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Abstract

In this paper, we present a continuous time optimal control model for studying a dynamic
pricing and inventory control problem for a make-to-stock manufacturing system. We consider
a multi-product capacitated, dynamic setting. We introduce a demand-based model where the
demand is a linear function of the price, the inventory cost is linear, the production cost is an
increasing strictly convex function of the production rate and all coefficients are time-dependent.
A key part of the model is that no backorders are allowed. We introduce and study an algorithm
that computes the optimal production and pricing policy as a function of the time on a finite
time horizon, and discuss some insights. Our results illustrate the role of capacity and the effects
of the dynamic nature of demand in the model.
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1 Introduction

1.1 Motivation

Continuous-time optimal control models (sometimes also referred as fluid models) provide a pow-
erful tool for understanding the behavior of systems where the dynamic aspect plays an important
role. In recent years, there has been a lot of research in an attempt to provide a deeper under-
standing of optimal control models from a theoretical as well as an application point of view. In
particular, an attractive feature of these models is that they provide good scheduling, production
and inventory policies in a variety of settings. Furthermore, they approximate well the underlying
stochasticity of problems in a deterministic way. Fluid models arise in applications as diverse as
routing and communication systems as well as queueing, supply chain and transportation systems.

A continuous time approach has the advantage of not introducing any approximation to the
real setting: it provides the exact solution of the system. When taking a discrete time approach,
one has to decide what a reasonable time step should be, and to allow price and production changes
only at those times. In reality, in some settings a supplier may need more flexibility. In order to
avoid being too restrictive, the time step needs be very small, and if the time horizon is large the
size of the problem may become exceedingly large, in terms of number of variables and number of
constraints. Therefore, the problem size usually implies significant delays in obtaining good solu-
tions. Examples of supply chain industries where continuous-time optimal control models of the
type we discuss in this paper are relevant, include industries with a high volume of throughput and
data on costs and demand that change a lot. The hardware as well as the semiconductor industries
are such examples. Moreover, we believe that a similar approach can be applied to problems in
areas other than dynamic pricing and inventory control, where the evolution of the system evolves
dynamically and justify a continuous time approach. We believe that the techniques presented in
this paper may be helpful to those areas as well.

The overall goal of this research is to introduce and study a nonlinear continuous time opti-
mal control model and its application to dynamic pricing and inventory control. In our analysis
we use ideas from deterministic continuous-time optimal control theory together with nonlinear
optimization techniques. We consider non-perishable goods sharing a production capacity that is
time-varying and derive an open-loop optimal production and pricing policy over time.

1.2 Some Related Literature

A large part of the literature has focused on the solution of linear continuous-time optimal control
models (see for example Anderson [4], [5], Pullan [50]). This part of the literature shows existence
of an optimal solution with piecewise constant controls. Pullan in particular showed strong duality
and designed a class of algorithms solution convergent. However, when fluid models are nonlin-
ear, the dynamic together with the nonlinear aspect of the problem make them harder to analyze.
Nonlinear fluid models are particularly useful for dynamic pricing and inventory management ap-
plications, as we explained above. A variety of models have been proposed in the literature for
such applications (see references below). These models typically differ due to the production cost,
inventory cost, and demand functions considered.
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A large volume of literature studies a demand model for the single-product case. For example Pekel-
man [49] solves the dynamic pricing and production policy problem for a single product optimizing
over a finite time horizon. He models the demand as a linear function of the price with time-
varying coefficients. The model uses linear inventory cost with a constant coefficient, and a general
strictly convex production cost. The model does not allow backorders. Feichtinger and Hartl [25]
extend this model by considering a general nonlinear demand function and allowing backorders,
with both piecewise linear and strictly convex inventory costs. They obtain phase diagrams for the
equilibrium and transient behavior of the optimal solution with a finite or infinite time horizon.
Another extension is introduced by Thompson, Sethi and Teng in [52], where the production rate
and the level of inventory are bounded, and the production cost is either linear or strictly convex.
Gaimon [27] considers additional controls by allowing decisions on the maximal production rate as
well as price and production output, where the change in maximal production rate has an effect on
the production cost. [21], [33] and [39] consider the case of centralized or decentralized decisions
between a distributor and a manufacturer in an industrial channel of distribution. Locke Ander-
son [41] considers production decisions when the production of a final good requires as input the
production of an intermediate good. In the single-product model, Jørgensen [34] uses a continuous
time optimal control model to study demand learning effects while Laurent-Varin [40] introduces
an interior-point solution algorithm.

In a multi-product setting, Bertsimas and Paschalidis [8], Harrison [31] and Meyn [47] study a
make-to-stock problem using fluids. Specifically, Bertsimas and Paschalidis in [8] study an inventory
control problem with fixed demand rate and capacity rate shared among all classes. Their model
allows backorders and computes a production policy by minimizing either a linear or a quadratic
inventory cost over successive small intervals. Luo [42] considers a make-to-stock multi-class queue-
ing scheduling problem that minimizes a convex quadratic backorder and holding cost and finds
an optimal production policy over the entire time horizon. Kleywegt [38] uses a cutting plane
algorithm to solve a multi-class optimal control problem of dynamic pricing with profit linear in
terms of selling rate. Fleisher and Sethuraman [26] provide an approximation algorithm to solve
the optimal control of fluid queueing networks. Moreover, Van Ryzin and McGill [54] designed
an adaptive approach within the framework of airline revenue management based on historical ob-
served data. They study an algorithm through stochastic approximation theory. Gallego and van
Ryzin [28], [29] consider the problem of dynamically pricing over a finite horizon when demand is
stochastic and price sensitive. Finally, Kachani and Perakis [35], [36] take a delay-based approach
to determine optimal pricing and production policies, where the price and level of inventory affect
the delay (time that a product remains in inventory).

A stream of research has focused on a dynamic programming approach to solve pricing and/or
inventory problems (see [3], [7]). In these models, the (possibly infinite) time horizon is divided into
time periods and allowing decisions at the beginning of each period, as opposed to the research cited
above that takes a continuous time approach. Maglaras and Meissner [45] approach the pricing
problem under fixed capacity by reducing the problem to determining the aggregate rate at which
all products jointly consume resource capacity, and defining an efficient frontier. Federgruen and
Heching [24] address pricing and inventory control for a single product under stochastic demand,
with backorders, no fixed cost, and in a periodic review model. They characterize the value function
and show that a base-stock policy is optimal. Chen and Simchi-Levi ([14], [15]) consider the model
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where ordering costs include a fixed cost component, both in the finite and infinite time horizon
case. They show that if the time horizon is finite, an (s, S, p) policy is optimal for additive demand,
but not for multiplicative demand. Using k-convexity, they show that for an infinite horizon and in-
put parameters independent of time, an (s, S, p) policy is optimal for both types of demand models.

The literature on dynamic pricing is growing fast. Elmaghraby and Keskinocak in [22] and
the references therein provide a comprehensive literature review of dynamic pricing models while
Bitran and Caldentey [11] provide an overview of research on dynamic pricing and its relation to
Revenue Management. Furthermore, Zipkin [56] and the references therein provide a thorough
review of recent advances in inventory control theory and its relation to supply chain. Chan, Shen,
Simchi-Levi and Swann [12] review research on coordination of pricing and inventory decisions.
Finally, Yano and Gilbert [55] and the references therein provide a review of pricing and produc-
tion/procurement decisions.

In a setting where the problem has a dynamic aspect, such as traffic control, queueing networks,
supply chain, or transportation, there is a connection with fluid models, which can be viewed (when
there is no stochasticity) as continuous time optimal control models. More theoretically, many pa-
pers study general continuous time optimal control models. [6], [32], [37] and [51] give formulations
of the Maximum Principle under state variable constraints. Clarke ([16], [17], [18], [19] with others)
and Devdariani and Ledyaev [20] provide theoretical results on global optimality conditions.
For the solution of linear fluid models, Bertsimas and Luo [43] construct an algorithm solving
state constrained separated continuous linear programs under some assumptions. Fluid models
also connect with semi-infinite programming problems. Tunçel and Todd [53] study the asymptotic
behavior of interior point methods for semi-infinite programming by finding the limits of search
directions, potential functions and central paths as the number of variables becomes infinite.

1.3 Contributions

In this paper, we will consider a finite time horizon problem. Although we will focus on a dynamic
pricing application, our results apply to more general continuous time optimal control models. The
model we study incorporates the following features:

(i) a continuous-time, dynamic environment;
(ii) multiple, non-perishable products;
(iii) a dynamic production capacity shared among all products;
(iv) time-varying coefficients;
(v) two controls for each product at each time: price and production rate;
(vi) no backorders are allowed.

Our goal is twofold: study the structure of the optimal policy, and propose a method for com-
puting it. Furthermore, we note that when we consider this problem in a setting where data are
uncertain and we take a robust optimization approach, the robust counterpart problem can be
formulated in a form very similar to the deterministic problem. As a result the solution algorithm
we present in this paper can be adapted to solving the problem under uncertainty (see [2]).

We assume that multiple products share a single common production capacity. This assump-
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tion is a standard one in the literature that considers multiclass systems. For example, Bertsimas
and Paschalidis [8] consider a multiclass make-to-stock system and assume that a single facility
produces several products, with the production process over time taken as an arbitrary stationary
stochastic process. Also in a make-to-stock manufacturing setting with multiple products, Kachani
and Perakis [35] suppose that the total production capacity rate across all products is bounded.
Gilbert [30] addresses the problem of jointly determining prices and production schedules for a
set of items that are produced on the same production equipment and with a limited capacity.
Maglaras and Meissner [45] consider a monopolist firm that owns a fixed capacity of a resource
that is consumed in the production of multiple products. Finally, Biller et al. [10] extend a single
product model of dynamic pricing to cover supply chains with multiple products, each of which is
assembled from a set of parts and shares common production capacity. In order to keep the model
simple in this paper, we make a similar assumption of a single production capacity constraint, and
we leave as a direction of future research the case of multiple capacity constraints which could be
applicable to certain production settings.

Inventory problems may allow or deny backorders, i.e. the possibility of having a negative inven-
tory level. In a manufacturing system which does not allow backorders and the demand rate is not
external, but determined by a relationship with price, the price can be adjusted so that no demand
is actually lost. That is, the price is set so that the accumulated demand never exceeds the inventory
level, in such a way that the selling rate equals the demand rate. These models add a constraint
that ensures inventory of a given product i is always non negative (i.e., Ii(t) ≥ 0 ∀t ∈ [0, T ]),
where T is the time horizon and Ii(t) the inventory level of product i at time t. There is a holding
cost associated with inventory. We assume the holding cost is linear: hi(t)Ii(t), where hi(t) is a
positive holding cost coefficient for product i at time t.
Nevertheless, the constraint of having no backorders is a difficult one. In this paper, we study this
difficulty using ideas from optimal control and nonlinear optimization.

We will consider a solution approach when the objective of the continuous time optimal control
model incorporates (a) linear inventory costs, (b) a nonlinear cost structure due to the strictly
convex production cost, (c) a nonlinear revenue component. The demand for product i will be
modelled as a linear decreasing function of the price of that product : di(t) = αi(t) − βi(t)pi(t),
where di(t) and pi(t) are respectively the demand and the price at time t for product i, and αi(t)
and βi(t) are known positive real valued functions of time.
This will allow us to derive a continuous time optimal policy as a function of a Lagrange multiplier
that applies to the entire time horizon determining simultaneously the prices and the production
rates of all products (as a function of the Lagrange multiplier). We then propose an heuristic al-
gorithm to compute the Lagrange multiplier, and thus obtain the optimal solution. Our approach
does not introduce a time discretization. It illustrates the effect of capacity in the problem as well
as the effect of the dynamic nature of the problem.

