−1, nt−1, etc. in the nonparametric regressions. The drawback of this approach
is that, if the number of lags is very large, we run into the curse of dimensionality. With the current data, we experiment
with the following model:
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a. Model 2: yjt = Mj(ct−1, rt−1,nt−1) + vjt, forj = l,u.

The next model considers regressors when the modeling of Yt follows the “point value approach.” We estimate the
conditional standard deviation 𝜎t (GARCH-GED models) (see Supporting Information Tables S1 and S2) in addition to
the conditional intensity 𝜆t (ACI models), 𝜆t; that is,

Model 3: 𝑦𝑗t = M𝑗(𝜎t, 𝜆t) + v𝑗t, for 𝑗 = l,u.

We propose the next two nonparametric models to assess the importance of the intensity of trading in the modeling of
the conditional mean of the upper and lower bounds:

Model 4: 𝑦𝑗t = M𝑗 (̂ct, r̂t) + v𝑗t, for 𝑗 = l,u.
Model 5: yjt = Mj(ct−1, rt−1) + vjt, for j = l,u.

Finally, we also propose Model 6 to assess whether the conditional trading intensity 𝜆t could be sufficient to predict the
expected lower and upper bounds without information about the latent process Yt:

Model 6: 𝑦𝑗t = M𝑗(𝜆t) + v𝑗t, for 𝑗 = l,u.

4.4 In-sample model evaluation
We evaluate the performance of the proposed models by comparing several measures of fit for interval-valued data. In
addition to the six specifications of the previous section, we include two additional models proposed in González-Rivera
and Lin (2013), which are constrained VAR-type specifications satisfying the inequality ylt ≤ yut for all t. These are
interval autoregressive two-step (IAR-TS) and interval autoregressive modified two-step (IAR-MTS). These models have
been proven to be superior to the existing interval-valued regression approaches (see ; González-Rivera & Lin, 2013; Lin
& González-Rivera, 2016).

For a sample of size T, let [𝑦lt, 𝑦ut] be the fitted values of the corresponding interval yt = [ylt, yut] provided by each model.
We consider the following criteria:

(i) Mean squared error (MSE) for upper and lower bounds separately:

MSElower =
T∑

t=1
(𝑦lt − 𝑦lt)2∕T MSEupper =

T∑
t=1

(𝑦ut − 𝑦ut)2∕T.

(ii) Multivariate loss functions (MLF) for the vector of lower and upper bounds (Komunjer & Owyang, 2012): Lp(𝛕, e) ≡(||e||p + 𝛕′e
) ||e||p−1

p where || · ||p is the lp-norm, 𝝉 is a two-dimensional parameter vector that determines the asym-
metry of the loss function (if 𝝉 = 0, the bivariate loss is symmetric), and e = (el, eu) is the bivariate residual interval
(𝑦lt − 𝑦lt, 𝑦ut − 𝑦ut). We consider two norms, p = 1 and p = 2, and their corresponding 𝝉 parameter vectors within
the unit balls ∞ ≡ {(𝜏1, 𝜏2) ∈ R2 ∶ |𝜏1| ≤ 1and|𝜏2| ≤ 1} and 2 ≡ {(𝜏1, 𝜏2) ∈ R2 ∶ 𝜏2

1 + 𝜏2
2 ≤ 1}, respectively.

The MLF are then defined by their sample averages:

MLF1 =
T∑

t=1
L1(𝛕∗t , et)∕T, MLF2 =

T∑
t=1

L2(𝛕∗t , et)∕T,

where 𝛕∗t is the optimal vector that defines the asymmetry of the loss.
(iii) Mean distance error (MDE) between the fitted and actual intervals (Arroyo, González-Rivera, & Maté, 2011).

