Selecting Non-Pharmaceutical Interventions for Influenza
Supplementary Materials

Rachael M. Jonesa and Elodie Adidab

aDivision of Environmental and Occupational Health Sciences
School of Public Health
University of Illinois at Chicago
2121 W Taylor St (M/C 922)
Chicago, IL 60612
USA
rjones25@uic.edu

b School of Business Administration
University of California, Riverside
900 University Ave
Riverside, CA 92521
USA
elodie.goodman@ucr.edu

Corresponding Author: Rachael M. Jones, 1-312-996-1960 (phone), 1-312-413-9898 (fax)
(a) Model I, $p = 0.12$

(b) Model II, $p = 0.034$

Figure S1: Total number of infections as a function of compliance for the higher probability of infection values in disease transmission models I and II.
Figure S2: Total number of infections as a function of compliance given 70% probability of infection for respirator use ($f_h = 0.7$) and 70% contact rate in the high-activity group ($f_d = 0.7$) for disease transmission models I and II.
Figure S3: Total number of infections as a function of compliance given 30% probability of infection for respirator use ($f_h = 0.3$) and 70% contact rate in the high-activity group ($f_d = 0.7$) for disease transmission models I and II.
Figure S4: Infections as a function of compliance given \(n_H = n_L = 50,000 \) persons in disease transmission models I and II.
Figure S5: Infections as a function of compliance given the high-activity group contact rate $\lambda_H = 35 \text{ day}^{-1}$ in disease transmission models I and II.

(a) Model I, $p = 0.10$

(b) Model II, $p = 0.028$
Figure S6: Total costs as a function of compliance given linear costs as a function of intervention compliance for both interventions, compared to exponential costs for social distancing intervention compliance in disease transmission model I with baseline conditions and $p = 0.12$.

(a) Linear Cost

(b) Exponential Cost
Figure S7: Total costs as a function of compliance given linear costs as a function of intervention compliance for both interventions, compared to exponential costs for social distancing intervention compliance in disease transmission model II with baseline conditions and $p = 0.034$.

(a) Linear Cost

(b) Exponential Cost
Figure S8: Total costs as a function of compliance given linear costs as a function of intervention compliance for both interventions, compared to exponential costs for social distancing intervention compliance in disease transmission model I with increased intervention effectiveness, $f_d = f_h = 0.3$, and $p = 0.10$.
Figure S9: Total costs as a function of compliance given linear costs as a function of intervention compliance for both interventions, compared to exponential costs for social distancing intervention compliance in disease transmission model I with decreased intervention effectiveness, $f_d = f_h = 0.7$, and $p = 0.10$.
Figure S10: Total costs as a function of compliance given linear costs as a function of intervention compliance for both interventions, compared to exponential costs for social distancing intervention compliance in disease transmission model I with decreased effectiveness of social distancing, \(f_d = 0.7 \), and increased effectiveness of the hygiene intervention, \(f_h = 0.3 \), and \(p = 0.10 \).
Figure S11: Total costs as a function of compliance given linear costs as a function of intervention compliance for both interventions in disease transmission models I ($p = 0.10$) and II ($p = 0.028$) with decreased effectiveness of social distancing, $f_d = 0.3$, and increased effectiveness of the hygiene intervention, $f_h = 0.7$.
Figure S12: Total costs as a function of compliance given linear costs as a function of intervention compliance for both interventions, compared to exponential costs for social distancing intervention compliance in disease transmission model II with increased intervention effectiveness, $f_d = f_h = 0.3$, and $p = 0.028$.
Figure S13: Total costs as a function of compliance given linear costs as a function of intervention compliance for both interventions, compared to exponential costs for social distancing intervention compliance in disease transmission model II with decreased intervention effectiveness, $f_d = f_h = 0.7$, and $p = 0.028$.
Figure S14: Total costs as a function of compliance given linear costs as a function of intervention compliance for both interventions, compared to exponential costs for social distancing intervention compliance in disease transmission model II with decreased effectiveness of social distancing, $f_d = 0.7$, and increased effectiveness of the hygiene intervention, $f_h = 0.3$, and $p = 0.028$.
Figure S15: Total costs as a function of compliance given linear costs as a function of intervention compliance for both interventions, compared to exponential costs for social distancing intervention compliance in disease transmission model I with increased contact rate in the high-activity group, $\lambda_H = 35 \text{ day}^{-1}$, and $p = 0.10$.
Figure S16: Total costs as a function of compliance given linear costs as a function of intervention compliance for both interventions, compared to exponential costs for social distancing intervention compliance in disease transmission model II with increased contact rate in the high-activity group, $\lambda_H = 35 \text{ day}^{-1}$, and $p = 0.028$.

(a) Linear Cost

(b) Exponential Cost
Figure S17: Total costs as a function of compliance given linear costs as a function of intervention compliance for both interventions, compared to exponential costs for social distancing intervention compliance in disease transmission model I with increased initial population in the high-activity group, \(n_H = n_L = 50,000 \) persons and \(p = 0.10 \).
Figure S18: Total costs as a function of compliance given linear costs as a function of intervention compliance for both interventions, compared to exponential costs for social distancing intervention compliance in disease transmission model II with increased initial population in the high-activity group, $n_H = n_L = 50,000$ persons and $p = 0.028$.

(a) Linear Cost

(b) Exponential Cost