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Abstract

Asymmetric information models of market microstructure claim that variables like trading in-
tensity are proxies for latent information on the value of financial assets. We consider the interval-
valued time series (ITS) of low/high returns and explore the relationship between these extreme
returns and the intensity of trading. We assume that the returns (or prices) are generated by a
latent process with some unknown conditional density. At each period of time, from this den-
sity, we have some random draws (trades) and the lowest and highest returns are the realized
extreme observations of the latent process over the sample of draws. In this context, we propose
a semiparametric model of extreme returns that exploits the results provided by extreme value
theory. If properly centered and standardized extremes have well defined limiting distributions,
the conditional mean of extreme returns is a nonlinear function of conditional moments of the
latent process and of the conditional intensity of the process that governs the number of draws.
We implement a two-step estimation procedure. First, we estimate parametrically the regressors
that will enter into the nonlinear function, and in a second step, given the generated regressors,
we estimate nonparametrically the conditional mean of extreme returns. Unlike current models for
ITS, the proposed semiparametric model is robust to misspecification of the conditional density of
the latent process. We fit several nonlinear and linear models to the 5-min low/high returns to
three major bank stocks, Wells Fargo, Bank of America, and J.P. Morgan, and find that, either
in-sample or out-of-sample, the nonlinear specification is superior to the current linear models and
that the conditional standard deviation of the latent process and the conditional intensity of the
trading process are major drivers of the dynamics of extreme returns. We find that there is an
asymmetric relationship between extreme returns and trading intensity. While the lowest returns
are sensitive to any large or small volume of trading (the largest the volume, the lower the lowest
returns), the highest returns are responding mostly to extremely large trading volumes.

Key Words: Trading intensity, Interval-valued Time Series, Generalized Extreme Value Distribu-
tion, Nonparametric regression, Generated Regressor.

JEL Classification: C01, C14, C32, C51, G12.



1 Introduction

We explore the modeling and forecasting of interval-valued time series (ITS) of extreme returns,

which are defined as the interval formed by the highest and the lowest returns in a given period of

time. In contrast to the modeling of a classical time series of returns, in which it is very difficult

to find any time-dependence, the intervals formed by extreme returns have statistical properties

that can be exploited. For instance, in González-Rivera and Lin (2013), the authors estimate a

constrained bivariate linear system for the daily lowest/highest returns of the SP500 index and find

that there is statistically significant dependence with adjusted R-squared (in-sample) of about 50%.

Though this work generalizes specifications of previous regression models on lower/upper bounds

or center/radius of intervals (see the references herein), it relies on the assumption of bivariate

normality. In a subsequent analysis, unlike the regression-type models just mentioned, Lin and

González-Rivera (2015) propose an alternative modeling approach by pondering how interval-valued

data is generated. They consider the lower and upper bounds of the interval as the realizations

of minimal and maximal order statistics coming from a sample of Nt random draws from the

conditional density of a latent random process {Yt}. Through the statistical implementation of

this approach to prices of agricultural commodities, they also find that their models provide a

very good fit of extreme returns to livestock commodities with average coverage rates (percentage

overlap of the actual low/high interval with the fitted interval) of 83%. However, there are also

some disadvantages of this approach. First, the joint probability density function of minimal and

maximal order statistics degenerates as the number of random draws goes to infinity. Second, the

normality assumption on the latent random process {Yt} may be too restrictive.

To overcome these drawbacks and, in particular, the restrictions imposed by the distributional

assumptions, we propose a new two-step semiparametric model that exploits the extreme property

of the lower and upper bounds of the interval. We maintain the general setup of Lin and González-

Rivera (2015) by assuming that there is a latent process {Yt} with conditional density fYt(.), from

which, at every moment of time, there are Nt random draws and the lower and upper bounds of the

interval are the realized extreme observations of Yt over the sample of draws. However, we will not

assume any particular functional form of fYt , so that the estimation procedure is robust to density
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misspecification of the underlying stochastic process. We will only need conditional moments of

the latent process and we will rely on limiting results provided by extreme value theory to estimate

the conditional mean of the lower and upper bounds of the interval. The proposed estimation

procedure consists of two steps. First, we obtain parametric estimates of the conditional mean and

conditional variance of the latent process {Yt} and estimates of the conditional trading intensity of

the process {Nt}. Second, with the generated conditional moments of the first step as the regressors,

we specify a nonparametric model for the conditional means of the lower and upper bounds. We

propose a nonparametric function because, according to extreme value theory, the conditional mean

of a extreme value is often a nonlinear function that is difficult to estimate parametrically.

The proposed semiparametric model, in the context of the financial econometrics literature, is

a natural vehicle to analyze the role of trading intensity on the generation of extreme returns.

Asymmetric information models of market microstructure claim that variables like trading volume

(or trading intensity) are proxies for latent information on the value of financial assets (see Easley

and O’Hara, 1992). We have numerous empirical studies that link volume with volatility but, in

contrast, the link between trading volume and extreme returns has not been analyzed in much

detail. A sample of most representative results on volume and volatility follows in historical order.

Lamoureux and Lastrapes (1990) find that identical latent factors drive trade volume and return

volatility. Anderson (1996) propose a model in which informational asymmetries and liquidity needs

motivate trading, which in turn, drives the dynamics of a stochastic volatility model. Engle (2000)

analyzes an Autoregressive Conditional Duration model and a GARCH model to conclude that the

absence of trading means either bad news or no news and translates into low volatility regimes.

With high frequency data (5-min intraday data), Darrat, Rahman, and Zhong (2003) find evidence

of significant lead-lag relations between volume and volatility in agreement with the sequential

information arrival hypothesis. Fleming and Kirby (2011) analyze the joint dynamics of trading

volume and realized volatility and find that there is a strong correlation between the innovations to

volume and volatility. Sita and Westerholm (2011) find that trade durations (inversely related to

trade volume) have forecasting power for returns but only within the trading day. One can argue

that the range of the interval of extreme returns is a very good volatility estimator (Parkinson,

1980) and in this sense, the result of the aforementioned studies may apply. However, the dynamics
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of the low/high interval are richer than those of the range itself because the modeling of the interval

captures not only variability but also the dynamics of the bounds themselves. For instance, Ning

and Wirjanto (2009) find that for East-Asian stocks, there is a significant and asymmetric return-

volume dependence at the extremes. The largest returns tend to be associated with extremely large

trading volumes but the lowest returns tend not to be related to either large or small volumes. We

fit the proposed semiparametric model to the 5-min low/high returns to three major bank stocks,

Wells Fargo, Bank of America, and J.P. Morgan, and find that, either in-sample or out-of-sample,

extreme returns are driven by the conditional mean and conditional standard deviation of the latent

process and the conditional intensity of the trading process, and that a nonlinear model is superior

to the current linear specifications. We also find that the extreme returns respond asymmetrically

to trading volume. The lowest returns are sensitive to any volume, large or small, while the highest

returns are responsive to extremely large volume. Overall, the largest volume is associated with

the most extreme returns.

The organization of this paper is the following. In section 2, we provide the basic assumptions for

estimation of the model. In section 3, we present the two-step estimation procedure and establish

the asymptotic properties of the second-step nonparametric regression with generated regressors.

In section 4, we analyze several models to explain the relationship between extreme returns and

the intensity of trading, and finally, we conclude in section 5.

2 Basic Assumptions

We describe the data generating process of the interval-valued time series. We need several as-

sumptions, which are not too restrictive, and they accommodate many of the processes frequently

encountered in financial data.

Assumption 1 (Data Generating Process). Let {Yt : t = 1, · · · , T} be an underlying stationary

stochastic process. The continuous random variable Yt at time t has conditional density f(yt|Ft−1),

where Ft−1 is the information set available at time t. At each time t, there are Nt independent

draws from f(yt|Ft−1) collected in a set St ≡ {yit : i = 1, · · · , Nt} with random sample size Nt,

which it is assumed to follow a conditional distribution H(nt|Ft−1). Conditioning on Ft−1, Nt and
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Yt are independent for all t.

Let ylt and yut denote the smallest and largest values in the sample St at time t:

ylt ≡ min
i
St = min

1≤i≤Nt
{yit},

yut ≡ max
i
St = max

1≤i≤Nt
{yit}.

Then, {(ylt, yut) : t = 1, · · · , T} is the observed interval time series (ITS) of lower and upper

bounds.