Let Dq(𝑦t, 𝑦t) be a distance measure of order q between the fitted and the actual intervals; the mean distance error
is defined as MDEq({𝑦t}, {𝑦t}) =

∑T
t=1 Dq

q(𝑦t, 𝑦t)∕T. We consider q = 1 and q = 2, with a distance measure such as

D1(𝑦t, 𝑦t) =
1
2
(|𝑦lt − 𝑦lt| + |𝑦ut − 𝑦ut|),

D2(𝑦t, 𝑦t) =
1√
2
[(𝑦lt − 𝑦lt)2 + (𝑦ut − 𝑦ut)2]1∕2.

Note that MDE1 and MDE2 are equal to a half of MLF1 and MLF2 respectively if 𝝉 = 0.
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TABLE 4 In-sample model evaluation for 5-minute and 1-minute low/high stock returns

MSE MLF MDE MSE MLF MDE
Models Lower Upper p = 1 p = 2 q = 1 q = 2 Lower Upper p = 1 p = 2 q = 1 q = 2

Bank of America Corp (BAC) at 5-minute frequency Bank of America Corp (BAC) at 1-minute frequency
IAR-TS 96.18 94.08 26.76 379.46 6.69 95.13 21.58 21.12 13.02 85.14 3.25 21.35
IAR-MTS 96.18 95.02 26.78 381.35 6.70 95.60 21.58 21.12 13.02 85.14 3.25 21.35
Model 1 83.81 82.71 25.98 332.05 6.50 83.26 20.51 20.15 12.83 81.07 3.21 20.33
Model 2 92.54 81.87 26.55 347.79 6.64 87.20 22.05 21.82 13.27 87.46 3.32 21.93
Model 3 88.12 87.05 26.41 349.18 6.60 87.58 21.90 21.15 13.11 85.84 3.28 21.52
Model 4 88.28 82.87 26.23 341.27 6.56 85.57 20.77 20.22 12.88 81.73 3.22 20.49
Model 5 98.43 94.86 27.20 385.46 6.80 96.64 22.39 22.21 13.29 88.93 3.32 22.30
Model 6 95.42 93.94 27.29 377.47 6.82 94.68 22.70 21.92 13.37 88.97 3.34 22.31

Amazon.com Inc. (AMZN) at 5-minute frequency Amazon.com Inc. (AMZN) at 1-minute frequency
IAR-TS 184.92 76.98 25.07 522.27 6.27 130.95 40.26 19.23 11.83 118.52 2.96 29.74
IAR-MTS 198.55 81.30 26.08 558.12 6.52 139.92 41.20 19.43 12.00 120.80 3.00 30.32
Model 1 170.80 75.10 24.40 490.21 6.10 122.95 39.82 19.32 11.70 117.84 2.92 29.57
Model 2 161.33 75.97 24.44 473.19 6.11 118.65 40.66 20.55 11.97 121.97 2.99 30.61
Model 3 174.58 70.48 24.42 488.48 6.11 122.53 41.37 19.44 11.83 121.16 2.96 30.40
Model 4 166.60 75.63 24.27 482.97 6.07 121.11 39.75 19.56 11.70 118.19 2.92 29.66
Model 5 187.08 75.05 25.12 522.67 6.28 131.06 42.47 20.76 12.07 125.99 3.02 31.62
Model 6 171.42 82.16 25.30 505.63 6.32 126.79 42.16 22.12 12.46 128.12 3.12 32.14

Note. Numbers in boldface correspond to the two lowest values for each loss function.

In Table 4 we report the in-sample evaluation of the linear and nonparametric models for BAC and AMZN stock returns
at both 5-minute and 1-minute frequencies. The Supporting Information contains similar tables (S12–S16) with the eval-
uation results for the remaining five stocks. The first finding is that the nonparametric regressions are superior to the
IAR-TS and IAR-MTS specifications as they deliver, in most cases, the smallest losses across loss functions and for both
BAC and AMZN stocks at both 5-minute and 1-minute frequencies. Within the six nonparametric models, the preferred
specification is Model 1 across loss functions and for the two stocks. Model 4 is a competitor to Model 1, indicating that
in some cases omitting trading intensity may not be very detrimental to the performance of the model. It is interesting to
observe that trading intensity alone (Model 6) is far from being an optimal specification: It is the interaction of the three
regressors that are most helpful to estimate the conditional means of the extreme bounds of the interval. For most cases,
Model 3, with regressors estimated by the “point value approach,” is dominated by Model 1, whose regressors depend on
the features of the interval—that is, centers and range.