Previous work by the same authors [1] shows that under some assumptions, we can derive the
exact Lagrange multiplier over time as well, rather than using a heuristic algorithm to determine it.
However, the procedure may be quite complex and the assumptions difficult to verify. Therefore,
in this paper, it is important to propose a heuristic algorithm that exhibits computationally good
convergence results and is not too complex to implement.
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We would like to point out that it is possible to extend this approach to consider a nonlinear de-
mand function of the price by using a very similar reasoning. Nevertheless, for the sake of simplicity
and ease of computation, we will discuss our approach in terms of a linear demand function of the
price as is often done in the literature.

We have assumed that the demand for a product depends only on the price for this product
and not on the prices of other products. This assumption is standard in multi-product pricing
problems when the products are considered distinct so that they target distinct classes of customers.
The automotive industry is one example of industry where such an assumption is valid (see [10]).
Bertsimas and de Boer [7] study a joint pricing and resource allocation problem in which a finite
supply of resource can be used to produce multiple products and the demand for each product
depends on its price. They apply this problem to airline revenue management. Paschalidis and Liu
[48] consider a communication network with fixed routing that can accommodate multiple service
classes and in which the arrival rate of a given class (or demand for that class) depends on the
price per call of that class only. In their multi-product case, Biller et al. [10] assume that there
are no diversions among products, i.e. that a change in the price for one product does not affect
the demand for another product. They motivate this assumption by focusing on items that appeal
to various consumer market segments, such as luxury cars, SUV, small pickup, etc. for example of
the automotive industry. We position this paper in the same line of research and make the similar
assumption of a demand independent of prices of other products. A more general model would
allow the demand to depend on all prices with various price elasticities. However, such a model
would significantly increase the complexity of the problem. This problem would go beyond the
scope of this paper but could be the focus of follow-up research.

1.4 Structure of the paper

The remainder of this paper is structured as follows: in Section 2 we describe the notations we will
use throughout the paper, we describe the model and we explain the general solution approach.
In Section 3, we detail the computation of the optimal solution assuming the capacity constraint
multiplier is given, and we provide some results on the structure of the solution. In Section 4, we
provide a heuristic algorithm that allows to obtain that multiplier. In Section 5, we discuss insights
from numerical examples.
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2 Notations, model and solution approach

2.1 Notations and definitions

Inputs
T time horizon;
N number of products;

K(t) shared production capacity rate at time t (non negative);
I0
i initial non negative inventory level for product i;

hi(t) holding cost of one unit of product i at time t;
fi(.) production cost function for product i with respect to the production rate;

αi(t), βi(t) coefficients used for product i at time t in the linear relationship between price
and demand di(t) = αi(t)− βi(t)pi(t).

Outputs
pi(t) price of one unit of product i at time t (control variable);
ui(t) production flow rate of product i at time t (control variable);
Ii(t) inventory level (number of units) of product i at time t (state variable).

Definitions
We denote by I(.), p(.), u(.), α(.), β(.) the vectors with respective components

Ii(.), pi(.), ui(.), αi(.), βi(.), i = 1, . . . , N.

I∗(.), p∗(.), u∗(.) will denote the optimal solution.
When x and y are vector of the same size n , x × y will denote the vector with components
xiyi, i = 1, . . . , n.
We define:

Constrained interval: Interval of time where the inventory level equals zero (also called boundary
interval).

Constrained product: Product that is on a constrained interval.

Unconstrained interval: Interval of time where the inventory level is positive.

Unconstrained product: Product that is on an unconstrained interval.

Active product: Product with a positive production rate.

Inactive product: Product with a production rate equal to zero.

We notice that for any pricing and production policy we consider (and in particular an optimal
policy), the inventory level will be structured via a sequence of intervals, where the inventory level
is successively positive and equal to zero. A constrained interval starts at an entry time and finishes
at an exit time, i.e. the time the inventory level becomes again positive.

Assumption 1. We will assume throughout the paper that for each product, there is a finite number
of entry and exit times.
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2.2 Description of the model and assumptions on the data

This problem was solved by Pekelman [49] for the single product case with a holding cost coeffi-
cient constant in time and no production capacity constraint. Nevertheless, the presence of multiple
products sharing production capacity makes the problem rather complex.

Assumption 2. For all products i, αi(.), βi(.), hi(.) as well as K(.) are assumed to be positive,
continuous functions of the time. Moreover, αi(.), βi(.) and K(.) are assumed to be continuously
differentiable.

Assumption 3. For all products i, function fi(.) is assumed to be twice continuously differentiable,
strictly convex, non-negative and increasing on [0,K(t)].

The problem seeks to maximize the revenues minus the inventory and production costs. As a
result, it can be written as follows:

max
∫ T

0

[ N∑

i=1

(
pi(t)di(t)− fi(ui(t))− hi(t)Ii(t)

)]
dt (1)

s.t. İi(t) = ui(t)− di(t), ∀t ∈ [0, T ] i = 1, . . . , N,

di(t) = αi(t)− βi(t)pi(t), ∀t ∈ [0, T ] i = 1, . . . , N,
N∑

i=1

ui(t) ≤ K(t), ∀t ∈ [0, T ],

ui(t), pi(t), di(t), Ii(t) ≥ 0, ∀t ∈ [0, T ] i = 1, . . . , N,

Ii(0) = I0
i , i = 1, . . . , N.
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Equivalently:

max
∫ T

0

[ N∑

i=1

(
pi(t)(αi(t)− βi(t)pi(t))− fi(ui(t))− hi(t)Ii(t)

)]
dt (2)

s.t. İi(t) = ui(t)− αi(t) + βi(t)pi(t), ∀t ∈ [0, T ] i = 1, . . . , N, (3)
N∑

i=1

ui(t) ≤ K(t), ∀t ∈ [0, T ], (4)

Ii(t) ≥ 0, ∀t ∈ [0, T ] i = 1, . . . , N, (5)
ui(t) ≥ 0, ∀t ∈ [0, T ] i = 1, . . . , N (6)

0 ≤ pi(t) ≤ αi(t)
βi(t)

, ∀t ∈ [0, T ] i = 1, . . . , N, (7)

Ii(0) = I0
i , i = 1, . . . , N.

We observe that in this continuous time optimal control model, constraint (3) is the dynamic
equation that describes the evolution of the level of inventory, modelled as a continuous and differ-
entiable function of time.
Constraint (4) corresponds to the common production capacity that is shared among all the prod-
ucts. This is the only constraint that is coupling the products and prevents us from simply solving
N times a single-product problem.
Constraint (5) represents the no backorder constraint. Notice that these are constraints on the
state variables. This makes their treatment different from constraints on control variables but also
harder. We will apply the Maximum Principle in the case of inequality constraints on the state
variables (see [6], [37], [51]).
We introduce constraints (6) and (7) to ensure that prices and production rates are non-negative.
Furthermore, the upper bounds on the prices reflect the fact that the demand should remain non-
negative. These are constraints on the control variables, which are taken into account by simply
restricting the feasible domain of admissible controls.

We assume that the following assumption holds.

Assumption 4.

• f ′i(0) < αi(t)
βi(t)

, i = 1, . . . , N ∀t ∈ [0, T ];

• hi(t) < αi(t)
βi(t)

.

Assumption 4 means that the intercept of the marginal production cost function on the one
hand, and the cost of holding one unit of good on the other hand, are smaller than the maximum
price that may be charged at any fixed time.

2.3 Existence of an optimal solution

Theorem 1. Under Assumptions 2, 3 and 4, there exists an optimal solution u∗(.), p∗(.) to Problem (1).

The proof of this result is given in Appendix C.
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2.4 Solution approach

In order to solve problem (1), we will employ ideas from control theory and nonlinear optimization.
Since we are dealing with a continuous-time control problem, we will first define the Hamiltonian
function using adjoint variables corresponding to the dynamic equations. We will also introduce a
Lagrangian function by dualizing the difficult constraints, i.e. the capacity constraint and the no
backorder constraints. Dualizing the capacity constraint will enable us to decouple the problem,
and reduce it to several single-product problems. Subsequently, we will use the Maximum Principle
under constraints on the state variables and the indirect adjoining method to the Lagrangian
function (see Hartl, Sethi and Vickson [32] or Sethi and Thompson [51]).

• We will assign adjoint variables qi(t) in order to dualize the dynamic constraint i at time t;

• We will write the Hamiltonian function;

• We will assign multipliers ρi(t) to dualize the constraint on the non negativity of Ii(t);

• We will assign a multiplier η(t) to dualize the capacity constraint;

• Through these multipliers, we will construct the Lagrangian function (8).

We will simultaneously compute, as a function of the capacity Lagrange multiplier, the no back-
order Lagrange multipliers and adjoint variables that satisfy these optimality conditions, and will
allow us to compute an optimal policy.

We use the vector notation q(t) ≡ (q1(t), . . . , qN (t)), ρ(t) ≡ (ρ1(t), . . . , ρN (t)). In Section 3,
we will present a solution approach for the problem, consisting in:
(i) first writing the optimality conditions and the optimal solution for each product i at a given fixed
time t as a function of multipliers qi(t)+ρi(t) and η(t). (ii) Then we will augment the approach by
also computing the vector q(t)+ρ(t) as a function of multiplier η(t) instead of assuming it is given.
We will solve the problem for any time t under the assumption that we know multiplier η(t). This
allows us to “ignore” the state variable and capacity constraints but allows us to take into account
the dynamic equations.
(iii) Finally, we consider the problem solution over the whole time horizon and we introduce a
heuristic algorithm that computes multiplier η(.) iteratively. Thus, using the previous results, the
computation of η(.) gives rise to q(.) + ρ(.) which in turn enables to obtain the optimal solution.

3 Solution for multiplier η(t) given

3.1 Approach overview

In what follows we will assume that the multiplier η(.) corresponding to the capacity constraint is
given (see also Subsection 2.4 above). Our goal in this section is to illustrate how we can obtain an
optimal solution in the case we know the value of this multiplier. As a result, we need to find the
multipliers and adjoint variables that satisfy the necessary conditions for optimality. In particular,
we take the following approach.
In Section 3.2, we write the necessary condition for optimality. The condition that the Lagrangian
should be maximized allows us to obtain the optimal price and production rate at a given time,
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as well as the derivative of the optimal inventory level, as a function of the multipliers and adjoint
variables, η(.) assumed to be known, as shown in Section 3.3. Therefore we next focus on deter-
mining the multipliers and adjoint variables.
The system consists of a sequence of constrained and unconstrained intervals. We first consider
constrained intervals in Section 3.4. Since the inventory level is kept constant at zero, its derivative
also equals zero. This observation enables us to characterize the adjoint variables and multipliers
on such intervals.
By complementary slackness, on unconstrained intervals, the Lagrange multiplier for the no stock-
out constraint equals zero, and the adjoint equation is used to determine the adjoint variable, as
shown in Section 3.5.
We next need to make the connection between intervals (Section 3.6), and determine the entry and
exit times, and conditions to enter constrained intervals. To this end, we use continuity conditions
to examine transitions from unconstrained to constrained interval. Transversality conditions enable
to show that there exists a critical initial inventory level beyond which it is optimal to idle on the
entire time horizon, as detailed in Section 3.7. Finally, in Section 3.8, we synthesize the result from
the entire section to provide a solution method providing the optimal controls over time for a given
multiplier η(t).
In the subsections to follow we discuss these steps with further details.

3.2 Necessary conditions for optimality

The reader should refer to Appendix A for more details on the results from optimal control theory
we will use.
We note that after dualizing the capacity constraint, the problem separates across products and
yields N subproblems with no production capacity constraint. However, the problem remains un-
changed if we add the constraint that each production rate does not exceed the total production
capacity.

