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Abstract— This paper explores the problem of hospital stock-
piling of critical medical supplies in preparation for a possible
influenza pandemic. We consider a regional network of hospitals
that have mutual aid agreements in place such that they
may borrow or lend supplies from each other during medical
emergencies. We assume that the attack rate is a random
variable with known distribution and that the demand surge
due to the pandemic is a function of the attack rate, and is thus
stochastic. We further assume that each hospital in the network
pre-determines its targeted pandemic response level, and that
any demand beyond this pre-determined level is reallocated to
other hospitals. Each hospital in the network must decide the
stockpile level that minimizes its expected overall cost, including
purchasing cost, holding cost, cost (revenue) for borrowing
(lending), penalty for setting a too low targeted level, and
shortage penalty. To capture the mutual aid relationships of
hospitals in the network, we formulate the problem as a game
theoretic model. We show that the response sets are nested
and we provide an algorithm to obtain numerically the Nash
Equilibrium solution of this game. We illustrate the structure
of the model on a two-hospital example and perform sensitivity
analysis with respect to parameters of our model.

I. INTRODUCTION
With the recurrence of the Influenza A virus subtype H5N1

(also called avian flu or bird flu) in recent years, many public
health experts believe that the world is closer to a pandemic
event than at any time since the Hong Kong flu (H3N2)
outbreak of 1968. A pandemic may happen quickly once the
virus achieves efficient human to human transmission. Such
an event is a threat to healthcare facilities and a challenge
to public health officials across the country. An influenza
pandemic will likely cause a large surge of patients over
a short period of time and therefore potentially overwhelm
the healthcare systems that are already operating close to
capacity. As a consequence, public health and healthcare
decision-makers have started to institute flu pandemic re-
sponse plans including the establishment of flu pandemic
response procedures, protocols, and cooperation between
government agencies and healthcare providers. Some govern-
ment sources, such as the World Health Organization (WHO)
and the the Department of Health and Human Services
(HHS), provide general checklists and recommendations on
how to achieve preparedness goals [1]. However, there are
scarce evidence-based resources that can guide healthcare

P. C. DeLaurentis, School of Industrial Engineering, Purdue
University, West Lafayette, IN 47907 USA (765-496-1950),
chenp@purdue.edu)

E. Adida, Department of Mechanical & Industrial Engineering, University
of Illinois at Chicago, Chicago, IL 60607 USA, (elodie@uic.edu)

M. Lawley is with the Weldon School of Biomedical
Engineering, Purdue University, West Lafayette, IN 47907 USA,
(malawley@purdue.edu)

facilities to establish and maintain sufficient surge capacity,
including preparing enough medical supplies for a flu pan-
demic.

The research reported in this paper addresses the issue of
hospital stockpiling in preparation for a flu pandemic. We
assume that hospitals in a regional network have mutual aid
agreements under which each hospital may borrow or lend
supplies when in a medical emergency. Therefore, a game
theoretic framework is applied to this problem to capture
the effect of supply sharing between hospitals on stockpile
quantities. Moreover, since there are many uncertainties
associated with how a flu pandemic may start, how fast
it may spread and how severe it may become, we take a
stochastic approach. We assume that the overall hospital
surge demand of the region is determined by the flu attack
rate which follows a certain probability distribution. The
patient demand at each hospital in the network is a fraction
of the total demand that is proportional to its size. We
also assume that each hospital in the network has a pre-
determined response level to a possible flu pandemic. We
will show that this assumption leads to ordered so-called
nested response sets, which we define below. A game forms
when each hospital makes the decision of its stockpile
level in order to minimize the expected total cost incurred
with consideration of possible borrowing and lending, given
the stockpiling decisions of other hospitals in the network.
To differentiate this model from our previously developed
hospital stockpiling game [2], we call it a game with pre-
determined response levels.

The organization of this paper is as follows: Section II
describes the game model of stockpiling for a flu pandemic
and explores the properties of the model. Section III presents
some numerical examples, and sensitivity analysis. Section
IV concludes this paper, and suggests future work.

II. MODEL DESCRIPTION
A. Model Setup

Consider a network, H , of n hospitals participating in
a medical supply stockpiling game. The decision variable
for each hospital i = 1, . . . , n is its stockpile level, si. As
mentioned earlier, these hospitals have mutual aid agreement
in place under which each member in the network may share
supplies with one another in an emergency. Let α be the
clinical flu attack rate that determines the severity of a pan-
demic, defined as the percentage of clinical influenza illness
cases per population [3]. We assume that the probability
distribution of α is known with density function f(.) and
cumulative distribution function F (.). Note that F (0) = 0.