In Table 5 we report Diebold–Mariano tests to formally test the superiority of Model 1 versus the parametric linear
model and the remaining five nonparametric models for BAC and AMZN at both 5-minute and 1-minute frequencies.
Similar tables (S17–S21) for the remaining five stocks are in the Supporting Information. For BAC at both frequencies,
there is overwhelming evidence that Model 1 is superior across loss functions; all p-values but a few are practically zero,
so that we reject the null hypothesis of equally predictive accuracy (in-sample). For AMZN, the evidence is mixed. At
the 5-minute frequency, the nonparametric Models 1, 2, 3 and 4 seem to be equivalent. Model 1 is marginally superior to
the linear IAR-TS but superior to Models 5 and 6. At the 1-minute frequency, Model 1 seems equivalent to Model 4 but
superior to Models 2, 3, 5, and 6. The evidence with respect to the linear model IAR-TS is mixed and depends on the loss
function. When the norm of the loss function is p = 1, Model 1 is superior to the linear specification. For the remaining
five stocks, we find similar patterns. For the banking stocks, Model 1 outperforms other parametric and nonparametric
models in most cases at both frequencies. For the technology stocks, at the 5-minute frequency, Model 1 is still one of the
preferred specifications, but at the 1-minute frequency the linear specification is a contender to Model 1 for GOOG and
AAPL stocks.

Overall, Model 1 is a superior specification for the banking stocks at both frequencies and for the technology stocks
at the 5-minute frequency; these results confirm that the joint inclusion of the three regressors—that is, center, range,
and intensity—are needed to produce the best fit for the bounds of the interval. For the technology stocks at the
1-minute frequency, we observe that the linear specification and Model 1 seem to be equivalent under quadratic loss
functions.
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TABLE 5 In-sample Diebold–Mariano tests of Model 1 versus other models for BAC and AMZN

BAC AMZN
5-minute freq. 1-minute freq. 5-minute freq. 1-minute freq.

Stat. p-value Stat. p-value Stat. p-value Stat. p-value

M. 1 vs.IAR-TS MSE: lower -3.4963 0.0002 -4.9617 0.0000 -1.4462 0.0741 -0.2056 0.4186
MSE: upper -2.8823 0.0020 -3.9187 0.0000 -0.7816 0.2172 0.1141 0.5454
MLF: p = 1 -6.5061 0.0000 -8.3670 0.0000 -3.4584 0.0003 -3.5049 0.0002
MLF: p = 2 -5.3019 0.0000 -7.2969 0.0000 -1.4653 0.0714 -0.1718 0.4318
MDE: q = 1 -6.5061 0.0000 -8.3670 0.0000 -3.4584 0.0003 -3.5049 0.0002
MDE: q = 2 -5.3108 0.0000 -7.2952 0.0000 -1.4609 0.0720 -0.1717 0.4318

M. 1 vs. M. 2 MSE: lower -4.4332 0.0000 -7.3835 0.0000 1.5531 0.9398 -2.5297 0.0057
MSE: upper 0.4590 0.6769 -7.6964 0.0000 -0.6909 0.2448 -4.2655 0.0000
MLF: p = 1 -4.4403 0.0000 -14.2372 0.0000 -0.3406 0.3667 -9.2217 0.0000
MLF: p = 2 -3.4633 0.0003 -13.0307 0.0000 1.2993 0.9031 -5.5705 0.0000
MDE: q = 1 -4.4403 0.0000 -14.2372 0.0000 -0.3406 0.3667 -9.2217 0.0000
MDE: q = 2 -3.4595 0.0003 -13.0180 0.0000 1.3069 0.9044 -5.5604 0.0000