We express the Hamiltonian function as follows:

H(I, p, u, q, t) =
N∑

i=1

(
pi

(
αi(t)− βi(t)pi

)− fi(ui)− hi(t)Ii + qi

(
ui − αi(t) + βi(t)pi

))

where the arguments I, p, u, q are vectors with N components and t is the time argument.
The Lagrangian function relaxing the no backorder constraints and the capacity constraint can
then be written as:

L(I, p, u, q, ρ, η, t) = H(I, p, u, q, t) +
N∑

i=1

ρi

(
ui − αi(t) + βi(t)pi

)
+ η

(
K(t)−

N∑

i=1

ui

)
(8)

where the arguments I, p, u, q, ρ are vectors with N components, argument η is a non negative real
number, and t is the time argument.
Notice that we dualized only the difficult constraints, i.e. the capacity constraint and the no back-
order constraint, and not those that bound the admissible controls.

Using Theorem 2 in Appendix A (note that Lemmas 3, 4 and 5 in Appendix B show that the
assumptions of Theorem 2 hold), at the optimal solution,
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• The state trajectory satisfies:

I∗i (0) = I0
i , i = 1, . . . , N

I∗i (t) ≥ 0, ∀t ∈ [0, T ], i = 1, . . . , N

İ∗i (t) = u∗i (t)− αi(t) + βi(t)p∗i (t), ∀t ∈ [0, T ], i = 1, . . . , N.

• The optimal control on [0, T ] is then given as a function of the adjoint variable and Lagrange
multipliers by:

(p∗(t), u∗(t)) = arg max
(p,u)∈W (t)

L(I∗(t), p, u, q(t), ρ(t), η(t)), (9)

where W (t) is the set of admissible controls (p, u) such that:

0 ≤ ui ≤ K(t), i = 1, . . . , N,

0 ≤ pi ≤ αi(t)
βi(t)

, i = 1, . . . , N.

• Additional feasibility constraints on [0, T ] include constraint (4), i.e.:

N∑

i=1

u∗i (t) ≤ K(t),

as well as
İ∗i (t) = 0 ∀i, t such that I∗i (t) = 0.

• Complementary slackness conditions on [0, T ] give rise to:

η(t)
(
K(t)−

N∑

i=1

u∗i (t)
)

= 0

ρi(t)I∗i (t) = 0, i = 1, . . . , N

ρ̇i(t) ≤ 0 on boundary interval of I∗i (.), i = 1, . . . , N

ρi(t) ≥ 0, i = 1, . . . , N

η(t) ≥ 0, i = 1, . . . , N.

• The vector of adjoint variables q(.) satisfies the adjoint equation almost everywhere (i.e.
except at the entry times to the boundary condition I∗i (t) = 0):

q̇i(t) = −∇Ii L(I∗(t), p∗(t), u∗(t), q(t), ρ(t), η(t), t)
= hi(t) i = 1, . . . , N,

as well as transversality conditions1

(qi + ρi)(T ) ≥ 0, i = 1, . . . , N

I∗i (T )(qi + ρi)(T ) = 0, i = 1, . . . , N.

1Notice that the transversality conditions are written using the direct adjoining method.
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• Finally, for i = 1, . . . N ,

◦ I∗i (.) is a continuous function of time;

◦ qi(.) is a continuous function of time except at the entry times to the boundary condition2

I∗i (t) = 0;

◦ (qi + ρi)(.) is a continuous function of time everywhere3.

3.3 The optimal solution as a function of the multipliers and adjoint variables

Proposition 1. Under Assumptions 2, 3 and 4, given q(.), ρ(.) and η(.), there exist at each time
t ∈ [0, T ], unique optimal controls given by:

p∗i (t) = arg max
0≤pi≤αi(t)

βi(t)

(
αi(t)− βi(t)pi + (qi(t) + ρi(t))βi(t)

)
pi

=





0 if qi(t) + ρi(t) ≤ −αi(t)
βi(t)

,

1
2

(
αi(t)
βi(t)

+ qi(t) + ρi(t)
)

if − αi(t)
βi(t)

< qi(t) + ρi(t) ≤ αi(t)
βi(t)

,
αi(t)
βi(t)

otherwise,

(10)

u∗(t) = argmax
u≥0

(
qi(t) + ρi(t)− η(t)

)
ui − fi(ui)

=





0 if qi(t) + ρi(t)− η(t) ≤ f ′i(0),
f
′−1
i (qi(t) + ρi(t)− η(t)) f ′i(0) < qi(t) + ρi(t)− η(t) ≤ f ′i(K(t))

K(t) otherwise.
(11)

Proof. We solve optimization problem (9) in order to determine the optimal policy as a function of
the multipliers and adjoint variables. We notice that the Lagrangian function is separable across
products and in pi and ui (we have dualized the coupling constraints). Furthermore, it is a strictly
concave continuously differentiable function in pi and ui (since for every product i, fi is a strictly
convex function, which implies that the function ui 7→ (qi(t) + ρi(t) − η(t))ui − fi(ui) is strictly
concave on R+). Moreover, the remaining constraints (those not dualized, which are constraints on
the control variables only) are linear, i.e. they constrain the control variables within a convex set.
Therefore, there are unique optimal controls (u∗(t), p∗(t)), which are the maximizers of the La-
grangian function over the feasible control variables. To compute them, we consider the partial
derivatives of the Lagrangian function:

∂L

∂ui
(I, p, u, q, ρ, η, t) = −f ′i(ui) + qi + ρi − η

∂L

∂pi
(I, p, u, q, ρ, η, t) = αi(t)− 2βi(t)pi + βi(t)qi + βi(t)ρi.

To obtain the optimal solution, we proceed as follows. We first solve the equations setting these
partial derivatives to zero. If the solution obtained lies within the set of feasible controls (defined by

2The adjoint variable may be discontinuous at the entry or exit times to constrained intervals. However, by
convention, we impose continuity at the exit times. This allows to constrain the multiplier ρ to be non negative. See
[32] for more details.

3This is a consequence from the theory of the direct adjoining method. See [46] or [49] for a justification.
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the linear, not dualized constraints), then it is the optimal control. Otherwise, the optimal control
lies on a boundary of the set of feasible controls, i.e. zero for production rates, and either zero or
αi(t)
βi(t)

for the price, depending on which value corresponds to the higher value of the Lagrangian.
Before ending the proof, we recall that we assumed fi defined on R+ to be positive, strictly convex
and increasing. Moreover, f ′i is also defined on R+ and is strictly increasing with range [f ′i(0), +∞).
Therefore, on the one hand it is invertible and on the other hand f ′i(u) ≥ f ′i(0) ≥ 0 ∀u ≥ 0.
Moreover, it implies that f

′−1
i is positive valued and f

′−1
i (u) is defined for u ≥ f ′i(0). The result

then follows.

We can also derive the expression for İ∗i (t) = u∗i (t)− αi(t) + βi(t)p∗i (t) = vi,t(qi(t) + ρi(t), η(t))
where function vi,t is defined below:

vi,t(x, η) =





−αi(t) x < −αi(t)
βi(t)

1
2

(
βi(t)x− αi(t)

) −αi(t)
βi(t)

≤ x < min{f ′i(0) + η, αi(t)
βi(t)

}
0 αi(t)

βi(t)
≤ x < f ′i(0) + η

f
′−1
i (x− η) max{αi(t)

βi(t)
, f ′i(0) + η} ≤ x < f ′i(K(t)) + η

f
′−1
i (x− η) + 1

2

(
βi(t)x− αi(t)

)
f ′i(0) + η ≤ x < min{αi(t)

βi(t)
, f ′i(K(t)) + η}

K(t) + 1
2

(
βi(t)x− αi(t)

)
f ′i(K(t)) + η < x ≤ αi(t)

βi(t)

K(t) x ≥ max{αi(t)
βi(t)

, f ′i(K(t)) + η}

(12)

We notice that function vi,t depends only on the inputs. It is illustrated in Figure 1

We observe that vi,t(., η(t)) is continuous, piecewise differentiable, non-decreasing, and taking
values on [−αi(t),K(t)].
Moreover, we recall that on a constrained interval, the inventory level is maintained at the constant
level zero, thus its derivative is kept at zero. It is therefore of interest to study whether for some
given multiplier η, function vi,t(., η) may take the value zero:
- if αi(t)

βi(t)
− f ′i(0) ≤ η(t), then vi,t(., η(t)) equals zero on interval [αi(t)

βi(t)
, f ′i(0) + η(t)) (Figure 1 (a)).

We notice that if qi(t) + ρi(t) ∈ [αi(t)
βi(t)

, f ′i(0) + η(t)], its actual value is irrelevant as ui(t) = 0 and

pi(t) = αi(t)
βi(t)

. This case is impossible for η(t) sufficiently small however.

- if αi(t)−2K(t)
βi(t)

− f ′i(K(t)) ≤ η(t) ≤ αi(t)
βi(t)

− f ′i(0), vi,t(., η(t)) has exactly one zero si,t, that is on
[f ′i(0) + η(t), min{αt

βt
, f ′i(K(t)) + η(t)}), verifying

f
′−1
i (si,t − η(t)) +

1
2
(
βi(t)si,t − αi(t)

)
= 0

(Figure 1 (b) and (c)) - else, vi,t(., η(t)) has exactly one zero si,t = αi(t)−2K(t)
βi(t)

∈ [f ′i(K(t)) +

η(t), αi(t)
βi(t)

] (Figure 1 (d)).
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Figure 1: Plot of function vi,t(., η) for (a) αi(t)
βi(t)

< f ′i(0) + η < f ′i(K(t)) + η, or

(b) f ′i(0) + η < αi(t)
βi(t)

< f ′i(K(t)) + η, or (c),(d): f ′i(0) + η < f ′i(K(t)) + η < αi(t)
βi(t)
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3.4 Constrained intervals

3.4.1 Preliminary results

Let

gi(t, z) = z − f ′i
(αi(t)− βi(t)z

2

)

defined for t ∈ [0, T ] and, (for a given value of t) for z ∈ [αi(t)−2K(t)
βi(t)

, αi(t)
βi(t)

]
.

We define li,t : z 7→ gi(t, z).

Proposition 2. Under Assumptions 2, 3 and 4, function li,t(.) is an invertible mapping on[αi(t)−2K(t)
βi(t)

, αi(t)
βi(t)

]
and its range for a fixed t is

(αi(t)−2K(t)
βi(t)

− f ′i(K(t)), αi(t)
βi(t)

− f ′i(0)
]
.

Proof. It is clear that li,t(.) is continuous, strictly increasing and differentiable.
We compute

l′i,t(z) = 1 +
βi(t)

2
f ′′i

(αi(t)− βi(t)z
2

)
> 0

since fi is strictly convex, so li,t(.) is strictly increasing (for a fixed t), and hence invertible.

Corollary 1. Under Assumptions 2, 3 and 4, given 0 ≤ η ≤ αi(t)
βi(t)

−f ′i(0), equation vi,t(z, η) = 0 for

argument z (and fixed t) has a unique solution z0 ≡ φi(t, η) satisfying f ′i(0) + η < φi(t, η) ≤ αi(t)
βi(t)

.
Moreover, φi(., .) is continuous in both arguments.

We see that φi(t, η(t)) represents qi(t) + ρi(t) expressed as a function of η(t) for constrained
products.

Proof.

first case: η ≥ αi(t)−2K(t)
βi(t)

− f ′i(K(t)):
Since η is in the range of li,t(.) (for a fixed t), using the previous proposition l−1

i,t (η) is well
defined and unique. As a result, the solution of the equation is uniquely defined by z0 =
l−1
i,t (η) ∈ [αi(t)−2K(t)

βi(t)
, αi(t)

βi(t)

]
and we have η = li,t(z0) = gi(t, z0).