The set of pandemic scenarios, P , is defined as the collection
of scenarios induced by all possible attack rates.

P = {α | α ≥ 0, g(α) ≤ Bound}

where Bound is an upper limit on the attack rate and g(.)
is an increasing bounding function.

Assumption 1: We assume that the overall surge demand
of the hospital network, D(.), is a continuous, strictly in-
creasing function of α, and that each hospital i in the network
receives a fraction of D(α) in proportion to its hospital size,
zi.
Thus, the surge demand for i under pandemic scenario of
attack rate α can be expressed as di(α) = ai ·D(α), where
ai = zi∑n

j=1 zj
. We observe that D(.) is invertible and its

inverse D−1(.) is continuous and strictly increasing.
Assumption 2: We assume that hospital i pre-determines

a bound, Bi > 0, as the maximum surge demand for which
it plans.
We call response set for hospital i, denoted Ri, the subset of
pandemic scenarios such that the surge demand at i is within
the pre-determined bound. By definition,

Ri = {α | di(α) ≤ Bi} = {α |D(α) ≤ Bi
ai
} = [0, D−1(

Bi
ai

)].

The probability of a pandemic occurring within i’s response
set is

Pr(α ∈ Ri) = F (D−1(
Bi
ai

)).

B. Nested Response sets

The following result shows that the response sets are
nested.

Lemma 1: (Nested Response sets) We have either Ri ⊂
Rj or Rj ⊂ Ri.

Proof: We showed above that Ri = [0, D−1(Bi

ai
)] and

Rj = [0, D−1(Bj

aj
)]. If Bi

ai
≤ Bj

aj
, then since D−1 is strictly

increasing D−1(Bi

ai
) ≤ D−1(Bj

aj
) and Ri ⊂ Rj . Similarly, if

Bi

ai
≥ Bj

aj
then Rj ⊂ Ri.

Without loss of generality, we assume that the hospitals
are ordered such that

B1/a1 ≤ . . . ≤ Bn/an.

Then clearly R1 ⊂ R2 ⊂ . . . ⊂ Rn. Given a pandemic
scenario α, we define the responding hospital set to be

R(α) = {i ∈ H | α ∈ Ri} =
{
i ∈ H |α ≤ D−1(Bi/ai)

}
,

and the under-responding hospital set to be

N(α) = R(α)c = {i ∈ H | α /∈ Ri}
=

{
i ∈ H |α > D−1(Bi/ai)

}
.

If i ∈ R(α), then α ∈ Ri and thus α ∈ Rj ∀j > i.
We observe that

Pr(i ∈ R(α)) = Pr(α ∈ Ri) = F (D−1(
Bi
ai

)).

Figure 1 is a representation of the nested response sets
and the responding hospital set.
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Fig. 1. Illustration of nested response sets. For i and j such that
D−1(Bi/ai) < α < D−1(Bj/aj), we know that j ∈ R(α) and
i ∈ N(α).

C. Demand redistribution

We assume that if a pandemic occurs outside of a hos-
pital’s response set, i.e. if the surge demand exceeds the
pre-determined bound, the hospital’s unmet demand (demand
in excess of the bound) is redistributed among hospitals
in the network whose response set contains the pandemic
realization. However, if the severity of a pandemic lies
within a hospital’s response set, then there is no demand
redistribution from this hospital. Let the demand redistributed
from j ∈ H be rj(α). The two cases described above can
be mathematically written as follows.
• If j ∈ N(α), then dj(α) > Bj and rj(α) = dj(α)−Bj .
• If j ∈ R(α), then dj(α) ≤ Bj and rj(α) = 0.

D. Receipt of redistributed demand

As described above, the hospitals in the responding set
receive redistributed demand from under-responding hospi-
tals. For i ∈ R(α), the proportion of the total redistributed
demand that i receives is

wi(α) =
zi∑

j∈R(α) zj
,

where we recall that zi is the size of hospital i. Clearly,
wk(α) = 0, ∀k ∈ N(α). Therefore the redistributed demand
that i receives is

xi(α) = wi(α) ·
∑

j∈N(α)

rj(α)

= wi(α) ·
∑

j∈N(α)

(dj(α)−Bj)

E. Inventory surplus & deficit

Hospital i’s inventory surplus (y+
i (si)) and deficit (y−i (si))

are defined as the following:
• If hospital i is responding, i.e., i ∈ R(α), then

y−i (si) = max{0, di(α) + xi(α)− si}
y+
i (si) = max{0, si − di(α)− xi(α)}

• If hospital i is under-responding, i.e., i ∈ N(α).

y+
i (si) = max{0, si −Bi}
y−i (si) = max{0, Bi − si}

Note that we make the dependency on si explicit, but not
the dependency on α for ease of exposition.