M. 1 vs. M. 3 MSE: lower -2.1999 0.0139 -6.4415 0.0000 -1.7562 0.0395 -4.9706 0.0000
MSE: upper -2.2484 0.0123 -5.2470 0.0000 1.9103 0.9720 -0.4560 0.3242
MLF: p = 1 -3.3821 0.0004 -11.9744 0.0000 -0.1522 0.4395 -6.0294 0.0000
MLF: p = 2 -3.7366 0.0001 -9.1912 0.0000 0.2696 0.6063 -5.5925 0.0000
MDE: q = 1 -3.3821 0.0004 -11.9744 0.0000 -0.1522 0.4395 -6.0294 0.0000
MDE: q = 2 -3.7532 0.0001 -9.1821 0.0000 0.2616 0.6032 -5.6478 0.0000

M. 1 vs.M. 4 MSE: lower -3.1536 0.0008 -4.2970 0.0000 1.7115 0.9565 0.9341 0.8249
MSE: upper -0.7667 0.2216 -2.4898 0.0064 -1.8555 0.0318 -3.0974 0.0010
MLF: p = 1 -3.9140 0.0000 -6.1857 0.0000 1.5936 0.9445 0.2110 0.5836
MLF: p = 2 -3.2291 0.0006 -5.3529 0.0000 1.4953 0.9326 -1.8320 0.0335
MDE: q = 1 -3.9140 0.0000 -6.1857 0.0000 1.5936 0.9445 0.2110 0.5836
MDE: q = 2 -3.2414 0.0006 -5.3504 0.0000 1.5096 0.9344 -1.7748 0.0380

M. 1 vs. M. 5 MSE: lower -4.1230 0.0000 -7.5117 0.0000 -2.9851 0.0014 -4.9595 0.0000
MSE: upper -2.9955 0.0014 -7.4763 0.0000 -0.0318 0.4873 -3.9850 0.0000
MLF: p = 1 -8.8585 0.0000 -14.4863 0.0000 -4.8912 0.0000 -12.5930 0.0000
MLF: p = 2 -5.8580 0.0000 -12.7531 0.0000 -3.0183 0.0013 -7.3010 0.0000
MDE: q = 1 -8.8585 0.0000 -14.4863 0.0000 -4.8912 0.0000 -12.5930 0.0000
MDE: q = 2 -5.8684 0.0000 -12.7492 0.0000 -3.0141 0.0013 -7.2860 0.0000

M. 1 vs. M. 6 MSE: lower -4.6496 0.0000 -9.0240 0.0000 -0.1630 0.4353 -9.3610 0.0000
MSE: upper -4.4626 0.0000 -8.2320 0.0000 -4.5134 0.0000 -8.9482 0.0000
MLF: p = 1 -8.0005 0.0000 -16.7451 0.0000 -6.1236 0.0000 -21.4776 0.0000
MLF: p = 2 -7.3554 0.0000 -14.2630 0.0000 -2.2458 0.0124 -13.5271 0.0000
MDE: q = 1 -8.0005 0.0000 -16.7451 0.0000 -6.1236 0.0000 -21.4776 0.0000
MDE: q = 2 -7.3434 0.0000 -14.2588 0.0000 -2.2105 0.0135 -13.7240 0.0000

Note. The p-values are calculated under the alternative hypothesis Ha ∶ Lp(e) < Lc(e); that is, our proposed Model 1 has higher
predicative accuracy than the other competing models.