Let φi(t, η) = l−1
i,t (η). In particular, since li,t(.) is continuous, φi(., .) is continuous in its second

argument. The continuity of φi(., .) with respect to its first argument follows from the fact
that gi(., .) is continuous in both arguments and from the relation gi(t, φi(t, η))− η = 0.
Since

η = φi(t, η)− f ′i
(αi(t)− βi(t)φi(t, η)

2

)

with the argument αi(t)−βi(t)φi(t,η)
2 ≥ 0 in the expression above, it follows that η ≤ φi(t, η)−

f ′i(0).
We easily verify that vi,t(., η) is non zero elsewhere.

second case: η < αi(t)−2K(t)
βi(t)

− f ′i(K(t))

The function z 7→ K(t) + 1
2

(
βi(t)z − αi(t)

)
, defined on [f ′i(K(t)) + η(t), αi(t)

βi(t)
] and taking its

values on [K(t) + 1
2

(
βi(t)(f ′i(K(t)) + η(t)) − αi(t)

)
, K(t)] has exactly one zero φi(t, η) =
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αi(t)−2K(t)
βi(t)

∈ [f ′i(K(t)) + η(t), αi(t)
βi(t)

]. We easily verify that vi,t(., η) is non zero elsewhere.
Continuity is clear. Since f ′i(.) is increasing, φi(t, η) ≥ f ′i(K(t)) + η(t) implies φi(t, η) ≥
f ′i(0) + η(t).

Corollary 2. (i) Function φi(., .) is piecewise continuously differentiable in its first argument and

∂φi

∂t
(t, η) =





1
2
(α′i(t)−β′i(t)φi(t,η))f ′′i

(
αi(t)−βi(t)φ(t,η)

2

)

1+
βi(t)

2
f ′′i

(
αi(t)−βi(t)φ(t,η)

2

) , η ≥ αi(t)−2K(t)
βi(t)

− f ′i(K(t))

(α′i(t)−2K′(t))βi(t)−(αi(t)−2K(t))β′i(t)
β2

i (t)
, η < αi(t)−2K(t)

βi(t)
− f ′i(K(t))

(ii) Function φi(., .) is piecewise continuously differentiable in its second argument and

∂φi

∂η
(t, η) =





1

1+
βi(t)

2
f ′′i

(
αi(t)−βi(t)φ(t,η)

2

) , η ≥ αi(t)−2K(t)
βi(t)

− f ′i(K(t))

0, η < αi(t)−2K(t)
βi(t)

− f ′i(K(t))

Proof. Clear in the second case η < αi(t)−2K(t)
βi(t)

− f ′i(K(t)). For the first case:
(i) Differentiability follows from the differentiability of g(., .) with respect to both arguments and
from the relation gi(t, φi(t, η))− η = 0. The expression is obtained by observing that the relation
gi(t, φi(t, η))− η = 0 implies by differentiating with respect to t:

∂gi

∂t
(t, φi(t, η)) +

∂φi

∂t
(t, η)

∂gi

∂z
(t, φi(t, η)) = 0

and since ∂gi
∂z (t, φi(t, η)) = l′i,t(φi(t, η)),

∂φi

∂t
(t, η) = −

∂gi

∂t (t, φi(t, η))
l′i,t(φi(t, η))

(ii) The result follows immediately from φi(t, η) = l−1
i,t (η) and the expression of the derivative of

li,t(.).

Let ψi(t) = φi(t, 0). In particular, function ψ(.) is piecewise continuously differentiable.

3.4.2 Structure of the solution on constrained intervals

We observe that the production capacity constraint being non tight at time t implies η(t) = 0. We
now provide some results on the structure of the optimal solution, in both cases of non tight and
tight capacity constraint.

Proposition 3. If η(t) = 0, then each constrained product i at time t is active and the optimal
solution is

• if αi(t)−2K(t)
βi(t)

− f ′i(K(t)) ≤ 0, then ψi(t) = l−1
i,t (0) and

p∗i (t) =
1
2

(αi(t)
βi(t)

+ ψi(t)
)
, u∗i (t) = f

′−1
i (ψi(t)) =

1
2

(
αi(t)− βi(t)(ψi(t))

)
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• if αi(t)−2K(t)
βi(t)

− f ′i(K(t)) > 0, then ψi(t) = αi(t)−2K(t)
βi(t)

and

p∗i (t) =
αi(t)−K(t)

βi(t)
, u∗i (t) = K(t)

Proof. Consider product i that has a zero inventory level at time t. The condition İi(s) = 0
must hold on the interior of the current constrained interval (which includes time t) since the
inventory level remains at the value 0. Therefore, on that interval, qi(t) + ρi(t) = φi(t, 0) =
ψi(t) ∈ [f ′i(0), αt

βt
], therefore the product is active. The optimal solution is then obtained using the

preliminary results.

This result means that, when the capacity constraint is not tight, the inventory level of a prod-
uct is kept at zero by producing with a certain positive rate that balances out the amount being
sold. When the capacity constraint cannot be ignored, this result may no longer be true as cumu-
latively, these necessary production rates may exceed the capacity.

The following results are directly derived from the preliminary results.

Proposition 4. If η(t) ≥ αi(t)
βi(t)

− f ′i(0) and product i is constrained at time t, then

u∗i (t) = 0; p∗i (t) =
αi(t)
βi(t)

.

In other words, when the capacity constraint is very hard to satisfy, i.e. the system would tend
to want to produce a lot beyond the available capacity, then the inventory level of a product is kept
at zero by not producing and pricing at the maximum (which yields a zero demand rate).

Lemma 1. If η(t) > 0, then each constrained product i at time t is active if and only if

η(t) <
αi(t)
βi(t)

− f ′i(0).

Moreover, we then have qi(t) + ρi(t) = φi(t, η(t)).

Proposition 5. If αi(t)−2K(t)
βi(t)

−f ′i(K(t)) ≤ η(t) < αi(t)
βi(t)

−f ′i(0) and product i is constrained at time
t, then

u∗i (t) = f
′−1
i (φi(t, η(t))− η(t)) =

1
2
(
αi(t)− βi(t)φi(t, η(t))

)
; p∗i (t) =

1
2

(αi(t)
βi(t)

+ φi(t, η(t))
)
.

Proposition 6. If 0 < η(t) < αi(t)−2K(t)
βi(t)

− f ′i(K(t)) and product i is constrained at time t, then

u∗i (t) = K(t); p∗i (t) =
αi(t)−K(t)

βi(t)
.

These results illustrate that, when the capacity constraint is not overly constraining (as it is in
Proposition 4), it is optimum to produce (rather than idle) and price so that the inventory level
remains at zero.
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3.5 Unconstrained intervals

We show below some results that hold under Assumptions 2, 3 and 4 and that connect the multipliers
with the notions of unconstrained and active products.

Lemma 2. For each unconstrained product i at time t with last exit time t1i (possibly 0), the
following equality holds:

qi(t) + ρi(t) = qi(t) = qi(t1i ) +
∫ t

t1i

hi(s)ds.

Proof. On the current unconstrained interval (including t, starting at t1i ), the inventory level for
product i is positive, therefore by complementary slackness, ρi(.) takes value 0 on that interval.
Moreover, the adjoint equation (which holds everywhere except at entry times4) gives q̇i(s) = hi(s).
Since qi(.) is continuous at exit time t1i implies in particular that this differential equation is valid
on [t1i , t], which gives rise to the result.

Corollary 3. For each unconstrained product i at time t with last exit time t1i (possibly zero),

u∗i (t) =





0 if qi(t)− η(t) ≤ f ′i(0),
f
′−1
i (qi(t)− η(t)) f ′i(0) < qi(t)− η(t) ≤ f ′i(K(t))

K(t) otherwise,

p∗i (t) =





0 if qi(t) ≤ −αi(t)
βi(t)

,
αi(t)
2βi(t)

+ 1
2qi(t) if − αi(t)

βi(t)
≤ qi(t) ≤ αi(t)

βi(t)
,

αi(t)
βi(t)

if qi(t) ≥ αi(t)
βi(t)

,

where qi(t) ≡ qi(t1i ) +
∫ t
t1i

hi(s)ds.

3.6 Transition between constrained and unconstrained intervals

We now attempt to view the problem globally on the time horizon rather than instantaneously as
was done so far. We explained earlier in the paper that the horizon is divided in a sequence of
constrained and unconstrained intervals (starting with an unconstrained one if I0

i > 0, and with a
constrained one if I0

i = 0). In this section, we show some properties regarding entering and exiting
constrained and unconstrained intervals.

The following result is a direct extension of Lemma 1.

Corollary 4. If a product i enters (resp. exits) a constrained interval at a time τ such that
η(τ) < αi(τ)

βi(τ) − f ′i(0), it does so as an active product.

This result means that, unless the capacity is overly constraining, it is necessary to be pro-
ducing in order to enter a phase where the inventory level is kept at zero, even if the product is
not particularly profitable. The other alternative would be to increase its price close to the maxi-
mum in order to lower the demand close to zero and avoid the inventory level to decrease further
and reach zero, but this would yield almost no revenue as the revenue is proportional to the demand.

4When writing the necessary conditions for optimality, by convention, the adjoint variables may be discontinuous
only at entry times of constrained intervals.

19



Proposition 7. If an unconstrained product i enters a constrained interval at time τ such that
η(τ) < αi(τ)

βi(τ) − f ′i(0) then it is active at time τ and the entry time τ is determined by

lim
t→τ−

qi(t) = φi(τ, η(τ)).

Proof. Activity follows from Lemma 1. The entry condition results from continuity of qi + ρi at
the entry time.

Proposition 8. If an unconstrained product i enters a constrained interval at time τ such that
η(τ) ≥ αi(τ)

βi(τ) − f ′i(0) then it is inactive at time τ and the entry time τ is determined by

lim
t→τ−

qi(t) =
αi(τ)
βi(τ)

Proof. Inactivity follows from Proposition 4. Suppose i is unconstrained on interval [τ − δ, τ), and
is constrained inactive on [τ, τ + δ′], where δ, δ′ > 0 and η(τ) ≥ αi(τ)

βi(τ) − f ′i(0). Since τ is the time
when product i becomes constrained, i.e. when the inventory level goes from being positive to
being equal to zero, we assume without loss of generality that δ is small enough so that we have
İi(t) < 0 on [τ − δ, τ). (Otherwise, we decrease δ: since product i is unconstrained on [τ − δ, τ), it
is unconstrained on any interval included in [τ − δ, τ).) Since i is inactive constrained on [τ, τ + δ′],
we have p∗i (t) = αi(t)

βi(t)
on that interval and thus qi(t) + ρi(t) ≥ αi(t)

βi(t)
on [τ, τ + δ′].

Suppose that qi(τ+) + ρi(τ+) > αi(τ
+)

βi(τ+)
. Continuity of qi + ρi implies that, for δ small enough,

qi(t) + ρi(t) = qi(t) ≥ αi(t)
βi(t)

on [τ − δ, τ), and thus pi(t) ≥ αi(t)
βi(t)

. This yields İi(t) = ui(t) ≥ 0 which

leads to a contradiction. Therefore qi(τ+) + ρi(τ+) = αi(τ
+)

βi(τ+)
. Continuity of qi + ρi implies the

result.

Remark. This result implies that a constrained interval begins and ends as active, unless the
capacity is overly constraining. While active, qi(t) + ρi(t) = φi(t, η(t)), in particular at the entry
time. It is possible that during the course of the constrained interval, the product becomes inactive
(if η(t) ≥ αi(t)

βi(t)
−f ′i(0)), in which case the optimal policy is known - but qi(t)+ρi(t) is undetermined.

A product may enter a constrained interval as inactive if the capacity is very constraining. Then
the entry time is determined by qi reaching αi(.)

βi(.)
.