The intuition behind Assumption 1 is straightforward. For instance, suppose that we have

financial data and we choose a frequency, say, every five minutes. During these five minutes,

trading take places and, for every transaction, we observe a return (price). Then, in each block

of five minutes, we will observe the lowest return, the highest return, and the number of trades.

Our assumption means that the conditional density of returns f(yt|Ft−1) is updated every five

minutes according to some dynamic specification. The number of trades during the five-minute time

interval represents the number of random draws nt from the conditional distribution of returns.

Then, the lowest and the highest returns (ylt and yut) are the two extremal (maximal and minimal)

observations in the sample St of size nt.

Given this data generating mechanism, our analysis of ITS data proceeds with the analysis of

extremal observations {(ylt, yut)} based on the results of the extreme value theory. The asymptotic

theory for maxima (and minima) is very different from the therory applied to averages. Central

limit theorems provide a normal limiting distribution once the average is properly centered and

standardized by its mean and standard deviation, respectively. In contrast, the centering and stan-

dardizing terms in the limit theorems for maxima (minima) are more difficult to derive because they

depend on the tail characteristics of the assumed underlying density. The key result in extreme value

theory is the Fisher-Tippett theorem that provides the limiting distributions of properly centered

and standardized maxima (minima) 1. The three limiting distributions are Fréchet, Weibull, and

Gumbel, which can be nested into a one-parameter generalized extreme value distribution (GEV)

1We only consider continuous random variables, therefore the existence of a non-degenerate limiting distribution
should always hold.
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Hξ defined as

Hξ(x) =

 exp{−(1 + ξx)−1/ξ} if ξ 6= 0,

exp{− exp{−x}} if ξ = 0,

where 1 + ξx > 0 and ξ is a shape parameter. Then, (i) ξ = α−1 > 0 corresponds to the Fréchet

distribution, (ii) ξ = 0 corresponds to the Gumbel distribution, and (iii) ξ = α−1 < 0 corresponds

to the Weibull distribution.

It is said that the random variable Yt belongs to the maximum domain of attraction (MDA) of the

extreme value distributionHξ (Yt ∈ MDA(Hξ)) if the limiting distribution of standardized extremes,

i.e. cu(t)−1(Yut − du(t)), is the extreme value distribution Hξ. The standardizing and centering

terms, cu(t) and du(t), depend on t through the conditional distribution of Yt and the number of

random draws Nt. Explicitly, we write cu(t) ≡ cu(Nt, f(yt|Ft−1)) and du(t) ≡ du(Nt, f(yt|Ft−1)).

The same argument holds for the minima process {Ylt}. Formally, we have the following lemma.

Lemma 1. Given Assumption 1, for all t, there exist

cl(t) ≡ cl(Nt, f(yt|Ft−1)), cu(t) ≡ cu(Nt, f(yt|Ft−1))

dl(t) ≡ dl(Nt, f(yt|Ft−1)), du(t) ≡ du(Nt, f(yt|Ft−1))

such that, conditioning on Ft−1 and for Nt
p−→ ∞, the standardized maxima and minima have

limiting GEV distributions Hξl and Hξu respectively, i.e.,

cl(t)
−1[Yut − dl(t)]|Ft−1

d−→ Hξl , ∀t = 1, · · · , T

cu(t)−1[Ylt − du(t)]|Ft−1
d−→ Hξu , ∀t = 1, · · · , T.

Since we would like to build conditional mean models for the extremes, the above convergence

in distribution is too weak. We need to impose restrictions on the first moments of Ylt and Yut to

achieve stronger convergence. Thus, the following assumption and lemma:

Assumption 2. For all t, there exists δ > 0, such that

sup
nt

E
(∣∣cl(t)−1[Ylt − dl(t)]∣∣1+δ |Ft−1) = Ml <∞,

sup
nt

E
(∣∣cu(t)−1[Yut − du(t)]

∣∣1+δ |Ft−1) = Mu <∞.
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Lemma 2. Let Yξl and Yξu be the random variables with GEV distribution Hξl and Hξu, respectively.

If Assumptions 1 – 2 hold, then for all t, and for any r ∈ (0, 1],

lim
nt→∞

E
(∣∣cl(t)−1[Ylt − dl(t)]∣∣r |Ft−1) = E(|Yξl |

r),

lim
nt→∞

E
(∣∣cu(t)−1[Ylt − du(t)]

∣∣r |Ft−1) = E(|Yξu |r).

Since the conditional expectation of the GEV random variable Yξu is E(Yξu) = [Γ(1−ξu)−1]/ξu,

where Γ(·) is the Gamma function, the conditional expectations of the extrema are

E(Yut|Nt;Ft−1) = du(Nt, f(yt|Ft−1)) + cu(Nt, f(yt|Ft−1))
Γ(1− ξu)− 1

ξu
+ o(cu(Nt, θt))

E(Ylt|Nt;Ft−1) = dl(Nt, f(yt|Ft−1)) + cl(Nt, f(yt|Ft−1))
Γ(1− ξl)− 1

ξl
+ o(cl(Nt, θt)).

The conditional mean functions of the upper and lower bounds depend on the centering and

standardizing terms associated with the assumed conditional density f(yt|Ft−1). Even for some

common densities like normal or Student’s t, these terms are highly nonlinear on the moments of

interest. 2 Therefore, we propose to estimate the conditional mean functions nonparametrically so

that they are robust to density misspecification of the underlying stochastic processes. In doing

so, we also avoid the difficult task of calculating the associated standardizing and centering terms.

We write:

E(Yut|Nt,Ft−1) = mu(Nt, f(yt|Ft−1), ξu), (2.1)

E(Ylt|Nt,Ft−1) = ml(Nt, f(yt|Ft−1), ξl). (2.2)

2If yt is normally distributed as N(µt, σ
2
t ), we have

cu(nt, µt, σt) =
1

σt
√

2 lnnt
; du(nt, µt, σt) = µt + σt

√
2 lnnt − σt

ln(4π) + ln lnnt
2(2 lnnt)1/2

.

If yt has t-distribution with mean µt and degrees of freedom νt, we have du(nt, µt, σt) = 0 and cu(nt, µt, νt) is the
solution to the following reduced form model,

1

n
=

1

2
− (c− µt)Γ

(
νt + 1

2

)
·
2F1

(
1
2
; νt+1

2
; 3
2
;− (c−µt)

2

νt

)
√
πνtΓ

(
νt
2

)
where 2F1 is the hypergeometric function.
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where ml(·) and mu(·) are the conditional mean functions depending on the conditional density of

the underlying process f(yt|Ft−1), the number of random draws Nt, and the shape parameters of

the limiting GEV distribution ξl and ξu. Note that ξl and ξu are constant, and therefore can be

innocuously excluded from the functions.

We also assume that the conditional density f(yt|Ft−1) is indexed by a finite-dimensional pa-

rameter vector. We will include the first two moments of the underlying random process Yt in

a parameter vector θt, i.e. θt = (µt, σt) to capture the location and the scale of the conditional

distribution of Yt at time t. Similarly, for the number of random draws Nt, we assume that the

conditional distribution H(nt|Ft−1) is indexed by the first moment of Nt. Formally,

Assumption 3. (i) For any time period t, the conditional density f(yt|Ft−1) is indexed by the

first two order conditional moments θt ≡ θ(Ft−1) ∈ Θ ⊂ R2, where Θ is a compact subset of

Euclidean space, i.e., f(yt|Ft−1) = f(yt; θt) for all t.

(ii) For any time period t, the conditional distribution H(nt|Ft−1) is indexed by the first order

conditional moment λt ≡ λ(Ft−1) ∈ Θ ⊂ R, where Θ is a compact subset of Euclidean space,

i.e., H(nt|Ft−1) = H(nt;λt) for all t.

(iii) Let Ψ1 and Ψ2 be compact subsets on some finite k-dimensional Euclidean space Rk. The

expectational models M1(Ψ1) and M2(Ψ2) are correctly specified for θt ≡ (µt, σ
2
t ) and λt,

respectively, i.e.,

µt ≡ E(Yt|Ft−1) = µ(Ft−1, ψo1)

σ2t ≡ E[(Yt − µt)2|Ft−1] = σ2(Ft−1, ψo1)

λt ≡ E(nt|Ft−1) = λ(Ft−1, ψo2)

almost surely for each time t with some ψo1 ∈ Ψ1 and ψo2 ∈ Ψ2. In addition, the point-valued

time series {Yt}Tt=1 (e.g. returns based on closing prices), and {nt}Tt=1, used to estimate

the parameters in the specifications M1 and M2, satisfy regularity conditions such that the

estimates ψ̂1 and ψ̂2 are
√
T -consistent.