In Figures 2–5 we plot the estimated conditional surfaces of the lowest and highest returns for BAC and AMZN pro-
vided by the nonparametric Model 1. Similar figures (Figures S4–S13) for the remaining five stocks are in the Supporting
Information. We plot the expected ylt and yut as a function of r̂t and 𝜆t, keeping ĉt fixed at its sample median. The variable
r̂t is the conditional expected range and proxies the volatility of the underlying latent return process, and the variable 𝜆t
is the conditional expected trading intensity. The surfaces clearly indicate the nonlinear behavior of the function. The
direction of the arrows in the horizontal axis (volatility and intensity) and in the vertical axis (low and high returns)
indicates that the values go from low to high. In general, we find that the relationship of extreme returns with trad-
ing intensity and volatility goes in the expected direction. For both frequencies, the higher the volatility and the trading
intensity, the larger is the magnitude of the extreme returns; that is, the high return goes up and the low return goes
down (by examining the surfaces along the diagonals). The response of extreme returns to trading intensity depends on
the level of volatility. For low levels of volatility, extreme returns tend to be flat as trading activity intensifies but, when
the volatility is moderate to high, both extreme returns are very responsive to increasing trading intensity, and the low
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FIGURE 2 BAC: 5-minute low/high
returns versus intensity and volatility:
(a) 5-minute low return; (b) 5-minute
high return [Colour figure can be viewed
at wileyonlinelibrary.com]

FIGURE 3 BAC: 1-minute low/high
returns versus intensity and volatility:
(a) 1-minute low return; (b) 1-minute
high return [Colour figure can be viewed
at wileyonlinelibrary.com]

FIGURE 4 AMZN: 5-minute
low/high returns versus intensity and
volatility: (a) 5-minute low return; (b)
5-minute high return [Colour figure can
be viewed at wileyonlinelibrary.com]

returns more so. The profiles of the surfaces in both frequencies are very similar. The 5-minute extreme returns exhibit
a larger range than the 1-minute extreme returns and, as expected, the 1-minute surfaces are noisier than the 5-minute
surfaces.
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FIGURE 5 One-minute low/high
returns versus intensity and volatility:
(a) 1-minute low return; (b) 1-minute
high return [Colour figure can be viewed
at wileyonlinelibrary.com]

5 CONCLUSION

In contrast to existing regression-type models for interval-valued data, we have exploited the extreme nature of the lower
and upper bounds of intervals to propose a semiparametric model for interval-valued time series data that is rooted in
the limiting results provided by the extreme value theory. We have assumed that there are two stochastic processes that
generated the interval-valued data. The first process {Yt} is latent—for example, the process of financial returns—and
follows some unknown conditional density. The second process {Nt} is observable and consists of a collection of random
draws—for example, the process of number of trades. In this framework, the upper and lower bounds of the interval—for
example, the highest and the lowest returns at time t, are the realized extreme observations within the sample of random
draws at time t. We have shown that the conditional mean of extreme returns is a nonlinear function of the conditional
moments of the latent process and of the conditional intensity of the process for the number of draws. This specification
provides a natural context to test the relationship between extreme returns and intensity of trading. Asymmetric infor-
mation models of market microstructure claim that trading volume is a proxy for latent information on the value of a
financial asset. With interval-valued time series of 5-minute and 1-minute returns for seven stocks of banks and tech-
nology companies, we have found that indeed there is a nonlinear relationship between extreme returns and intensity of
trading, which is superior to linear specifications.