Let φ̃i(t) ≡ φi(t, η(t)). Since η(.) is piecewise differentiable, and φi(, ., ) is piecewise differentiable
with respect to both arguments, then φ̃i(.) is piecewise differentiable. We have

dφ̃i

dt
(t) =

∂φi

∂t
(t, η(t)) + η′(t)

∂φi

∂η
(t, η(t))

and we gave the expression of those partial derivatives earlier in the paper.

We will call transitive time for product i a time such that
{

lims→t−
dφ̃i
dt (s) ≤ hi(t)

η(t) ≤ αi(t)
βi(t)

− f ′i(0)
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or 



lims→t−
d

αi
βi
dt (s) ≤ hi(t)

η(t) > αi(t)
βi(t)

− f ′i(0)

Proposition 9. Product i may enter a constrained interval only at a transitive time.

This is simply saying that the transition from an unconstrained interval to a constrained interval
may occur only at a transitive time. Intuitively, this is due to the fact that it may not be possible
to optimally maintain the inventory level of a product at zero under any circumstances.

Proof. Upon entering a constrained interval, qi(t) + ρi(t) = φi(t, η(t)) = φ̃i(t) if η(t) ≤ αi(t)
βi(t)

− f ′i(0)

and qi(t) + ρi(t) = αi(t)
βi(t)

otherwise. By taking derivative with respect to t and using the adjoint
equation as well as the fact that ρ̇i(t) ≤ 0, the result follows.

In the following, we denote

θi(t, η(t)) ≡
{

φi(t, η(t)), η(t) ≤ αi(t)
βi(t)

− f ′i(0)
αi(t)
βi(t)

, η(t) > αi(t)
βi(t)

− f ′i(0)

and θ̃i(t) ≡ θi(t, η(t)), so that on a constrained interval, qi(t) + ρi(t) follows θi(t, η(t)), and the
condition to enter a constrained interval is (i) qi(t) intersects θi(t, η(t)), and (ii) the total derivative
with respect to time of θi(t, η(t)) does not exceed hi(t) (transitive time).

3.7 A view of the entire time horizon

Proposition 10. If a product i has a positive level of inventory at time T , under Assumptions 3,
and 4, then the inventory level is positive throughout the entire time horizon.

Proof. Consider a product i that has a positive inventory level at time T . This means by comple-
mentary slackness that ρi(T ) = 0. Moreover, using the transversality conditions, it follows that
qi(T ) + ρi(T ) = qi(T ) = 0. Suppose that the inventory level of that product has reached zero at
some point within the time horizon. Let τ < T be the last exit time from a constrained interval. We
have Ii(τ) = 0 and Ii(t) > 0 ∀t ∈ (τ, T ], therefore ρi(t) = 0 ∀t ∈ (τ, T ]. In particular, ρi(τ+) = 0.
Then, since qi + ρi is continuous everywhere and since product i is constrained at time τ−,

0 ≤ f ′i(0) < θi(τ−, η(τ−)) = qi(τ−) + ρi(τ−) = qi(τ+) + ρi(τ+) = qi(τ+)

and therefore, using the adjoint equation valid on [τ, T ],

qi(T ) = qi(τ+) +
∫ T

τ
hi(s)ds > qi(τ+) > 0.

This is a contradiction.

We notice that this result makes sense at an intuitive level. There is no reward at the end of the
time horizon for any remaining inventory. Moreover, incurring inventory that is not sold incurs cost
but not revenue. Therefore, if the retailer follows an optimal pricing and production policy, she
will not incur any inventory that will not be sold by time T . As a result, if there is some remaining
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inventory at time T , it means that this inventory was not incurred by some additional production,
but was incurred from the initial inventory. In other words, no production took place throughout
the entire time horizon and therefore, since there is some inventory at time T , the inventory level
was positive all along.

Corollary 5. There exists Īi > 0 defined as Īi ≡ − ∫ T
0 wi(t)dt > 0 such that

I0
i > Īi ⇐⇒ product i is unconstrained on the entire time horizon including time T ,

where

0 ≥ wi(t) =




−αi(t) if Gi(t) < −αi(t)

βi(t)

1
2

(
− αi(t) + βi(t)Gi(t)

)
if Gi(t) ≥ −αi(t)

βi(t)

Gi(t) = −
∫ T

t
hi(s) ds ≤ 0.

Moreover, in that case product i is inactive on the entire time horizon.

Proof. If a product i is such that I∗i (t) > 0, ∀t ∈ [0, T ], then ρi(t) = 0, ∀t ∈ [0, T ] and for this
product i there is a unique unconstrained interval, on which the adjoint equation is valid.
Since qi(t) = qi(0) +

∫ t
0 hi(s)ds and qi(T ) = 0, it follows that qi(0) = − ∫ T

0 hi(s)ds and therefore

qi(t) + ρi(t) = qi(t) = −
∫ T

t
hi(s)ds ≡ Gi(t) ≤ 0 ≤ f ′i(0), ∀t ∈ [0, T ].

Therefore, u∗i (t) = 0, ∀t ∈ [0, T ] and

p∗i (t) =





0 if Gi(t) < −αi(t)
βi(t)

1
2

(
Gi(t) + αi(t)

βi(t)

)
if Gi(t) ≥ −αi(t)

βi(t)
.

(13)

We will denote P this pricing and production policy on [0, T ].
Therefore, since İ∗i(t) = u∗i (t)− αi(t) + βi(t)p∗i (t), it follows that

İ∗i (t) =




−αi(t) if Gi(t) < −αi(t)

βi(t)

1
2

(
− αi(t) + βi(t)Gi(t)

)
if Gi(t) ≥ −αi(t)

βi(t)

i.e. İ∗i (t) = wi(t). Moreover,

0 < I∗i (T ) = I0
i +

∫ T

0
İ∗i (t)dt ≡ I0

i − Īi.

For the converse, suppose that the inventory level reaches zero within the time horizon. Let
τ ≤ T the first time the inventory level becomes equal to zero. On the first unconstrained interval
[0, τ), since I∗i (t) > 0, by complementary slackness ρi(t) = 0, ∀t ∈ [0, τ). The adjoint equation
then implies

qi(t) = qi(τ−)−
∫ τ

t
hi(s)ds ∀t ∈ [0, τ).
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The adjoint variable qi(.) may be discontinuous at entry time τ , but (qi + ρi)(.) is continuous and
in particular at the entry to the constrained interval, (qi + ρi)(τ) = φi(τ, η(τ)) > 0.
Continuity of (qi + ρi)(.) along with the fact that ρi(τ−) = 0 then imply

qi(τ−) = (qi + ρi)(τ−) = θi(τ, η(τ)) > 0.

Therefore,

qi(t) = qi(τ−)−
∫ τ

t
hi(s)ds > −

∫ τ

t
hi(s)ds > −

∫ T

t
hi(s)ds = Gi(t) ∀t ∈ [0, τ).

Furthermore, we observe that policy P yields a multiplier qi(t) equal to Gi(t) and a derivative of
the inventory level equal to wi(t). We notice in expression (12) that the derivative of the inventory
level on an unconstrained interval is non decreasing with qi(t). As a result, İ∗i (t) > wi(t) ∀t ∈ [0, τ).
In other words, in this case the inventory does not decrease as fast on [0, τ ] as with policy P, but
the entire initial inventory level is consumed by time τ . However, Īi represents the total inventory
consumed on [0, T ] with policy P. More rigorously, İ∗i (t) > wi(t) ∀t ∈ [0, τ) implies

−Īi =
∫ T

0
wi(t)dt ≤

∫ τ

0
wi(t)dt <

∫ τ

0
İ∗i (t)dt = −I0

i

i.e. I0
i > Īi.

Remark: If I0
i = Īi, then the same policy holds and we obtain Ii(T ) = 0. (The inventory level

reaches zero for the first time at time T , and the optimal strategy is given by policy P.)

This result suggests that there exists for each product a critical value of the initial inventory
level above which it is optimal to never produce on the entire time horizon. This critical value
depends only on the demand parameters and the holding cost of that product.

This result will also be used in its negative form, i.e. if I0
i < Īi then the inventory level of

product i reaches zero on [0, T ], and is at zero level at the end of the time horizon T . We will
distinguish two possible cases then:

case a: the inventory level of product i reaches zero for the first time before the end of the time
horizon T , i.e. enters a constrained interval of non zero length within the time horizon, and
as we proved earlier it is on a constrained interval at the end of the time horizon T

case b: the inventory level of product i reaches zero for the first time at the end of the time horizon
T (without entering a constrained interval). Then the product is unconstrained on [0, T ), and
the initial inventory level is totally consumed by the end of the time horizon T .

We will refer to these two cases in the remaining of the paper and the description of the algorithm.
Note that if I0

i = Īi, the inventory level also reaches zero for the first time at time T (like in case
b) but the optimal strategy is to idle while in case b the optimal strategy will not be to idle in
general.
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3.8 Solving the model

In what follows, we describe how to derive the optimal solution for a given multiplier η(.)
First we test whether each product has an initial inventory level high enough (i.e. higher that

Īi) so that it is optimal to never produce them. The pricing policy is as shown in the proof of
Corollary 5.
Otherwise, we know that the inventory level reaches zero by time T .
As we discussed earlier in the paper, once for all i the value of qi(.) + ρi(.), i = 1, . . . , N, is known,
assuming that η(.) is given, the optimal pricing and production policies p∗i and u∗i are easy to
compute.
To determine qi(.) + ρi(.), i = 1, . . . , N, we have to solve N single product problems. We proceed
as follows for each product i:

Step 1: (first unconstrained interval)
If there is a non zero initial inventory level I0

i , we start on an unconstrained interval. (If there is
no initial inventory level, we start on a constrained interval: set t0i = 0 and go to Step 2.)
On that unconstrained interval, ρi(t) = 0 and qi(t) + ρi(t) = qi(t). Using the adjoint equation, the
value of qi(t)+ ρi(t) on that interval can be determined as a function of time t and the initial value
of the adjoint variable q0

i ≡ qi(0). Precisely, we have

qi(t) = q0
i +

∫ t

0
hi(s)ds.

Supposing we are in case a, this interval ends at the first entry time t0i , the time when the product
becomes constrained. By continuity of (qi + ρi)(.), we have

qi(t0−i ) = (qi + ρi)(t0−i ) = (qi + ρi)(t0+
i ) = θi(t0i , η(t0i )).

To determine simultaneously q0
i and t0i , we solve the nonlinear system of equations and an inequality

that ensures that the change of inventory on [0, t0i ] equals−I0
i and that the adjoint variable intersects

for the first time at a transitive time the function θ̃i(.) at time t0i .
More specifically, we attempt to solve the following system of two equations for t0i and q0

i such that
t0i is the smallest positive number satisfying the equations and the inequality:

∫ t0i

0
İi(t)dt = −I0

i

q0
i +

∫ t0i

0
hi(s)ds = θi(t0i , η(t0i ))

θ̃′i(t
0
i , η(t0i )) ≤ hi(t0i )

where İi(t) is given by expression (12) in which we use qi(t) = q0
i +

∫ t
0 hi(s)ds.

If this system has a solution, once we have solved this system, we know the bound of the first
unconstrained interval and the expression of qi(t) + ρi(t) = qi(t) on that interval, and we can
calculate the optimal solution.
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If this system has no solution, we are in case b and we must only determine q0
i such that

∫ T

0
İi(t)dt = −I0

i .

In particular, qi(t) does not reach θi(t, η(t)) on [0, T ] in that case. Then [0, T ) is unconstrained and
we have determined qi(t) on that interval, so we can calculate the optimal strategy on the entire
time horizon.