We further define the system-wide inventory surplus and
deficit as

Y +(s) =
∑
i∈H

y+
i (si)

Y −(s) =
∑
i∈H

y−i (si)

We observe that the system-wide inventory surplus and
deficit depend on the stockpiling decisions of all hospitals
(as well as, implicitly, on α). Clearly, if Y −(s) > Y +(s)
then there is a deficit overall (i.e. the overall stockpile is
lower than the overall demand), while if Y −(s) < Y +(s)
then there is a surplus overall. We assume that supplies are
distributed evenly across all hospitals. In other words, if there
is a deficit overall, hospital i with an inventory surplus will
loan all of its surplus y+

i (si), and hospital j with an inventory
deficit will receive y−j (sj)

Y +(s)
Y −(s) . If there is a surplus overall,

hospital i with an inventory surplus will loan y+
i (si)

Y −(s)
Y +(s) ,

and hospital j with an inventory deficit will receive y−j (sj).
We observe that

Y −(s) > Y +(s) ⇔
n∑
i=1

di(α) >
n∑
i=1

si ⇔ D(α) >
n∑
i=1

si

and therefore

Pr(Y −(s) > Y +(s)) = 1− F (D−1(
n∑
i=1

si)).

F. Objective function

The objective of each hospital is to minimize the expected
total cost incurred by stockpiling medical supplies. The total
cost includes the cost of purchasing the supplies, the holding
cost until the start of the pandemic and the cost of borrowing
supplies from other hospitals in the network if necessary.
A hospital that lends supplies receives a compensation.
Moreover, we assume that hospitals get penalized for not
having enough supplies to meet the demand, and for setting
a pre-set limit too low. Hospital i’s total stockpile cost is
then given by

Ji(si, s−i) = [Stockpile Purchase & Holding Cost
− Supply Sharing Income
+Supply Borrowing Cost
+Supply Shortage Penalty
+Under Prepared Penalty] (1)

where s−i denotes the stockpile levels of all hospitals except
i. The optimization problem faced by hospital i depends on
the decisions made by all other hospitals, hence it is called a
best-response problem. Our goal is to find a Nash equilibrium
for this game, i.e. a set of stockpile levels for all hospitals
such that they are all at their best response and have no
incentive to deviate.

The best response problem of hospital i can be written:

min
si

E[Ji(si, s−i)]

= min
si

E

[
csi + hTsi − b1 min

{
y+
i (si), y+

i (si)
Y −(s)
Y +(s)

}
+ b2 min

{
y−i (si), y−i (si)

Y +(s)
Y −(s)

}
+ ps max

{
0, y−i (si)− y−i (si)

Y +(s)
Y −(s)

}
+ pr max{0, di(α)−Bi}

]
= min

si

(c+ hE[T ])si − b1E
[
min

{
y+
i (si), y+

i (si)
Y −(s)
Y +(s)

}]
+ b2E

[
min

{
y−i (si), y−i (si)

Y +(s)
Y −(s)

}]
+ psE

[
max

{
0, y−i (si)−

(
y−i (si)

Y +(s)
Y −(s)

)}]
+ prE [max{0, di(α)−Bi}] (2)

The symbols used in this model are listed in Table I.
Expression (2) is too complex to solve in closed-form be-
cause of the terms such as E

[
min

{
y+
i (si), y+

i (si)
Y −(s)
Y +(s)

}]
involve intricate conditional expectations.