The proposed semiparametric model has advantages over the existing models. It is general enough to accommodate
linear specifications when these are granted, but the most important advantage is that the model is robust to misspecifi-
cation of the conditional density of the latent process. We have estimated the conditional mean of the extremes, which is
nonlinear on the conditional moments of the latent process, with nonparametric methods. In doing so, we have avoided
choosing a specific functional form of the conditional density, which, according to extreme value theory, is the driver of
the nonlinearity. However, the nonparametric function depends on regressors that are generated in a first step. We have
shown that the effect of the first-step parameter uncertainty into the second-step nonparametric estimator is asymptoti-
cally negligible, and therefore our two-step estimator has a typical nonparametric convergence rate and it is asymptotically
normal.
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APPENDIX A: RELAXING THE I.I.D. ASSUMPTION OF THE RANDOM DRAWS {Nt}

According to extreme value theory for stationary process, the i.i.d. assumption of the random draws within each sampling
time interval can be substantially relaxed to strict stationarity with certain regularity conditions, which allows the yit
sequence in t to be weakly dependent without gravely affecting our model specifications. For notational simplicity, we
drop the time subscript t. Let {Yi} be a strictly stationary process, where the subscript i = 1, 2, … ,N denotes the time
order of total N transactions happening during each time period. Let MN = max{Y1, … ,YN} be its sample maximum.
Define {Ỹi} as the i.i.d. process associated with {Yi} if the two processes share a common marginal distribution function
F(𝑦) = P(Y ≤ 𝑦) = P(Ỹ ≤ 𝑦), and M̃N = max{Ỹ1, … , ỸN} as its sample maximum. If the distribution function F(·) ∈
MDA(H), the limit distribution of the sample maximum M̃N of the associated i.i.d. process {Ỹi} is H—that is, as N → ∞,

c−1
N (M̃N − dN)

d
−→H.

If the process {Yi} satisfies the conditions D(uN) and D′ (uN) given below, the limit distribution of the sample maximum
MN of the stationary process {Yi} is also H—that is, as N → ∞,

c−1
N (MN − dN)

d
−→H,

with the same centering and normalizing terms cN and dN.

Condition 1. D(uN): for each 𝑦 ∈ R the sequence uN = cNy + dN satisfies that, for any integers p and q, with p + q
different numbers picked out from the sequence of the time-ordered subscript i = 1, 2, … ,N such that 1 ≤ i1 <

… < ip < j1 < … < jq ≤ N and j1 − ip ≥ l, we have

|||||P
(

max
i∈A1∪A2

Yi ≤ uN

)
− P

(
max
i∈A1

Yi ≤ uN

)
P
(
max
i∈A2

Yi ≤ uN

)||||| ≤ 𝛼N,l,

where A1 = {i1, … , ip}, A2 = {j1, … , jq}, 𝛼N,l → 0 as N → ∞ for some sequence l = lN = o(N).

Condition 2. D′ (uN): for each 𝑦 ∈ R the sequence uN = cNy + dN satisfies that

lim
k→∞

limsup
N→∞

n
[n∕k]∑
𝑗=2

P(Y1 > uN ,Y𝑗 > uN) = 0.

Condition D(uN) describes a specific type of asymptotic independence. As a distributional mixing condition, it is weaker
than most of the classical forms of dependence restrictions. Condition D′ (uN) means that joint exceedance of UN by every
pair (Yi,Yj) is very unlikely as N approaches ∞. These two conditions are discussed extensively in Leadbetter, Lindgren,
and Rootzén (1983). Direct verification of these two conditions is tedious. However, for Gaussian stationary linear process,
Yi =

∑∞
𝑗=−∞ 𝜓𝑗Zi−𝑗 , i ∈ Z, where {Zi} is an i.i.d. Gaussian innovation process, the conditions D(uN) and D′ (uN) boil down

to a very weak and intuitive one: The autocovariance function 𝛾(h) = cov(Yi,Yi+h) of the process {Yi} approaches to 0
faster than (ln h)−1 as h → ∞; that is, 𝛾(h) ln h → 0. It even includes a Gaussian fractional autoregressive integrated
moving average process with the order of difference d ∈ (0, 0.5) whose autocovariances are not absolutely summable.
Moreover, the Gaussian distribution of innovations Zi can be further relaxed to subexponential distributions, and the
sample maxima of the subexponential linear process may still have a nondegenerate limit distribution. See Leadbetter
and Rootzén (1988) for more details.
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