Step 2: (constrained interval and following unconstrained interval)
On a constrained interval, the trajectory of qi +ρi follows that of θi. In order to determine whether
this constrained interval is followed by another unconstrained interval, we will attempt to compute
the exit time t1i (> t0i ) of this constrained interval, and the next entry time t2i (> t1i ) (if there is
another unconstrained interval, it must be followed by a constrained interval since all products are
constrained at time T ). If we find no solution we will conclude that product i remains constrained
until the end of the time horizon.
We first suppose that there is an unconstrained interval (t1i , t

2
i ). We have ρi(t) = 0 and

qi(t) + ρi(t) = qi(t) ∀t ∈ (t1i , t
2
i ). Using the adjoint equation, the value of qi(t) + ρi(t) on that

interval can be determined as a function of time t and the initial value of the adjoint variable qi(t1i ).
Using the necessary conditions ρi(t) = 0 ∀t ∈ (t1i , t

2
i ), (qi +ρi)(t) = θi(t, η(t)) on the constrained

interval (t0i , t
1
i ), and the continuity of (qi + ρi)(.), we obtain

qi(t1+
i ) = (qi + ρi)(t1+

i ) = (qi + ρi)(t1−i ) = θi(t1i , η(t1i )).

qi(t2−i ) = (qi + ρi)(t2−i ) = (qi + ρi)(t2+
i ) = θi(t2i , η(t2i )).

We then attempt to solve the nonlinear system of equations that ensures that the change of inventory
on [t1i , t

2
i ] equals zero and that the adjoint variable intersects for the first time on a transitive interval

the function θ̃i(.) at time t2i .
More specifically, we want to solve the following system of two equations for t1i and t2i such that
t1i ∈ [t0i , T ] and t2i is the smallest number in [t1i , T ] satisfying the equations and the inequality:

∫ t2i

t1i

İi(t)dt = 0

θi(t1i , η(t1i )) +
∫ t2i

t1i

hi(s)ds = θi(t2i , η(t2i ))

θ̃′i(t
2
i , η(t2i )) ≤ hi(t2i )

where İi(t) is given by expression (12) in which we use qi(t) = θi(t1i , η(t1i )) +
∫ t
t1i

hi(s)ds.
If we can solve this system, we know the bounds on the constrained interval and the following
unconstrained interval. Moreover, we have

qi(t) + ρi(t) = θi(t, η(t)) ∀t ∈ (t0i , t
1
i )
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(unless η(t) exceeds αi(t)
βi(t)

− f ′i(0), in which case we use Proposition 4)

qi(t) + ρi(t) = θi(t1i , η(t1i )) +
∫ t

t1i

hi(s)ds ∀t ∈ (t1i , t
2
i )

which we can calculate and as a result we can obtain the optimal policy on these intervals. We set
t0i ← t2i and we repeat Step 2.
If we cannot solve this system we conclude that product i is constrained on (t0i , T ]. We set t1i = T
and stop.

We assumed that the number of junction times is finite (see Assumption 1), so that this process
iterates only a finite number of times (i.e. there is a finite number of constrained and unconstrained
intervals).

4 Heuristic algorithm for determining Lagrange multiplier η(.)

The value that multiplier η(.) takes is determined by how difficult it is to satisfy the capacity con-
straint. If the constraint is not tight, the multiplier takes value zero according to the complementary
slackness condition. Conversely, if satisfying it is very constraining (i.e. if, in an uncapacitated
setting, the product would cumulatively optimally require a production rate much greater than the
capacity rate), then the multiplier is high. We provide in [1] a method for computing exactly η(.).
The method is valid when inputs are steady enough so that (i) the number of times a product goes
from being inactive to active (and vice-versa), and (ii) the number of times the capacity constraint
goes from being tight to being non tight (and vice-versa), are rather small. the method may be
quite complex, especially when the number of products increases.
In this paper, we introduce an approach that can be simply applied to any inputs and any number
of products. We use a heuristics based on an iterative trial and error approach of Everett [23] that
was used for instance by Bertsimas and Patterson [9]. The idea is to determine multiplier η(.) via
an iterative algorithm based on the following idea. For a given non negative η(.), the previous
section describes how to derive the optimal solution. If for all times t, the capacity constraint

N∑

i=1

ui(t) ≤ K(t)

and complementary slackness condition

η(t)
( N∑

i=1

ui(t)−K(t)
)

= 0

are satisfied, the procedure ends. Otherwise, we need to update the value of multiplier η(.), and
iterate the process. More precisely, based on the intuition behind the meaning of that multiplier,
at times when the capacity constraint is violated, the multiplier will be increased. At times when
the capacity constraint is satisfied and non tight with a positive multiplier, the multiplier will be
decreased (while remaining non negative).
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To this end, we update the multiplier at a finite number of time instants, according to some time
discretization, and at the next iteration we consider the corresponding piecewise constant function
for the new multiplier. At convergence of the algorithm, we consider the final piecewise constant
multiplier function as an approximation to the optimal multiplier. Alternatively, we can use some
smoothing technique to find a function that goes through all points where the multiplier has been
updated.

Specifically, let’s consider S a discretization of [0, T ], i.e. S = { j
M T, j = 1, . . . , M} where M is

an integer.
At iteration k of the algorithm, multiplier ηk−1(t), t ∈ [0, T ] is given. We use the procedure
outlined in the previous section to obtain the corresponding optimal solution uk−1

i (t), pk−1
i (t), t ∈

[0, T ], i = 1, . . . , N . We compute ∆k−1(t) = K(t)−∑N
i=1 uk−1

i (t), t ∈ [0, T ].
We update the multiplier as follows:

• for all times t ∈ S such that ∆k−1(t) ≥ 0, we define ηk(t) = max{ε′, (1− δk−1
t )ηk−1(t)}

• for all times t ∈ S such that ∆k−1(t) < 0, we define ηk(t) = (1 + δk−1
t )ηk−1(t)

(ε′ being a positive real number close to zero. It allows to ensure ηk(t) remains non negative. We
do not use zero to avoid ηk(t) to be kept at zero for all following iterations if δk−1

t was ever greater
than 1.)
The ηk(t) is defined on [0, T ] as the piecewise constant function: for t0 ≡ j

M T < t < j
M T , ηk(t) =

ηk(t0).
The parameters δk

t , t ∈ S are updated using the following rule:

• if ∆k(t)∆k−1(t) > 0, we define δk+1(t) = ε1δ
k(t)

• if ∆k(t)∆k−1(t) < 0, we define δk+1(t) = ε2δ
k(t)

• if ∆k(t)∆k−1(t) = 0, we define δk+1(t) = δk(t)

The values of ε1 and ε2 are fixed parameters where ε1 > 1 and ε2 < 1. The intuition behind this
method is as follows. If the capacity constraint is violated at some time t (∆k−1(t) < 0), the
cumulative production rate across products is too high at that time given the available production
capacity. Therefore, we increase the Lagrange multiplier to further penalize the violation. Likewise,
if the constraint is not violated, we decrease the Lagrange multiplier. The amount of increase or
decrease of the multiplier (step size) is updated at each iteration.
If the capacity constraint at a given time is repeatedly unsatisfied then the step size is gradually
increased as the value of ηk(t) may still be quite far from its optimal value. If the constraint fluc-
tuates between feasibility and infeasibility, then the step size is reduced substantially as the value
of ηk(t) has come close to its optimal value. It is interesting to note that updating the Lagrange
multipliers depends only upon whether or not the constraint was satisfied, not on the magnitude
of the difference.

Stopping criterion: we stop when the complementary slackness condition at each time of the
discretized time horizon is satisfied within some ε:

∀t ∈ S, |ηk(t)∆k(t)| < ε.
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In the next section, we gain insight by investigating how the fixed term of the demand, the
price sensitivities, and the capacity constraint affect the optimal solution. Moreover, we discuss
in detail the performance of the heuristics determining multiplier η(t) one a particular scenario of
input parameters.

5 Computational Results and Insights

5.1 Example 1: impact of a demand peak and of the capacity constraint

5.1.1 Input parameters

In order to illustrate our results, we consider an example with 2 products and 3 different maximum
demand scenarios (coefficient αi(.)), on a time horizon [0, 10]. In each scenario, we let the capacity
take 3 different values chosen as we illustrate below. For each demand scenario we keep the capacity
constant throughout the time horizon. For simplicity, and in a similar fashion as in numerical results
from the literature (see [13], [27], [30], [44], [45], [52]), we consider coefficients βi(t) (describing the
elasticity of the demand with respect to the price) and holding cost coefficients that are constant.
We also assume that the production cost is quadratic, that is,

fi(ui) =
γi

2
u2

i ,

with coefficients γi, i = 1, 2, constant.
The inputs chosen are summarized in the following table:

β h γ I0

product 1 1 1 10 10
product 2 1 2 20 10

Product 1 has smaller holding and production costs, but both products start with the same initial
inventory and their demands have the same sensitivity to price. This is to ease the comparison of
results.

In a similar fashion as in the literature, we model the maximal demand (coefficient α) increas-
ing on the first half of the time horizon and decreasing on the second half to study the effect of a
demand peak in the middle of the time horizon. We will consider 3 scenarios. In all scenarios, the
average demand for both products is the same (equal to 46.67). However, the amplitude differs: in
scenario 1, α1(t) and α2(t) both have an amplitude of 25; in scenario 2, we double the amplitude of
α2(t) only, while in scenario 3, we double the amplitude of α1(t) only, as shown in the following table:

Scenario 1 Scenario 2 Scenario 3
α1(t) 30 + 10t− t2 13.33 + 20t− 2t2 30 + 10t− t2

α2(t) 30 + 10t− t2 30 + 10t− t2 13.33 + 20t− 2t2

The corresponding plots are shown in Figure 5.1.1.
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Figure 2: choices of parameters α

In each scenario, we first compute the optimal pricing and production policy for both products
separately based on the assumption that there is no capacity constraint. We then determine the
maximum value of the total production maxt∈[0,T ] u1(t) + u2(t) ≡ u∗. Clearly, if the capacity re-
mains greater than or equal to u∗, the policies obtained are optimal.
Then in each demand scenario, we compute the solution for lower values of the capacity, that is,
for a capacity equal to 0.75u∗ and to 0.5u∗. In these two cases, the capacity will be binding at least
at some point within the time horizon.

5.1.2 Interpretation of the results

The results can be seen in Figures 3, 4, and 5. These figures show the evolution of inventory levels,
production rates, and prices for both products in the optimal solution for each scenario, and in
each scenario for three values of the capacity as explained above.
We also report the objective value (profit) under each scenario and for each value of the capacity
available, as well as the proportion of the total profit generated by product 1.

We observe that in all cases, the system builds up some inventory at the beginning of the time
horizon because of the upcoming demand peak, and then maintains a level of inventory at zero for
the remaining time. Of course, the lower the capacity, the least the system has the ability to build
up inventory.
We observe that the prices increase and production rates decrease when capacity decreases.
We also observe that in Scenario 1, the capacity is tight from the beginning of the time horizon
both for capacity levels of 0.75u∗ and 0.5u∗, and only in the latter case it is tight over the whole
time horizon.
In scenario 2 and 3, in both cases the capacity is tight from the beginning, but is not tight near
the end of the time horizon.
Moreover, by comparing the scenarios, we notice that the amplitude of variation for prices increases
when the amplitude of the coefficient α(t) increases.
Finally, it is worth noticing that in all scenarios, under no capacity constraint, the production rate
for both products increases in the first part of the time horizon (while the inventory level is non
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Figure 3: Solution for demand scenario 1
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Figure 5: Solution for demand scenario 3

zero) since the system attempts to build up some inventory due to the upcoming demand peak.
However, under lower capacity, the production rate for product 1 decreases in that phase, while
production rate for product 2 keeps increasing (but is lower in all cases). The fact that the system
tends to produce more of the less expensive product is quite natural. Therefore, introducing a
capacity constraint has more effect on the production for that product. It can also be seen that
the level of inventory changes much more for product 1 than for product 2 in the presence of a
capacity constraint, with maybe the exception of scenario 3 where a noticeable peak of demand
for the expensive product justifies to stock some inventory in the beginning of the time horizon,
despite the higher holding and production costs.