Given assumption 3(i), the conditional expectations of maxima and minima in (2.1) and (2.2)
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can be further simplified as

E(Ylt|Nt,Ft−1) = ml(Nt, θt), (2.3)

E(Yut|Nt,Ft−1) = mu(Nt, θt). (2.4)

With assumption 3(ii), we can calculate the marginal expectations of the extremes as

E(Ylt|Ft−1) = Ml(θt, λt) ≡
∫
ml(s, θt)dH(s;λt), (2.5)

E(Yut|Ft−1) = Mu(θt, λt) ≡
∫
mu(s, θt)dH(s;λt). (2.6)

Assumption 3(iii) is a high level assumption. In the framework of QMLE, it requires that the

quasi log-likelihood function obeys the strong uniform law of large numbers (SULLN). Primitive

conditions are available in the literature, see Domowitz and White (1982), among others.

3 Estimation

We propose to estimate (2.5) and (2.6) in two steps. First, we will generate the regressors θt and

λt, and secondly we will estimate non-parametrically the conditional mean functions.

If the parameter λt and θt were known, we could directly use nonparametric methods to estimate

the following two conditional mean models:

Ylt = Ml(θt, λt) + εlt, (3.1)

Yut = Mu(θt, λt) + εut. (3.2)

However, in most situations the regressors λt and θt are unknown. We will estimate them by

proposing some parametric models that, according to assumption 3(iii), must be well specified.

Consequently, our objective is the estimation of nonparametric conditional mean functions of gen-

erated regressors:

Ylt = Ml(θ̂t, λ̂t) + vlt, (3.3)

Yut = Mu(θ̂t, λ̂t) + vut. (3.4)
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In order to estimate θt ≡ (µt, σ
2
t ), we work with a point-valued time series. If we are modeling

returns, we can follow the standard practice of choosing the series of returns calculated at the end

of each time period. Alternatively, we could also choose the series of the centers of the intervals as

a realized sample path of the underlying process {Yt} and specify the dynamics of the conditional

mean. The specification of the dynamics of the variance could be based on the time series of ranges

of the intervals. Similarly, we work with the realized sample path {nt} and specify the dynamics

of the conditional intensity λt = E(Nt|Ft−1) to obtain their estimates.

It is possible to avoid these generated regressors by directly inserting into the nonparametric

functions those observed regressors, in the information set Ft−1, that drive the conditional moments

µt, σ
2
t and λt. The drawback of this approach is that the number of regressors could be very large

so we face the curse of dimensionality of nonparametric models. The generated regressor approach

offers a more parsimonious model, though we need to take into account the extra uncertainty

generated by the estimation of the regressors.

There are two important differences with the approach in Lin and González-Rivera (2015).

There, the estimation methodology is maximum likelihood where the log-likelihood function is

built based on the joint density of the lowest and the highest rank order statistics of the random

sample St ≡ {yit : i = 1, · · · , Nt}. The assumption of conditional normality for the underlying

process {Yt} may seem to provide a QML estimator but as we discussed there, even with normality,

the joint density of the ordinal statistics does not belong to the quadratic exponential family and

the consistency of the QML estimator cannot be guaranteed. The approach that we propose here

is robust to distributional assumptions:

� With the realized sample paths of point-valued time series, i.e., {yt} and {nt}, associated

with the underlying stochastic processes {Yt} and {Nt}, estimate consistently the conditional

moments (θt, λt).

� With the maxima and minima of the interval-valued time series ({ylt}, {yut}) and the para-

metrically generated covariates (θ̂t, λ̂t), estimate nonparametrically the two conditional mean

functions (3.3) and (3.4).

The second difference is related to the feasibility of the order statistics approach when the
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number of draws Nt is very large. A quick look at the log-likelihood function reveals that, for

large number of trades, the function will explode, and the optimization exercise will not have a

solution. Hence, the extreme value approach proposed here is general enough to provide feasibility

and robustness.

Under Assumption 3(iii) and within a QMLE framework, the first step estimators (θ̂t, λ̂t) enjoy

standard asymptotic properties. Now, we focus on the asymptotics of the second- step nonpara-

metric estimator. Mammen, Rothe and Schienle (2012) provide a general theory on the statistical

properties of two-stage nonparametric regression estimators. The first-step nonparametric esti-

mates are the regressors in the second-step estimation of a nonparametric model. Our model is

simpler than theirs in two aspects. First, the latent regressors in our model are generated para-

metrically, while their first-step estimators have parametric/nonparametric or just nonparametric

components. Second, their latent regressors depend on the model itself, as in Conrad and Mam-

men (2009) who estimate a semiparametric GARCH-in-mean model where they need an iterative

estimation procedure. Therefore, we only need a mild adaptation of their theorem to show that

the oracle property of kernel-based nonparametric estimators also apply to our two step estimator.

Let hot ≡ (θot , λ
o
t ) be the true moments and ĥt ≡ (θ̂t, λ̂t) be the estimates of those true moments.

Theorem 1 (Asymptotic properties of the two-step local linear estimator).

Let j = l and u, σ2j (x) = E(ε2jt|ht = x) be the conditional variance of εjt, f(x) be the pdf of ht.

Assume that m(x), f(x), and σ2j (x) are twice differentiable. K(x) is a bounded second order kernel,

κ =
∫
K(v)2dv, κ2 =

∫
k(v)v2dv, and b = (b1, · · · , bq) are the bandwidths for covariates in ht with

Tb1 · · · bq →∞. Given assumptions 1 - 3 and some regularity conditions, we have

(1) (Asymptotic Equivalence) For j = l and u, the two-step local linear estimator M̂j(x; ĥt) with

generated covariates ĥt is asymptotic equivalent to the infeasible estimator M̂j(x;hot ) in the

sense that

sup
x∈I
|M̂j(x; ĥt)− M̂j(x;hot )| = op(T

−α)

where α is the optimal convergence rate of the infeasible estimator M̂j(x;hot );

(2) (Asymptotic Normality) The limiting distribution of the feasible two-step local linear estimator
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is the same as that of the infeasible estimator, i.e.,

√
Tb1 · · · bq

(
M̂j(x; ĥt)−m(x)− κ2

2

q∑
s=1

b2sm
′′(x)

)
d−→ N

(
0,
κqσ2(x)

f(x)

)
.

Essentially, the regularity conditions require that (a) the process from which the true moments

hot will be estimated be stationary and β-mixing; (b) the estimates ĥt converge to their true values

at the
√
T -rate, which is fast enough; (c) the dynamic specifications in Assumption 3(iii) can be

well approximated by linear functions of parameters ψ in a neighborhood of their true values ψo;

(d) the error terms εlt and εut have conditional subexponential tails; (e) some other regularity

conditions on the kernel functions controlling the bias terms of the local linear smoothing. See also

Assumption 1-11 in Conrad and Mammen (2009), and Assumption 1-6 in Mammen, Rothe and

Schienle (2012).

4 Extreme Returns and Intensity of Trading

We model the interval-valued time series of the five-minute low/high returns to three bank stocks:

Wells Fargo (WFC), Bank of America (BAC), and JP Morgan Chase (JPM), which are traded in the

New York Stock Exchange, from January 3rd to January 31st, 2011 for a total of 20 trading days.

We record the stock prices and the number of trades at the 5-minute frequency. Log returns (in

per ten-thousand unit: �) are calculated with respect to the last price of the previous five-minute

period:

yut ≡ log(Phigh,t/Pclose,t−1)× 10, 000�, (the highest return)

ylt ≡ log(Plow,t/Pclose,t−1)× 10, 000�, (the lowest return)

yct ≡ log(Pclose,t/Pclose,t−1)× 10, 000�, (close-to-close return)

where Phigh,t and Plow,t are the highest and lowest price in the five-minute period t, and Pclose,t−1 is

the last price in the previous five-minute period (t− 1). Given the interval-valued return [ylt, yut],

the center ct and range rt are defined as

ct ≡
ylt + ylt

2
= log(

√
Phigh,tPlow,t/Pclose,t−1)× 10, 000�,
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rt ≡ yut − ylt = log(Phigh,t/Plow,t)× 10, 000�.