TABLE I
NOTATION USED IN THIS MODEL

Symbol Explanation
H Set of hospitals in the network of interest
n number of hospitals in H
si Stockpile level of hospital i; decision variable
α Flu gross attack rate (random variable)
F (.) cumulative distribution function for α
f(.) probability density function for α
P All possible pandemic scenarios
D(.) Overall surge demand of the hospital network
zi Size of hospital i
di(.) Demand of hospital i
ai Fraction of overall demand at hospital i
Bi Hospital i’s pre-set response level
Ri Response set of hospital i
R(.) Set of responding hospitals
N(.) Set of under-responding hospitals
ri(.) Amount to be redistributed to others
wi(.) Proportion of demand redistributed to i
xi(.) Redistributed demand that i receives
y+i (.) Hospital i’s inventory surplus
y−i (.) Hospital i’s inventory deficit
Y +(.) System-wide inventory surplus
Y −(.) System-wide inventory deficit
Ji(.) Total stockpiling cost of hospital i
b1 Unit cost charged by lending hospitals
b2 Unit cost charged to borrowing hospitals
c Unit purchasing cost
h Unit holding cost
ps Unit penalty cost due to supply shortage
pr Unit penalty cost due to under preparedness
T Time until the onset of next flu pandemic (random variable)

G. Solution method

1) Estimating objective function: Since no closed-form
expression of the best-response objective function can be ob-
tained, we adopt a simulation approach to solve the problem



numerically. The primary uncertainty in the stockpiling game
is the severity of a flu pandemic which is characterized by
its clinical attack rate, α. As mentioned earlier, we assume
α follows a certain distribution. Thus, the simulation method
starts by sampling α according to its distribution. The steps
to estimate the expected total stockpiling cost for a given
vector s = (s1, . . . , sn) are shown in Table II.

TABLE II
STEPS TO ESTIMATE EXPECTED TOTAL STOCKPILING COST

1. Set sample size to M.
2. For k=1 to M

Sample α = αk according to its distribution.
Calculate Jk

i (s) as the value of Ji(s) for α = αk .
End For

3. Calculate expected Ji(s) by averaging all Jk
i (s),

i.e. E[Ji(s)] =
∑M

k=1 J
k
i (s)

For a given s−i, once the expected objective function,
E[Ji(si, s−i)], is obtained for a large number of values of
si, the best response can be found as the stockpile level,
s∗i (s−i), that minimizes E[Ji(si, s−i)] with respect to si.

2) Finding a Nash equalibrium: A Nash equilibrium is
a commonly known concept for defining the outcome of a
noncooperative game. it is defined as a profile of strategies at
which each player’s strategy is an optimal response to other
players’ strategies [4]. Mathematically, it is the fixed point
of the best response mapping. A unique Nash equilibrium is
especially useful since it helps predict the outcome of the
game. However, not all games have a Nash solution, and
some games may have multiple Nash equilibria.

For a two-hospital game as the example shown in the next
section, a Nash equilibrium is simply the intersection of the
best response functions of the two hospitals involved. If the
Nash equilibrium cannot be seen on a plot, a solution can
be obtained by some algorithms designed to search for a
Nash equilibrium. One example is the iterative algorithm. In
such an algorithm, players update their strategies iteratively
by selecting unilaterally their best responses in turn until
adjustments are no longer needed and an equilibrium is
thus reached. At each iteration, each one of the players
sequentially selects his or her best strategy responding to
other players’ decisions in the previous stage. This iterative
process stops when each one of the players’ strategies is
within a very small tolerance of the best response, and the
current set of strategies is deemed the equilibrium solution
[4], [5].

III. NUMERICAL EXAMPLES

In order to illustrate the mathematical properties and
concepts of this model, a two-hospital stockpiling game is
set up and shown in this section. We let the clinical attack
rate, α, follows a triangular distribution with (lower limit,
upper limit, mode) = (0, 35, 7) since we assume that α is
likely to range from 0% to 35% (as in the great pandemic in
1918) with most probable case of a seasonal-flu-like scenario
which has α=7%. The values of hospital characteristics and

stockpile costs used throughout this section are shown in
Table III.

TABLE III
DATA USED IN THE 2-HOSPITAL GAME EXAMPLE

c 5
h 1
b1 6
b2 7
ps 60
pr 60
B = [B1B2] [150 50]
E[T ] 12
z = [z1z2] [120 30]
Baseline demand @ α = 7% 200

A. Illustration of objective function

The first illustration is the objective function. We consider
a game with two hospitals indexed i = 1, 2. Figure 2 shows
that the objective function of hospital 1, J1(.), varies with the
value of the stockpile level of hospital 2, s2. Note that J1(.)
appears to be convex in s1. For a given s2, the best response
s∗1(s2) of hospital 1 is the value of s1 at which J1(s1, s2) is
minimized with respect to s1. We notice that as s2 increases,
the overall value of J1(.) decreases and s∗1(s2) decreases.
This is reasonable since the more hospital 2 stockpiles, the
more hospital 1 can expect to borrow from hospital 2 when
needed, which reduces hospital 1’s overall cost and optimal
stockpile quantity.
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Fig. 2. Example of the estimated expected objective function of hospital
1, E[J1(s1, s2)], as a function of its stockpile level s1 and for 3 possible
values of hospital 2’s stockpile level, s2, in a 2-hospital game.