Scenario 1 Scenario 2 Scenario 3
u∗ 6.5352 6.9099 6.7935

Profit from product 1 1327.5 (54.6%) 1523.4 (58.01%) 1327.5 (51.24%)
capacity = u∗ Profit from product 2 1102.8 1102.8 1263.1

Total profit 2430.3 2626.2 2590.5
Profit from product 1 1311.6 (59.79%) 1520.4 (62.78%) 1328.5 (56.46%)

capacity = 0.75 u∗ Profit from product 2 881.9 901.5 1024.4
Total profit 2193.6 2421.9 2352.9

Profit from product 1 1160.2 (59.19%) 1435.0 (67.11%) 1156.3 (55.30%)
capacity = 0.5 u∗ Profit from product 2 799.9 793.2 934.9

Total profit 1960.1 2138.3 2091.1

We observe that profits decrease as the capacity decreases (when the capacity drops by 25% and
50% respectively, there is a 9.74% and a 19.35% decrease in scenario 1, 7.78% and 18.58% in sce-
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nario 2 and 9.17% and 19.28% in scenario 3.

We also notice that the capacity constraint increases the proportion of total profit due to product
1, which is the least expensive product (to hold in inventory and to produce).
When a product has a demand that is more time varying (but with the same average), the propor-
tion of profit that product generates is also greater. Also the total profit increases if the demand
for one of the products is more varying, compared with demands that are both less varying.
Finally, the maximum demand satisfied under no capacity constraint increases when the demand
for one of the products is more varying. This effect is more marked when the demand for product
1 (the cheapest product) is more varying.

To conclude this section, the major insights from the numerical tests we performed are the
following:

1. The optimal solution tends to build up some inventory prior to the demand peak (and more
so for the cheapest product), and subsequently lets the inventory level remain at zero.

2. As the capacity decreases (i.e. the capacity constraints more the system), inventory levels
and production rates tend to decrease, prices tend to increase, and profits decrease.

3. As the capacity decreases, the proportion of profits due to the cheapest product increases.

4. As the capacity decreases, the production rate of the most expensive product decreases less
than the other product, while remaining smaller.

5. The shape of the evolution of prices over time is similar to the shape of the evolution of
coefficient α(t).

6. As the amplitude of the coefficient α for a product increases, the amplitude of prices increases
as well and the proportion of profits this product generates increases. Moreover, the maximal
demand satisfied over the time horizon increases.

5.2 Example 2: Impact of constant price sensitivities (coefficients βi(.)) with a
demand peak

We consider the same inputs as above in scenario 1 of coefficients αi(.) and a capacity level constant
and equal to 1, but with 3 different cases of coefficients βi(.), defined by

• β1(t) = β2(t) = 1, t ∈ [0, T ]

• β1(t) = β2(t) = 2, t ∈ [0, T ]

• β1(t) = β2(t) = 3, t ∈ [0, T ].

The results are shown in Figure 6.
In all three cases the capacity was tight all along the time horizon. We observe that, as suggested

by intuition, the prices decrease when the price sensitivities increase, and the inventory levels reach
zero earlier. Moreover, the amplitude of prices decrease as well.
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Figure 6: Solution for price sensitivities equal to 1
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5.3 Example 3: Impact of time-varying price sensitivities (coefficients βi(.))
with a constant maximum demand

We now consider that coefficients αi(.) are fixed at 15, t ∈ [0, T ] and that the capacity level
is constant and equal to 1. We want to study the effect of time varying price sensitivities, both
increasing and decreasing. We will run the solution method for

• β1(t) = β2(t) = 0.5 + 0.1t

• β1(t) = β2(t) = 1.5− 0.1t.

Price sensitivities that increase with time correspond to products that become less attractive to the
customer towards the end of the time horizon, for example products subject to a seasonality effect,
or such that there have appeared on the market newer products that can serve as a substitute.
Price sensitivities that increase with time correspond to products that become more attractive to
the customer towards the end of the time horizon, for example because of a marketing campaign
or an appearing trend.

The results are shown in Figure 7. The capacity level was tight all along the time horizon
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Figure 7: Solution for price sensitivities equal to 1

(except in one case at the very beginning). Similarly as above, the trend of prices is intuitive:
the prices evolve with time in an way opposite to the way the price sensitivities evolve with time.
Notice that for decreasing price sensitivities, the products are in case b, i.e. the inventory level is
positive on [0, T ) and reach zero at time T . Indeed, it is optimal to save inventory to be sold at the
end of the time horizon when the price sensitivity is lower and the products can be sold at a higher
price. This effect is stronger for product 1 which has a lower holding cost. When price sensitivities
increase with time, the inventory levels reach zero faster that when they were constant since it is
optimal to sell all inventory before price sensitivities become too high and the prices are low.
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5.4 Heuristics: computational results

The method introduced in Section 4 yields good convergence results in the computations below.
We provide as an example the results for Example 1, Scenario 1 described in Section 5.1, and a
capacity rate constant equal to 3.5.
We use the following parameters: M = 100 steps in the discretization, ε1 = 1.1, ε2 = 0.9, δ0 = 0.1,
η0 = 15, and ε = 0.2. For this example, 95 iterations were required (taking less than 2 minutes
overall). Note that each iteration implements the procedure detailed in Section 3: the optimal
solution at all times is calculated for a given vector η(t), and then updates the multiplier η(t)
as described in Section 4. Each iteration is very fast, so the overall time is primarily due to the
number of iterations that are necessary to satisfy the stopping criterion. The graphs below show
the multiplier η obtained (Figure 8a), the amplitude of capacity constraint violation (Figure 8b),
the amplitude of complementary slackness condition violation (Figure 8c), as well as the production
rates, prices, and inventory levels (Figure 8d). Notice that the capacity constraint is basically tight
at all times (the maximum unused capacity is approximately 0.006), as multiplier η(t) is positive
throughout the time horizon. Discontinuities of η(t) occur when the inventory level of a product
reaches zero and enters a constrained phase. At convergence, the complementary slackness is also
approximately satisfied. Decreasing parameter ε would decrease the maximum violation of the
complementary slackness solution, but would increase the number of iterations and thus the overall
running time.

Conclusions
In this paper, we studied a continuous time optimal control model for a dynamic pricing and inven-
tory management problem with no backorders. In particular, we studied a demand based model
in a make-to-stock system and in a multi-product capacitated dynamic setting. We considered a
particular cost structure, allowing time flexibility in the coefficients and in the production cost. A
particular feature of the model we considered is that it does not allow backorders. We introduced a
continuous time solution approach utilizing the KKT conditions and an extension of Pontryagin’s
Principle for state-constrained problems. Through numerical examples, we illustrate the role of
capacity and of the dynamic nature of demand in the model.

6 Acknowledgements

Preparation of this paper was supported, in part, by the PECASE Award DMI-9984339 from the
National Science Foundation and the Singapore MIT Alliance Program.

35



0 5 10
0

5

10

15

20

25

Multiplier η(t) at convergence

time

η

0 5 10
−2

−1

0

1

2

3

4

5

6

7
x 10

−3 Unused production capacity

time

K
 −

 (
u 1+

u 2)
(a) (b)

0 5 10
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Complementary slackness condition

time

η(
K

 −
 (

u 1+
u 2))

0 5 10
0

5

10

15

20

25

30

35

40

45

50

55

time

Optimal production rates, prices, and inventory levels

 

 

u
1

u
2

p
1

p
2

I
1

I
2

(c) (d)

Figure 8: Results for Example 1, Scenario 1 using the heuristic algorithm to determine multiplier
η(.). Figure (a) shows multiplier η(t) at convergence, Figure (a) shows the capacity constraint
K(t)−(u1(t)+u2(t)), Figure (c) shows the complementary slackness condition η(t)

(
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)
, and Figure (d) shows the optimal prices p1(t), p2(t), production rates u1(t), u2(t), and

inventory levels I1(t), I2(t) corresponding to multiplier η(t) at convergence.
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A Maximum Principle with mixed inequality constraints and pure
state variable inequality constraints: Theoretical results. Suf-
ficiency Conditions.

In this section, we state the maximum principle for optimal control problems with mixed inequality
constraints and pure state variable inequality constraints. These results are described in more detail
in Sethi and Thompson [51], Hartl, Sethi and Vickson [32], Arrow and Kurz [6].
Consider the following control problem

max
∫ T

0
F (I(t), w(t), t)dt (14)

subject to İ(t) = ϑ(I(t), w(t), t) (15)
I(0) = I0 (16)
ξ(I(t), w(t), t) ≥ 0 (17)
$(I(t), t) ≥ 0 (18)

where:
T is the time horizon,

I(t) ∈ En is the vector of state variables at time t,
I0 is the vector of initial conditions,

w(t) ∈ Em is the vector of control variables (prices and production rates) at time t,
F : En ×Em × E → E is a function assumed to be continuously differentiable,
ϑ : En × Em ×E → En is a function assumed to be continuously differentiable,
ξ : En × Em ×E → Ea is a function assumed to be continuously differentiable in all its

arguments and depends explicitly on w(t),
$ : En × E → Eb is a function assumed to be continuously differentiable.

We notice that constraint (17) involves control variables and possibly state variables as well (we
refer to this as a mixed inequality constraint) while constraint (18) involves the state variable only
(we refer to this as a pure state variable inequality constraint).
We define a control w(.) to be admissible if it is piecewise continuous and if, together with the state
trajectory I(.) it generates through (15) and (16), it satisfies (17) and (18).
Inequality (18) represents by definition a set of constraints $i(I(t), t) ≥ 0, i = 1, . . . , b. The con-
straint $i(I(t), t) ≥ 0 is called a constraint of rth order if the rth time derivative of $i(I(t), t) is the
first in which a term in control w(.) appears. To make this dependency in the control variable clear,
we will add w(t) as an argument of the rth time derivative of $i(I(t), t), even though w(t) is not
an argument of $i(I(t), t). For the sake of simplicity and because it is satisfied in the application
we are interested in, we will assume that each constraint $i(I(t), t) ≥ 0 is of the first order.
We define

$1(I(t), w(t), t) =
d$

dt
(I(t), t) =

∂$

∂I
ϑ(I(t), w(t)t) +

∂$

∂t
(I(t), t).

With respect to the ith constraint $i(I(t), t) ≥ 0, an interval (θ1
i , θ

2
i ) ⊂ [0, T ] is called an interior

or unconstrained interval if $i(x(t), t) > 0, ∀t ∈ (θ1
i , θ

2
i ). If the optimal trajectory “hits the

boundary,” i.e., satisfies $i(x(t), t) = 0, ∀t ∈ (τ1
i , τ2

i ), for some i and some interval (τ1
i , τ2

i ) ⊂ [0, T ],
then [τ1

i , τ2
i ] is called a boundary or constrained interval. An instant τ1

i is called an entry time
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if there is an interior interval ending at time τ1
i and a boundary interval starting at time τ1

i .
Correspondingly, τ2

i is called an exit time if a boundary ends and an interior interval starts at time
τ2
i . If the trajectory touches the boundary at time τi, i.e., $i(I(τi), τi) = 0 for some i and if the

trajectory is in the interior just before and just after τi, then τi is called a contact time. Taken
together, entry, exit and contact times are called junction times.
We assume that the following constraint qualification holds:

rank
[ ∂ξ

∂w
, diag(ξ)

]
= a

as well as the full-rank condition on any boundary interval [τ1
j , τ2

j ]:

rank




∂$1
1/∂w
...