We remove any trades before 9:30 am (opening time) and after 4:00 pm (closing time) for a total

number of observations: 20 days× 78 observations per day = 1560.

[Table 1][Figure 1]

In Figure 1, we plot the 5-minute stock returns calculated from high, low, and close prices, and

the numbers of trades for the three U.S. banks. In the first two columns of Table 1, we show the

descriptive statistics of low and high returns. Both low and high returns exhibit large volatilities,

skewness, and heavy tails. Low returns seem to be more volatile than high returns. BAC returns

are more volatile than those of WFC and JPM. The correlations of low and high returns are around

0.27. The descriptive statistics for the center and range of the low/high interval returns are reported

in the fourth and fifth column of the table. There is a mild negative correlation between the centers

and the ranges. For the series of number of trades, in the last column of the table, we observe

that the variances are more than 1000 times larger than their corresponding means, indicating that

over-dispersion is present in the data. Therefore, in modeling the numbers of trades, a negative

binomial distribution is a sensible choice.

4.1 Conditional moments of the latent process

We proceed to model the conditional moments of the underlying latent process Yt and the series

of the number of trades Nt. We implement two different approaches to model the dynamics of Yt.

First, we consider the center and range of the low/high intervals as good proxies for the location and

scale of the conditional probability density function of Yt. We will call this approach the “interval

value approach for Yt”. Second, we simply use the close-to-close returns series {yct} as a realized

sample path of the underlying latent processes Yt and model its conditional moments. We will call

this approach the “point value approach for Yt”.
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4.1.1 Interval value approach for modeling Yt

We model the dynamics of the center and range series separately. For the center series {ct}, we fit

simple ARMA models and select the optimal number of lags by AIC. The preferred specifications

are:

� WFC: AR(1), ct = ρ1ct−1 + ut

� BAC: AR(4), ct = ρ1ct−1 + ρ2ct−2 + ρ3ct−3 + ρ4ct−4 + ut

� JPM: AR(2), ct = ρ1ct−1 + ρ2ct−2 + ut,

We call ĉt the fitted value for the center that proxies the estimated conditional mean of the latent

process. In Table 2, we report the estimations results of the three ARMA models. We observe that,

as expected, the time dependence in the conditional mean is very weak for the three bank stocks.

[Table 2]

For the range series {rt}, we specify a Conditional AutoRegressive Range model with Weibull

distribution (WCARR). Since the original range series {rt} exhibit a strong diurnal pattern (see

Figures 2b-4b), we first remove the intraday seasonality by spline smoothing, that is,

r∗t = rt/f̂(it), f̂(it) = exp[d̂(it)], d̂(it) = β̂0 +

L∑
j=1

β̂jfj(it), (4.1)

where it is the fraction of time in the trading day for the t-th observation such that

it =

 1, if t mod 78 = 0

t/78− bt/78c , otherwise.

The coefficient estimates β̂j are obtained by ordinary least squares and the number of splines L

is selected by least squares cross-validation. Then, we specify the conditional autoregressive range

model with Weibull distribution, WCARR(p, s), for the adjusted range r∗t ,

r∗t = ψtεt,

ψt = ω +

p∑
i=1

γir
∗
t−i +

s∑
j=1

κjψt−j ,

εt|Ft−1 ∼ gweibull(·; θ),
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where ψt is the conditional mean of the adjusted range based on the information set available at

time t. The normalized adjusted range εt = r∗t /ψt is assumed to be standardized Weibull distributed

with density function gweibull(·; θ) with unit mean and shape parameter θ. The coefficients ω, γi,

and κj are restricted to be positive and
∑r

i=1 γi +
∑s

j=1 κj < 1 to ensure that the series r∗t is

positive and stationary. The optimal lags p and s in WCARR(p, s) are selected by AIC and the

adequacy of the models is assessed with standard diagnostics. The selected models are:

� WFC: WCARR(1,1),

� BAC: WCARR(1,1),

� JPM: WCARR(1,1).

We denote r̂∗t as the fitted range with diurnal pattern adjustment and r̂t = r̂∗t f̂(it) the fitted range

for the original range. In Table 3, we report the estimation results of the three WCARR models.

The dynamics of WFC and JPM are very similar with a persistence of about 0.90 (γ1 + κ1), while

that of BAC is 0.76. The shape parameter θ is about 2 for all three banks indicating that the

empirical conditional standardized probability density is far from exponential. Standard diagnostic

tests indicate that the fitting is adequate. The standardized residuals have zero mean and unit

standard deviation. The Q-statistics of the standardized residuals show that there is no residual

dependence left in the data.

[Table 3]

In Figures 2–4 we plot the center and range series with their corresponding fitted values from

the estimated AR and WCARR models.

[Figures 2–4 ]

4.1.2 Point value approach for modelling Yt

We choose the close price return series {yct} as a realized sample path of the underlying latent

processes Yt. The conditional mean is zero and we model the volatility of the process as follows,

yct = σtεt, σ2t = ω +

p∑
i=1

αiy
2
c,t−i +

q∑
j=1

βjσ
2
t−j , εt ∼ GED(0, 1, ν),
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where the Generalized Error Distribution (GED) captures the heavy tail behavior of the data. The

optimal number of lags is selected by AIC and the resulting specifications are the following,

� WFC: GARCH(1,2)-GED,

� BAC: GARCH(1,1)-GED,

� JPM: GARCH(1,1)-GED.

We denote σ̂t the estimate of the conditional standard deviation. In Table 4, we report the estima-

tion results for the three GARCH models. In Figures 5a – 7a, we plot the estimated conditional

standard deviation for the three banks. The persistence from the three model is very similar with

a value of 0.9. The shape parameter ν is about 1 for the three banks. The Q-statistics of the

standardized squared residuals indicate that there is not dependence left in the data.

[Table 4]

4.2 Conditional trading intensity

We specify autoregressive dynamics in the conditional trading intensity to account for the temporal

dependence in the number of trades series {nt}. As in the range series {rt}, the number of trades

series exhibits a clear diurnal pattern (see Figure 1). We remove the intra-day seasonality by spline

smoothing on the original series, that is,

n∗t = nt/f̂(it), (4.2)

where f̂(it) and it are defined as in the case of the range series explained in the previous section.

Then, for the adjusted numbers of trades n∗t , we specify the following model

ψt = ω +

p∑
i=1

γin
∗
t−i +

s∑
j=1

κjψt−j . (4.3)

Combining (4.2) and (4.3), we propose the following Autoregressive Conditional Intensity (ACI)

model,

λt = f̂(it)ψt, and nt ∼ gNB(·;λt, d). (4.4)
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where λt is the conditional trading intensity based the information set available at time t. The num-

ber of trades Nt is assumed to be negative binomial distributed with density function gNB(·;λt, d)

with mean λt and dispersion parameter d. We restrict
∑p

i=1 γi +
∑s

j=1 κj < 1 to ensure that the

series {nt} stationary. We select the optimal number of lags p and s by AIC and we test the

specification of the model with standard diagnostic statistics. The estimated conditional trading

intensity is denoted as λ̂t.

We report the estimation results in Table 5 and we plot the estimated conditional intensity

against the actual number of trades in Figures 5b – 7b. For WFC and JPM, the preferred model

is ACI(2,1) and for BAC, the model is ACI(3,1). The persistence of trading for the three banks is

about 0.95. The pseudo-Pearson residuals have mean zero and variance one and their Q-statistics

do no show any dependence, indicating that these specifications are adequate.

[Table 5] [Figures 5–7]

4.3 Nonparametric conditional mean for lower and upper bounds

From the modeling of the latent process Yt, we gather the regressors, i.e., conditional mean, standard

deviation, and intensity, that will be fed into a nonparametric regression in order to obtain the

conditional mean of the lower and upper bounds, i.e., ylt and yut, of the return interval. Since

the latent process has been modelled by two alternative approaches, we will propose and evaluate

alternative nonparametric regressions.

The first model has as regressors the estimated conditional centers ĉt (ARMA models), con-

ditional ranges r̂t (WCARR models), and conditional intensity λ̂t (ACI models). It is the most

general and parsimonious model.