B. Illustration of best response function

As mentioned earlier, a Nash equilibrium corresponds
to the set pf decisions such that all players are at their
best response. Geometrically, a Nash equilibrium lies is the
intersection of the best response functions. In Figure 3, the
solid line is the best response of hospital 1, s∗1(s2), as a
function of the stockpile of hospital 2, while the dashed
line is the best response of hospital 2, s∗2(s1), as a function



of hospital 1’s stockpile level. It clearly shows that there
is exactly one intersection of these two functions. A closer
look at the plot reveals that the two best response functions
intersect at (s1, s2) = (150, 50) which is a Nash equilibrium
in this example.
Note that the solution is the stockpile level of one medical
item under the assumed cumulative surge demand predicted
throughout the course of a flu pandemic. These numbers
can easily be scaled up or down for different types of
medical supplies which may have different replacement rates
depending on common practice or the standards of medical
care.
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Fig. 3. Example of best response functions in a 2-hospital game. s∗1(s2) is
the best response of hospital 1 as a function of hospital 2’s stockpile level.
Similarly, s∗2(s1) is the best response of hospital 2 as a function of hospital
1’s stockpile level.

C. Sensitivity analysis

We recognize that it is generally difficult to estimate
some of the parameters used in this game model such as
the expected time to the onset of the next flu pandemic,
the penalty cost of shortage and the penalty cost of under-
preparedness. Therefore, it is useful to perform a sensitivity
analysis of the best response solutions with respect to these
values. It will help us understand the behavior of the hospital
stockpiling game model. We select two most influencing
factors in the model to present in this paper.

1) Expected time to onset of a flu pandemic: As men-
tioned before, there are many uncertainties associated with a
possible pandemic outbreak. Since the onset of such a disease
depends greatly on the characteristics of the virus, scientists
and/or public health experts cannot predict precisely when
it will occur. Though unpredictable, the expected time to
the onset of the next pandemic, E[T ], is an important
parameter which affects the inventory holding cost incurred
for a hospital supply stockpile. Figure 4 shows that the Nash
solution varies with different values of E[T ].

It is clear that when the expected time to the next pandemic
is longer, hospitals will tend to stockpile less. This is so
because if hospitals expect to store supplies in the warehouse

for a longer period of time (thus spend more money in
storage), they likely will stockpile less in order to minimize
the storage (holding) cost. The relationship between E[T ]
and the stockpile level is also valuable information for public
health policy makers. It proves that when communicating
with healthcare providers or even the general public on
pandemic planning matters, an urgency in the message may
be key to timely and sufficient response to the task.

2) Penalty cost of supply shortage: We also recognize
the difficulty of assigning a value to the penalty cost due to
supply shortage, ps, in this model. Figure 5 shows the rela-
tionship between ps and hospital stockpile levels indicating
that when a higher penalty cost is assessed (such as when a
hospital is more risk averse), hospitals will maintain a larger
quantity of inventory. When the consequence of not meeting
surge demand is low, i.e., ps is small, hospitals will stock a
lesser amount.

IV. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In this research, we adopt a game theoretical approach to
study the stockpiling decisions of a network of hospitals in
anticipation of a flu pandemic. A hospital’s decision on the
stockpile level of medical supplies depends not only on the
uncertainties associated with the possible next flu pandemic,
but also on its mutual aid relationship with other partner
hospitals in the network. Since this hospital stockpiling
game model does not have a closed-form expression for
each hospital’s best response, we use a simulation approach
to estimate the objective functions and best responses by
sampling flu attack rate, α. We illustrate on a two-hospital
example the Nash equilibrium solution. We also show some
sensitivity analysis results indicating hospital stockpile levels
vary with different expected time to the next pandemic and
penalty cost due to supply shortage.

B. Future work

We envision the future work of this model will include
the presentation of a n-hospital game (where n > 2) and its
Nash solutions. The sensitivity of the solutions should also
be tested and compared with those in a 2-hospital game.
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Fig. 4. The solution of a 2-hospital game varies with the expected time
to the onset of next pandemic, E[T ]. As E[T ] increases, hospital stockpile
levels decrease.
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Fig. 5. The solution of a 2-hospital game varies with the penalty cost for
shortage, ps. As ps increases, hospitals stockpile more supplies.