� Model 1: yjt = mj(ĉt, r̂t, λ̂t) + vjt, for j = l, u.

If the models for centers, ranges, and intensity have short dynamics, we could avoid the first

estimation step and include directly original regressors such as ct−1, rt−1, nt−1, etc. into the

nonparametric regressions. The drawback of this approach is that, if the number of lags is very

large, we run into the curse of dimensionality. With the current data, we experiment with the
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following model,

� Model 2: yjt = mj(ct−1, rt−1, nt−1) + vjt, for j = l, u.

The next model considers regressors from the point value approach for modeling Yt such as

the estimated conditional standard deviation σ̂t (GARCH models) in addition to the conditional

intensity λ̂t (ACI models), λ̂t, i.e.,

� Model 3: yjt = mj(σ̂t, λ̂t) + vjt, for j = l, u.

We propose the next two nonparametric models in order to assess the importance of the intensity

of trading in the modelling of the conditional mean of the upper and lower bounds,

� Model 4: yjt = ml(ĉt, r̂t) + vjt, for j = l, u.

� Model 5: yjt = mj(ct−1, rt−1) + vjt, for j = l, u,

Finally, we also propose Model 6 to assess whether the conditional trading intensity λ̂t could

be sufficient to predict the expected lower and upper bounds without information about the latent

process Yt,

� Model 6: yjt = mj(λ̂t) + vjt, for j = l, u.

4.3.1 In-sample model evaluation

We evaluate the performance of the proposed models by comparing several measures of fit for

interval-valued data. In addition to the six specifications of the previous section, we include two

additional models proposed in González-Rivera and Lin (2013), which are constrained VAR-type

specifications satisfying the inequality ylt ≤ yut for all t. These are Interval Autoregressive-Two

Step (IAR-TS) and Interval Autoregressive-Modified Two Step (IAR-MTS). These models have

been proven to be superior to the existing interval-valued regression approaches (see González-

Rivera and Lin, 2013, and Lin and González-Rivera, 2015).

For a sample of size T , let [ŷlt, ŷut] be the fitted values of the corresponding interval yt = [ylt, yut]

provided by each model. We consider the following criteria:
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(i) Mean Squared Error (MSE) for upper and lower bounds separately.

MSElower =
T∑
t=1

(ŷlt − ylt)2/T MSEupper =
T∑
t=1

(ŷut − yut)2/T ;

(ii) Multivariate Loss Functions (MLF) for the vector of lower and upper bounds (Komunjer

and Owyang, 2011): Lp(τ , e) ≡ (‖ e ‖p +τ ′e) ‖ e ‖p−1p where ‖ · ‖p is the lp-norm, τ is

a two-dimensional parameter vector that determines the asymmetry of the loss function (if

τ = 0, the bivariate loss is symmetric), and e = (el, eu) is the bivariate residual interval

(ŷlt − ylt, ŷut − yut). We consider two norms, p = 1 and p = 2 and their corresponding τ

parameter vectors within the unit balls B∞ ≡ {(τ1, τ2) ∈ R2 : |τ1| ≤ 1 and |τ2| ≤ 1} and

B2 ≡ {(τ1, τ2) ∈ R2 : τ21 + τ22 ≤ 1}, respectively.

Then, the Multivariate Loss Functions (MLF) are defined by their sample averages:

MLF1 =
T∑
t=1

L1(τ
∗
t , et)/T, MLF2 =

T∑
t=1

L2(τ
∗
t , et)/T ;

where τ ∗t is the optimal vector that defines the asymmetry of the loss.

(iii) Mean Distance Error (MDE) between the fitted and actual intervals (Arroyo et al., 2011).

Let Dq(ŷt, yt) be a distance measure of order q between the fitted and the actual intervals,

the mean distance error is defined as MDEq({ŷt}, {yt}) =
∑T

t=1D
q
q(ŷt, yt)/T . We consider

q = 1 and q = 2, with a distance measure such as,

D1(ŷt, yt) =
1

2
(|ŷlt − ylt|+ |ŷut − yut|),

D2(ŷt, yt) =
1√
2

[(ŷlt − ylt)2 + (ŷut − yut)2]1/2.

Note that MDE1 and MDE2 are equal to a half of MLF1 and MLF2 respectively if τ = 0.

In Table 6, we report the in-sample evaluation of the models according to the aforementioned three

loss functions. The first finding is that the nonparametric regressions are superior to the IAR-TS

and IAR-MTS specifications as they deliver in most cases the smallest losses across loss functions

and for all three banks. Within the six nonparametric models, the preferred specification is Model

1 across loss functions and for the three banks. Competing specifications are Models 2, 4, and 5

indicating that we could skip the first step estimation (Models 2 and 5) and that omitting trading
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intensity (Models 4 and 5) is not very detrimental to the performance of the model. It is interesting

to observe that trading intensity alone (Model 6) is far from being an optimal specification, it is

only the interaction of the three regressors that are most helpful to estimate the means of the

extreme bounds of the interval.

[Table 6]

In addition, in Table 7 we report Diebold-Mariano tests to formally test the superiority of Model

1 versus the parametric linear model and the remaining five non-parametric models. For WFC,

there is overwhelming evidence that Model 1 is superior across loss functions; all p-values but one

are practically zero so that we reject the null hypothesis of equally predictive accuracy (in-sample).

For BAC, the evidence is mixed. While the linear model IAR-TS and Models 4 and 6 are easily

rejected, Model 5 emerges as a competitor to Model 1, and to a lesser extent Models 2 and 3. For

JPM, Models 1, 2 and 4 seem to be equivalent but IAR-TS and Models 3, 5, and 6 are inferior to

Model 1. Overall, these results confirm that the joint inclusion of the three regressors, i.e. center,

range, and intensity, are needed to produce the best fit for the bounds of the interval.

[Table 7]

We plot the nonparametric functions of Model 1 in Figures 8– 10 for the three bank stocks.

Overall, we find that the relationship between extreme returns and trading intensity goes in the

expected direction, i.e. the more trading, the larger the extreme returns are. We observe an

asymmetric response of the extreme returns to trading intensity. The lowest returns are sensitive

to small and large trading volumes but the highest returns are responsive mainly when the trading

intensity is very large. For the WFC extreme returns with very large trading volume, we find a

bend in the functions but the uncertainty around these returns is also very high because we do

not have many observations in that area of the function. In general, the nonlinear behavior of the

functions shows up for very large trading intensity.

[Figures 8-10]
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4.3.2 Out-of-sample model evaluation

We evaluate the proposed models in an out-of-sample exercise. For each model, we calculate the

one-step-ahead forecast and assess their predictive accuracy according to the aforementioned loss

functions. We maintain the same estimation sample as before, i.e. January 3rd to January 31st,

2011 for a total of 20 trading days with 1560 observations. The prediction sample runs for the

subsequent five trading days, from February 1st to February 7th, 2011 with 390 observations (78

observations per day). We implement a fixed scheme. All models are estimated only once with

t = 1, . . . , T = 1560 observations. Over the prediction sample, we calculate the one-step-ahead

forecast of the lower and upper bounds at time T + h for h = 1, . . . , P = 390 as follows,

Model 1 : ŷj,T+h|T+h−1 = m̂j(ĉT+h|T+h−1, r̂T+h|T+h−1, λ̂T+h|T+h−1), for j = l, u,

Model 2 : ŷj,T+h|T+h−1 = m̂j(cT+h−1, rT+h−1, nT+h−1), for j = l, u,

Model 3 : ŷj,T+h|T+h−1 = m̂j(σ̂T+h|T+h−1, λ̂T+h|T+h−1), for j = l, u,

Model 4 : ŷj,T+h|T+h−1 = m̂j(ĉT+h|T+h−1, r̂T+h|T+h−1), for j = l, u,

Model 5 : ŷj,T+h|T+h−1 = m̂j(cT+h−1, rT+h−1), for j = l, u,

Model 6 : ŷj,T+h|T+h−1 = m̂j(λ̂T+h|T+h−1), for j = l, u,

where the m̂j(·) functions are estimated nonparametrically within the estimation sample, and either

the regressors are directly observable in the updated information set at time T + h− 1, i.e., lagged

values (cT+h−1, rT+h−1, nT+h−1) (Models 2 and 5), or they are the one-step-ahead forecasts coming

from their respective models (Models 1, 3, 4, and 6)

In Table 8 we report the results. Overall, the nonparametric models deliver similar losses, which

in turn are generally smaller than those from the linear models. For WFC, Models 2 and 3 are the

best performers, for BAC Models 3 and 6, and for JPM, Models 1 and 4. The intensity of trading is

key in all these models with the exception of Model 4. The results for WFC and JPM are roughly

in agreement with the results of the in-sample evaluation. In these cases, Models 1, 2, and 4 seem

to be the preferred specifications.

[Table 8]
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In Table 9, for each bank, we compare the best non-parametric model against the linear speci-

fications IAR-TS/MTS by computing the Diebol-Mariano test. For WFC, Model 2, and for BAC,

Model 6 are superior to the linear models except when the loss function is the MSE (lower bound).

For JPM, Model 4 is roughly equivalent to the linear model IAR-TS but it is superior to IAR-MTS

except when the loss function is MSE. The overall conclusion is that non-parametric specifications

that include the intensity of trading are superior specifications, either in-sample or out-of-sample,

compared to autoregressive linear models of lower and upper bounds.

[Table 9]

5 Conclusion

In contrast to existing regression-type models for interval-valued data, we have exploited the ex-

treme nature of the lower and upper bounds of intervals to propose a semiparametric model for

interval-valued time series (ITS) data that is rooted in the limiting results provided by the extreme

value theory. We have assumed that there are two stochastic processes that generated the interval-

valued data. The first process {Yt} is latent, e.g. the process of financial returns, and follows some

unknown conditional density. The second process {Nt} consists of a collection of random draws,

e.g. the process of number of trades, extracted from the conditional density of the latent process

at each period of time. In this framework, the upper and lower bounds of the interval, e.g. the

highest and the lowest returns at time t, are the realized extreme observations (maximum and min-

imum) within the sample of random draws at time t. We have shown that the conditional mean of

extreme returns is a nonlinear function of the conditional moments of the latent process and of the

conditional intensity of the process that governs the number of draws. This specification provides

a natural context to test the relationship between intensity of trading and extreme returns, which

is important according to information models of market microstructure. These models claim that

trading volume is a proxy for latent information on the value of a financial asset. With an ITS of

5-minute returns to three major bank stocks, we have found that indeed there is a nonlinear rela-

tionship between extreme returns and intensity of trading, which is superior to linear specifications

either in-sample or out-of-sample. In addition, we have found that the response of the extreme
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returns to trading intensity is asymmetric with the lowest returns being more responsive to small

and large volumes of trading than the highest returns; these are responsive mainly to very large

trading intensity.

From an econometric point of view, the proposed semiparametric model has advantages over

the existing models. It is general enough to accommodate linear specifications when these are

granted, but the most important advantage is that the model is robust to misspecification of the

conditional density of the latent process. We have estimated the conditional mean of the extremes,

which is nonlinear on the conditional moments of the latent process, with nonparametric methods.

In doing so, we have avoided to choose a specific conditional density, whose functional form is the

driver of the nonlinearity. However, the nonparametric function depends on regressors that are

generated in a first step. We have shown that the effect of the first-step parameter uncertainty into

the second-step nonparametric estimator is asymptotically negligible, and therefore, our two-step

estimator has typical nonparametric convergence rate and it is asymptotically normal.
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Table 1: Descriptive Statistics for WFC, BAC, and JPM

Wells Fargo (2011/1/3 – 2011/1/31)

Returns in�

Statistics low price high price close price Center Range # of trades

Minimum -200 -79.37 -142.9 -122.2 3.068 201
1st Quartile -18.16 4.611 -9.217 -5.596 15.430 895

Median -9.297 9.311 0 0 21.510 1252
3rd Quartile -3.198 15.86 9.231 4.757 30.790 1910
Maximum 92.95 165.5 165.5 125 185.300 13790

Mean -13.33 12.81 0.2457 -0.2625 26.140 1589
Variance 278.593 221.041 363.666 158.996 364.013 1500781

Correlation 0.275 -0.12
Skewness -3.421 3.730 0.374 0.065 3.081 3.636
Kurtosis 25.609 26.585 12.351 25.063 14.258 21.569

Bank of America (2011/1/3 – 2011/1/31)

Returns in�

Statistics low price high price close price Center Range # of trades

Minimum -319.400 -82.53 -237.8 -188.4 6.625 522
1st Quartile -20.960 6.669 -10.11 -6.912 16.780 1744

Median -10.95 10.37 0.000 0.000 26.560 2608
3rd Quartile -6.692 20.41 10.05 6.560 36.290 4159
Maximum 136.40 219.5 187.5 163.7 352.400 25410

Mean -16.00 15.15 -0.07676 -0.4269 31.160 3302
Variance 497.032 408.582 483.34 285.800 671.3791 5733710

Correlation 0.264 -0.10
Skewness -5.454 4.022 -0.042 -0.6383 4.7474 2.473
Kurtosis 58.94 30.980 19.54 34.551 37.0742 10.304

J.P. Morgan Chase (2011/1/3 – 2011/1/31)

Returns in�

Statistics low price high price close price Center Range # of trades

Minimum -231.800 -77.910 -132.9 -112.3 3.409 372
1st Quartile -17.560 4.428 -8.902 -5.581 14.410 1199

Median -9.046 8.913 0.000 -0.245 20.170 1711
3rd Quartile -4.445 15.610 8.874 5.0840 29.200 2532
Maximum 153.70 244.0 234.0 195.0 244.600 19380

Mean -12.580 12.280 0.2465 -0.1491 24.860 2119
Variance 244.1 234.8 309.79 153.02 345.8719 2338652

Correlation 0.278 -0.03
Skewness -3.433 5.849 1.5094 2.5592 4.666 3.548
Kurtosis 47.73 70.02 24.42 57.452 39.433 24.78

� Returns are in the unit of per ten-thousand (�), and sample size is 1559.
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Table 2: ARMA models for center series of low/high re-
turn interval

ARMA Models�

WFC: AR(1) BAC: AR(4) JPM: AR(2)

ρ1 −0.0583 0.0726 −0.0207
(0.0253) (0.0253) (0.0253)

ρ2 −0.0501 −0.0428
(0.0254) (0.0253)

ρ3 0.0157
(0.0254)

ρ4 −0.0572
(0.0253)

LogLike −6160.51 −6612.45 −6131.36
AIC 12325.02 13234.89 12268.73

� Standard errors are reported in the parentheses.
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Table 3: WCARR Model for range of low/high return interval

WFC-WCARR(1,1) Model BAC-WCARR(1,1) Model JPM-WCARR(1,1) Model

estimate s.e. t-value p-value estimate s.e. t-value p-value estimate s.e. t-value p-value

ω 0.0724 0.0156 4.6349 0.0000 0.2769 0.0533 5.1999 0.0000 0.1180 0.0390 3.0238 0.0000
γ1 0.2219 0.0207 10.7263 0.0000 0.3076 0.0302 10.1747 0.0000 0.1863 0.0306 6.0883 0.0000
κ1 0.7133 0.0285 25.0618 0.0000 0.4547 0.0662 6.8685 0.0000 0.7096 0.0594 11.9547 0.0000
θ 2.3369 0.0401 58.2897 0.0000 1.9226 0.0322 59.7791 0.0000 1.9380 0.0303 63.8635 0.0000

LogLikelihood: −981.6314 LogLikelihood: −1260.8521 LogLikelihood: −1192.2117
Akaike Information Criteria: 1971.2628 Akaike Information Criteria: 2529.7042 Akaike Information Criteria: 2392.4233

Ljung-Box Test for standardized residuals� Ljung-Box Test for standardized residuals� Ljung-Box Test for standardized residuals§

statistic p-value statistic p-value statistic p-value

Q(50) 40.1339 0.8395 Q(50) 56.1300 0.2560 Q(50) 60.4859 0.1471
Q(100) 65.2376 0.9972 Q(100) 97.0816 0.5640 Q(100) 87.9208 0.8005
Q(200) 148.4100 0.9975 Q(200) 172.5804 0.9201 Q(200) 159.0520 0.9851

� For the standardized residuals, the mean and standard deviation are 0.0029 and 0.97 respectively.
� For the standardized residuals, the mean and standard deviation are −0.005 and 1.03 respectively.
§ For the standardized residuals, the mean and standard deviation are −0.002 and 1.01 respectively.
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Table 4: Volatility Models for WFC, BAC, and JPM

WFC-GARCH(1,2)-GED Model BAC-GARCH(1,1)-GED Model JPM-GARCH(1,1)-GED Model

estimate robust s.e. t-value p-value estimate robust s.e. t-value p-value estimate robust s.e. t-value p-value

ω 29.5123 10.1286 2.9138 0.0036 35.1059 9.9250 3.5371 0.0004 36.1753 12.5979 2.8715 0.0041
α1 0.3650 0.0726 5.0257 0.0000 0.1324 0.0317 4.1802 0.0000 0.2085 0.0472 4.4211 0.0000
β1 0.2383 0.1412 1.6873 0.0915 0.7948 0.0356 22.2981 0.0000 0.6857 0.0599 11.4374 0.0000
β2 0.3584 0.1190 3.0127 0.0026
ν 1.1075 0.0849 13.0490 0.0000 0.9481 0.0828 11.4442 0.0000 1.0803 0.1112 9.7185 0.0000

LogLikelihood: −6463.12 LogLikelihood: −6705.238 LogLikelihood: −6432.971

Ljung-Box test on standardized squared residuals

statistic p-value statistic p-value statistic p-value

Q(1) 0.0011 0.9738 Q(1) 0.0469 0.8285 Q(1) 0.0437 0.8344
Q(8) 0.4660 0.9970 Q(5) 0.2927 0.9845 Q(5) 0.1205 0.9973
Q(14) 0.9552 0.9997 Q(9) 0.5444 0.9980 Q(9) 0.1879 0.9999
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Table 5: ACI Models for WFC, BAC, and JPM

WFC-ACI(2,1) Model BAC-ACI(3,1) Model JPM-ACI(2,1) Model

estimate robust s.e. t-value p-value estimate robust s.e. t-value p-value estimate robust s.e. t-value p-value

ω 0.4481 0.1617 2.7720 0.0056 0.2499 0.0873 2.8614 0.0042 0.4667 0.2133 2.1876 0.0287
γ1 0.3422 0.0333 10.2849 0.0000 0.3168 0.0292 10.8674 0.0000 0.4347 0.0326 13.3470 0.0000
γ2 −0.2013 0.0482 −4.1727 0.0000 −0.1167 0.0432 −2.7030 0.0069 -0.2359 0.0738 -3.1979 0.0014
γ3 −0.0812 0.0305 −2.6576 0.0079
κ1 0.8180 0.0463 17.6777 0.0000 0.8584 0.0288 29.8280 0.0000 0.7587 0.0788 9.6237 0.0000
1/d 0.1289 0.0055 23.2921 0.0000 0.1290 0.0053 24.3793 0.0000 0.1117 0.0049 22.7421 0.0000

LogLikelihood: −11839.9 LogLikelihood: −12949.54 LogLikelihood: −12190.78

Ljung-Box test on standardized residuals�

statistic p-value statistic p-value statistic p-value

Q(50) 52.2080 0.3882 Q(50) 49.0242 0.5125 Q(50) 34.3940 0.9547
Q(100) 115.7841 0.1338 Q(100) 90.8216 0.7332 Q(100) 85.7186 0.8449
Q(200) 198.5963 0.5148 Q(200) 187.3835 0.7294 Q(200) 168.5562 0.9484

� For the pseudo-Pearson residuals, the mean and standard deviation are 3.54e−05 and 1.08 respectively for WFC; the mean and standard
deviation are -4.98e−05 and 1.08 respectively for BAC; and the mean and standard deviation are -1.71e−04 and 1.08 respectively for JPM.
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Table 6: In-sample model evaluation for 5-minute low/high stock returns

Wells Fargo Corporation

Models MSE MLF MDE

Lower Upper p = 1 p = 2 q = 1 q = 2

IAR-TS 225.4843 196.1827 35.1482 840.9812 8.7871 210.8335
IAR-MTS 225.5024 198.9469 35.2948 846.4363 8.8237 212.2246

Model 1 208.6861 120.8959 32.9122 657.4045 8.2280 164.7911
Model 2 184.6784 178.3050 34.1240 723.8444 8.5310 181.4921
Model 3 224.6382 188.5376 35.2679 824.1540 8.8170 206.5889
Model 4 218.6153 134.2691 33.6605 703.9149 8.4151 176.4434
Model 5 234.0900 194.4786 35.6289 854.6348 8.9072 214.2857
Model 6 239.2713 197.9835 36.6756 872.2196 9.1689 218.6288

Bank of America

Models MSE MLF MDE

Lower Upper p = 1 p = 2 q = 1 q = 2

IAR-TS 451.7409 369.5716 44.9750 1638.2019 11.2438 410.6563
IAR-MTS 458.2550 375.0649 45.5453 1662.1910 11.3863 416.6599

Model 1 413.6199 258.2997 41.6851 1340.324 10.4213 335.9598
Model 2 344.1869 340.7477 42.7650 1366.713 10.6912 342.4683
Model 3 363.0650 345.6019 42.8349 1414.036 10.7087 354.3317
Model 4 427.6282 334.3466 43.4654 1520.334 10.8663 380.9874
Model 5 395.9245 309.4655 41.2292 1407.391 10.3073 352.6959
Model 6 449.9118 359.3084 44.3920 1614.758 11.0980 404.6092

J.P. Morgan Chase

Models MSE MLF MDE

Lower Upper p = 1 p = 2 q = 1 q = 2

IAR-TS 209.8808 218.9624 33.9770 855.7951 8.4942 214.4216
IAR-MTS 209.9269 223.7333 34.1107 865.4129 8.5277 216.8301

Model 1 186.3672 162.8760 31.6307 696.9394 7.9077 174.6216
Model 2 153.9036 199.1422 31.9905 704.6221 7.9976 176.5229
Model 3 199.9346 204.6015 33.4886 807.2904 8.3722 202.2680
Model 4 197.0991 163.8791 31.6052 720.2441 7.9013 180.4891
Model 5 182.0219 215.1001 33.1919 792.5513 8.2980 198.5610
Model 6 213.4358 206.3306 34.0122 837.5538 8.5031 209.8832

The numbers in boldface correspond to the two lowest values for a given loss function.
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Table 7: In-sample Diebold-Mariano tests of Model 1 v.s. other models

WFC BAC JPM

statistic p-value� statistic p-value� statistic p-value�

Model 1 v.s. IAR-TS

MSE: lower -1.7706 0.0383 -1.7115 0.0435 -2.2009 0.0139
MSE: upper -3.5722 0.0002 -3.3316 0.0004 -3.5849 0.0002
MLF: p = 1 -5.5251 0.0000 -6.6855 0.0000 -5.6545 0.0000
MLF: p = 2 -4.1470 0.0000 -4.3175 0.0000 -3.6006 0.0002
MDE: q = 1 -5.5251 0.0000 -6.6855 0.0000 -5.6545 0.0000
MDE: q = 2 -4.1403 0.0000 -4.3167 0.0000 -3.6093 0.0002

Model 1 v.s. 2

MSE: lower 2.0622 0.9804 1.8070 0.9646 0.9329 0.8246
MSE: upper -3.1605 0.0008 -3.0428 0.0012 -1.1083 0.1339
MLF: p = 1 -3.0931 0.0010 -2.0822 0.0187 -1.7549 0.0396
MLF: p = 2 -1.6865 0.0459 -0.2793 0.3900 -1.0452 0.1480
MDE: q = 1 -3.0931 0.0010 -2.0822 0.0187 -1.7549 0.0396
MDE: q = 2 -1.6869 0.0458 -0.2751 0.3916 -1.0451 0.1480

Model 1 v.s. 3

MSE: lower -2.2814 0.0113 1.3114 0.9051 -1.3829 0.0834
MSE: upper -3.3436 0.0004 -2.6705 0.0038 -3.1908 0.0007
MLF: p = 1 -5.6205 0.0000 -2.3274 0.0100 -5.4948 0.0000
MLF: p = 2 -3.8956 0.0000 -0.7705 0.2205 -2.8638 0.0021
MDE: q = 1 -5.6205 0.0000 -2.3274 0.0100 -5.4948 0.0000
MDE: q = 2 -3.8933 0.0000 -0.7679 0.2213 -2.8711 0.0020

Model 1 v.s. 4

MSE: lower -2.3590 0.0092 -2.0840 0.0186 -2.1493 0.0158
MSE: upper -3.1899 0.0007 -3.2952 0.0005 -0.2922 0.3851
MLF: p = 1 -4.2000 0.0000 -4.7639 0.0000 0.2000 0.5793
MLF: p = 2 -3.5445 0.0002 -3.6268 0.0001 -1.9030 0.0285
MDE: q = 1 -4.2000 0.0000 -4.7639 0.0000 0.2000 0.5793
MDE: q = 2 -3.5429 0.0002 -3.6254 0.0001 -1.9025 0.0286

Model 1 v.s. 5

MSE: lower -2.6425 0.0041 0.5477 0.7081 -0.0774 0.4691
MSE: upper -3.5136 0.0002 -1.4738 0.0703 -3.7016 0.0001
MLF: p = 1 -6.5968 0.0000 0.7885 0.7848 -4.4300 0.0000
MLF: p = 2 -4.4198 0.0000 -0.8195 0.2063 -2.0457 0.0204
MDE: q = 1 -6.5968 0.0000 0.7885 0.7848 -4.4300 0.0000
MDE: q = 2 -4.4192 0.0000 -0.8160 0.2072 -2.0479 0.0203

Model 1 v.s. 6

MSE: lower -4.5786 0.0000 -1.5907 0.0558 -2.3501 0.0094
MSE: upper -3.7608 0.0001 -3.0339 0.0012 -3.2804 0.0005
MLF: p = 1 -8.0081 0.0000 -5.9897 0.0000 -6.7402 0.0000
MLF: p = 2 -4.9236 0.0000 -3.5191 0.0002 -3.3733 0.0004
MDE: q = 1 -8.0081 0.0000 -5.9897 0.0000 -6.7402 0.0000
MDE: q = 2 -4.9218 0.0000 -3.5222 0.0002 -3.3838 0.0004

� The p-values are calculated under the alternative hypothesis Ha : Lp(e) < Lc(e), i.e., our proposed
Model 1 has higher predicative accuracy than the other competing models.
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Table 8: Out-of-sample evaluation of one-step-ahead forecast for 5-min low/high re-
turns

Wells Fargo Corporation

5 days�

MSElower MSEupper MLF1 MLF2 MDE1 MDE2

IAR-TS 360.1965 123.1417 31.7849 964.8324 7.9462 241.6691
IAR-MTS 360.4025 129.3673 32.5674 977.6035 8.1418 244.8849

Model 1 341.1291 164.1051 31.1969 1008.4783 7.7992 252.6171
Model 2 336.9076 114.9612 30.5583 902.2852 7.6396 225.9344
Model 3 340.2408 110.7288 30.6441 900.6928 7.6610 225.4848
Model 4 345.0843 171.0736 32.0008 1030.3954 8.0002 258.0789
Model 5 364.9090 126.9973 32.4253 981.7280 8.1063 245.9532
Model 6 337.9289 114.1284 30.6995 902.7200 7.6749 226.0287

Bank of America

5 days�

MSElower MSEupper MLF1 MLF2 MDE1 MDE2

IAR-TS 219.9246 293.1244 38.2963 1024.6959 9.5741 256.5245
IAR-MTS 222.9597 292.2842 38.7431 1028.8959 9.6858 257.6220

Model 1 249.8208 267.7880 37.0215 1032.6893 9.2554 258.8044
Model 2 218.2605 280.8948 37.0770 996.7381 9.2693 249.5777
Model 3 230.3074 268.1896 36.6976 994.8546 9.1744 249.2485
Model 4 249.7301 249.9335 36.8214 996.3532 9.2053 249.8318
Model 5 217.3751 285.9479 37.8088 1005.2017 9.4522 251.6615
Model 6 223.4179 266.3878 36.3261 977.2970 9.0815 244.9029

J.P. Morgan Chase

5 days�

MSElower MSEupper MLF1 MLF2 MDE1 MDE2

IAR-TS 130.7837 136.7175 28.2646 533.7610 7.0661 133.7506
IAR-MTS 130.9228 142.1662 28.9521 544.8586 7.2380 136.5445

Model 1 120.6567 136.5684 27.6903 513.2196 6.9226 128.6125
Model 2 128.7980 137.1945 28.0210 530.9230 7.0053 132.9963
Model 3 125.4281 138.0706 28.2265 525.6244 7.0566 131.7493
Model 4 117.0483 134.9645 27.8764 502.7195 6.9691 126.0064
Model 5 131.3306 139.2919 28.5458 540.1583 7.1365 135.3113
Model 6 123.6573 138.6216 28.0895 523.5328 7.0224 131.1395

� The number of observations in each day is 78. Hence, the number of observations in a 5-day
forecast sample is 390.
The numbers in boldface correspond to the two lowest values for a given loss function.
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Table 9: Out-of-sample Diebold-Mariano tests of nonparametric models v.s. IAR-TS/MTS
models

WFC BAC JPM
(Model 2 v.s. IAR-TS) (Model 6 v.s. IAR-TS) (Model 4 v.s. IAR-TS)

statistic p-value� statistic p-value� statistic p-value�

MSE: lower -1.1255 0.1302 0.2624 0.6035 -1.3543 0.0878
MSE: upper -1.2994 0.0969 -1.6995 0.0446 -0.1125 0.4552
MLF: p = 1 -2.6982 0.0035 -3.7893 0.0001 -1.1109 0.1333
MLF: p = 2 -1.7903 0.0367 -2.5713 0.0051 -1.3672 0.0858
MDE: q = 1 -2.6982 0.0035 -3.7893 0.0001 -1.1109 0.1333
MDE: q = 2 -1.7838 0.0372 -2.5342 0.0056 -1.3684 0.0856

WFC BAC JPM
(Model 2 v.s. IAR-MTS) (Model 6 v.s. IAR-MTS) (Model 4 v.s. IAR-MTS)

statistic p-value� statistic p-value� statistic p-value�

MSE: lower -1.1353 0.1281 0.0331 0.5132 -1.3663 0.0859
MSE: upper -2.0470 0.0203 -1.6320 0.0513 -0.4592 0.3230
MLF: p = 1 -4.2194 0.0000 -4.7888 0.0000 -2.8754 0.0020
MLF: p = 2 -2.0621 0.0196 -3.0183 0.0013 -1.8057 0.0355
MDE: q = 1 -4.2194 0.0000 -4.7888 0.0000 -2.8754 0.0020
MDE: q = 2 -2.0564 0.0199 -2.9970 0.0014 -1.8106 0.0351

� The p-values are calculated under the alternative hypothesis Ha : Lp(e) < Lc(e), i.e., our
proposed Model 1 has higher predicative accuracy than the competing model.
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(a) WFC: 5-min high, low, and close returns (in�) and numbers of trades
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(b) BAC: 5-min high, low, and close returns (in�) and numbers of trades
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(c) JPM: 5-min high, low, and close returns (in�) and numbers of trades

Figure 1: Time series plots
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Figure 2: WFC: actual and fitted values of center and range return
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Figure 3: BAC: actual and fitted values of center and range return
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Figure 5: Time series plots of estimates in the first step
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Figure 6: Time series plots of estimates in the first step
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Figure 7: Time series plots of estimates in the first step
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Figure 8: Nonparametric function of expected extreme returns versus trading intensity from Model
1 for WFC (Red solid line and green solid line are conditional extreme returns given trad-
ing intensity and fixing the other two regressors, center and range, at their unconditional
means. Blue dotted lines are upper and lower 95% confidence intervals.)
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Figure 9: Nonparametric function of expected extreme returns versus trading intensity from Model
1 for BAC (Red solid line and green solid line are conditional extreme returns given trad-
ing intensity and fixing the other two regressors, center and range, at their unconditional
means. Blue dotted lines are upper and lower 95% confidence intervals.)
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Figure 10: Nonparametric function of expected extreme returns versus trading intensity from Model
1 for JPM (Red solid line and green solid line are conditional extreme returns given trad-
ing intensity and fixing the other two regressors, center and range, at their unconditional
means. Blue dotted lines are upper and lower 95% confidence intervals.)
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