∂$1
b̂
/∂w


 = b̂,

where for t ∈ [τ1
j , τ2

j ], $i(I∗(t), t) = 0 i = 1, . . . , b̂ ≤ b and $i(I∗(t), t) > 0 i = b̂ + 1, . . . , b.

We define the Hamiltonian function H : En ×Em × En × E → E as

H(I, w, q, t) ≡ F (I, w, t) + qϑ(I, w, t),

where q ∈ En (a row vector). We also define the Lagrangian function L : En×Em×En×Eq×E → E
as5

L(I, w, q, η, ρ, t) = H(I, w, q, t) + ηξ(I, w, t) + ρ$1(I, w, t),

where η ∈ Ea and ρ ∈ Eb are row vectors, whose components are called Lagrange multipliers.
These Lagrange multipliers satisfy the complementary slackness conditions

η(t) ≥ 0, η(t)ξ(I(t), w(t), t) = 0,

ρ(t) ≥ 0, ρ̇(t) ≤ 0, ρ(t)$(I(t), t) = 0.

We now state the maximum principle for the problem under consideration.

Theorem 2. (Maximum Principle) We suppose that I∗(.) has only finitely many junction times,
that each pure state constraint $i(I(t), t)) ≥ 0 is of the first order, that constraint qualification
holds, and that the full rank condition holds. The necessary conditions for w∗ (with state trajectory
I∗) to be an optimal control policy for the problem we defined above are the following:
There exist piecewise continuous6 and piecewise continuously differentiable adjoint variable q(.),
piecewise continuous multipliers η(.), ρ(.), parameter ν, and jump parameter ζ(.), such that the
following conditions hold almost everywhere:

5We form the Lagrangian function by adjoining indirectly (i.e. via their first time derivative) the constraints on
the state variable. This method is called indirect adjoining method. In the direct adjoining method, the Lagrangian
function is formed by adjoining directly the constraints as follows: Ld(I, w, q, ηd, ρd, t) = H(I, w, q, t) + ηdξ(I, w, t) +
ρd$(I, t), with H = F (I, w, t) + qdϑ(I, w, t). It is shown in [32] that ηd(t) = η(t), qd(t) = q(t) + ρ(t) ∂$

∂I
(I∗(t), t).

6In the direct adjoining method, qd(.) is continuous.
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• İ∗(t) = ϑ(I∗(t), w∗(t), t), I∗(0) = I0, satisfying constraints ξ(I∗(t), w∗(t), t) ≥ 0, $(I∗, t) ≥ 0;

• q̇(t) = −∂L
∂I (I∗(t), w∗(t), q(t), η(t), ρ(t), t) except at entry/contact times, with transversality

conditions7

q(T−) = ν
∂$

∂I
(I∗(T ), T ), ν ≥ 0, ν$(I∗(T ), T ) = 0;

• the Hamiltonian maximizing condition

H(I∗(t), w∗(t), q(t), t) ≥ H(I∗(t), w(t), q(t), t),

at each t ∈ [0, T ], for all w satisfying

ξ(I∗(t), w, t) ≥ 0, and $1
i (I

∗(t), w, t) ≥ 0, whenever $i(I∗(t), t) = 0, i = 1, . . . , b;

• at any entry/contact time8 τ , the adjoint variable q may have a discontinuity of the form

q(τ−) = q(τ+) + ζ(τ)
∂$

∂I
(I∗(τ), τ) and

H(I∗(τ), w∗(τ−), q(τ−), τ) = H(I∗(τ), w∗(τ+), q(τ+), τ)− ζ(τ)
∂$

∂t
(I∗(τ), τ);

• the Lagrange multipliers η(t) are such that

∂L

∂w
(I∗(t), w∗(t), q(t), η(t), ρ(t), t) = 0

and the complementary slackness conditions

η(t) ≥ 0, ηξ(I∗(t), w∗(t), t) = 0,

ρ ≥ 0, ρ̇ ≤ 0 on boundary intervals of $, ρ$(I∗(t), t) = 0, and

ζ(τ) ≥ 0, ζ(τ)$(I∗(τ), τ) = 0.

Theorem 3. Let (I∗(.), w∗(.), q(.), η(.), ρ(.), ν, ζ(.)) satisfy the necessary conditions above. Suppose
that constraint qualification and full-rank condition hold. Let
qd(t) = q(t) + ρ(t)∂$

∂I (I∗(t), t). If H(I, w, qd, t) is a concave function in (I, w), at each t ∈ [0, T ],
ξ(I, W, t) is a quasi-concave function in (I, w), $(I, t) is a quasi-concave function in I, then policy
(I∗(.), w∗(.)) is optimal.

7In the direct adjoining method, the transversality conditions are:

qd(T ) = νd ∂$

∂I
(I∗(T ), T ), νd ≥ 0, νd$(I∗(T ), T ) = 0.

8We are using the convention specifying that the adjoint variable is continuous at exit times.
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B Proof that assumptions made in Appendix A hold for Problem (1)

In this section, we illustrate why the assumptions in Appendix A apply to the pricing problem (1)
we are studying under Assumptions 1, 2, 3, and 4. In particular, we show that the assumption of
constraints of the first order, constraint qualification, full-rank condition, and sufficiency conditions
defined in Appendix A hold.
In Problem (1),

• the control variables are (ui(.), pi(.), i = 1, . . . , N) which are functions defined on [0, T ],

• the state variables are (Ii(.), i = 1, . . . , N) which are functions defined on [0, T ],

• the dynamic evolution of the system is given by

İ(t) = ϑ(I(t), u(t), p(t), t) = u(t)− α(t) + β(t)× p(t),

• the mixed inequality constraints are ξ(u(t), p(t), t) =

(
p1(t), . . . , pN (t),

α1(t)
β1(t)

− p1(t), . . . ,
αN (t)
βN (t)

− pN (t), u1(t), . . . , uN (t),K(t)−
N∑

i=1

ui(t)
)
≥ 0

(note that ξ(u, p, t) ∈ R3N+1),

• the pure state variable inequality constraint is given by $(I(t)) = (I1(t), . . . , IN (t)) ≥ 0.

We have qd
i (t) = qi(t) + ρi(t) the adjoint variables within the framework of the direct adjoining

method.

Lemma 3. The pure state variable inequality constraints are of order 1.

Proof. The ith pure state variable inequality constraint is $i(I(t)) = Ii(t) ≥ 0. By taking the
derivative with respect to time once, we obtain

d$i

dt
(I(t)) =

d$i

dIi
(I(t))

dIi

dt
(t) =

dIi

dt
(t) = ui(t)− αi(t) + βi(t)pi(t).

We thus observe that the first time derivative depends explicitly on the controls, therefore the
constraint is of the first order.

We define

$1(I(t), u(t), p(t), t) ≡ d$

dt
(I(t)) =

d$

dI
(I(t))İ(t) = İ(t) = u(t)− α(t) + β(t)× p(t)

Lemma 4. Constraint qualification holds.

Proof. This condition guarantees that the gradients with respect to (u, p) of active constraints on
controls are linearly independent.
We need to show that rank

[
∂ξ
∂u , ∂ξ

∂p , diag(ξ)
]

= 3N + 1.
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Let M ≡
[

∂ξ
∂u , ∂ξ

∂p ,diag(ξ)
]
. Then we can write matrix M ∈ R3N+1 × R5N+1 as follows (omitting

the time argument for a lack of space):



1 p1

. . . . . .
1 pN

−1 α1(t)
β1(t) − p1

. . . . . .
−1 αN (t)

βN (t) − pN

1 u1

. . . . . .
1 uN

−1 . . . −1 K(t)−∑N
i=1 ui




To show that rank(M) = 3N + 1, we observe that:
(i) there are 3N + 1 rows in M , so the rank is at most 3N + 1;
(ii) if there is no binding constraint on the control variables, the last 3N + 1 columns are non zero
and linearly independent, implying that the rank is equal to 3N + 1;
(iii) for each i such that the price pi = 0, column 2N + i is the zero vector; however we can replace
it with column N + i to obtain a set of linearly independent columns.
Similarly, for each i such that pi = αi(t)/βi(t), we replace column 3N + i with column N + i. We
observe that the constraints pi = 0 and pi = αi(t)/βi(t) cannot be binding simultaneously.
Using the same reasoning, for each i such that ui = 0, we replace column 4N + i with column i.
Finally, if

∑N
i=1 ui = K(t), we replace the last column with any column i, 1 ≤ i ≤ N such that

ui > 0. We observe that this is possible because when the capacity constraint is tight, at least one
of the production rates must be positive (i.e. the last N + 1 columns cannot be simultaneously
equal to the zero vector).
This implies that there are 3N + 1 linearly independent columns.

Lemma 5. Let [τ1, τ2] be a boundary interval. The full-rank condition holds on [τ1, τ2].

Proof. Suppose that Ii(t) = 0, i = 1, . . . , n0, and Ii(t) > 0, i = n0 + 1, . . . , N , on [τ1, τ2]. Let

Q ≡




∂$1
1

∂u
∂$1

1
∂p

∂$1
2

∂u
∂$1

2
∂p

...
...

∂$1
n0

∂u

∂$1
n0

∂p




We need to show that rank(Q) = n0. We can express matrix Q ∈ Rn0 × R2n0 as follows:

Q =




1 β1(t)
1 β2(t)

. . . . . .
1 βn0(t)




which clearly has rank n0.
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Remark. In the direct adjoining method, qd
i (t) = qi(t)+ρi(t) and the transversality conditions

are given by

qd(T ) = νd ∂$

∂I
(I∗(T ), T ) = νd, νd ≥ 0, νd$(I∗(T ), T ) = νdI∗(T ) = 0,

which can be rewritten

qi(T ) + ρi(T ) ≥ 0, (qi(T ) + ρi(T ))I∗(T ) = 0.

Lemma 6. Under Assumptions 1, 2, 3, and 4, the assumptions in Theorem 3 (see Appendix A)
hold for Problem (1).

Proof. Notice that

• H(I, u, p, qd, t) =
∑N

i=1

(
pi(αi(t) − βi(t)pi) − fi(ui) − hi(t)Ii + qd

i (ui − αi(t) + βi(t)pi)
)

is a
concave function in (I, u, p);

• ξ is a linear function in (p, u), and thus quasi-concave in (I, p, u);

• $ is a linear (thus quasi-concave) function of I.

C Proof of existence of a solution for Problem (1)

The following existence result follows similarly to [32]. We will provide the theorem by using the
notations we defined in Appendix A.
Define the (state-dependent) control region

Ω(I, t) = {w ∈ Em|ξ(I, w, t) ≥ 0} ⊂ Em

and the set
Q(I, t) = {(F (I, w, t) + c, ϑ(I, w, t))|c ≤ 0, w ∈ Ω(I, t)} ⊂ En+1.

Theorem 4 (Filippov-Cesari Theorem). Consider problem (14). Assume that F, ϑ, ξ and $ are
continuous in all their arguments at all points (I, w) ∈ En × Em. Suppose that there exists an
admissible pair and that the following Roxin’s condition holds:

set Q(I, T ) is convex, for all I ∈ En.

Suppose further that

there exists δ > 0 such that ‖I(t)‖ < δ, for all admissible {I(t), w(t)} and t,

and that
there exists δ1 > 0 such that ‖w‖ < δ1, for all w ∈ Ω(I, t) with ‖I‖ < δ.

Then there exists an optimal couple {I∗, w∗} with w∗(.) measurable.
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Theorem 1. Under Assumptions 2, 3, and 4, an optimal control policy exists for Problem (1).

Proof. We will show that conditions of Theorem 4 hold for Problem (1).
For Problem (1), the control region is independent of the state and may be expressed as:

Ω(t) = {(u, p) ∈ R2N |ξ(u, p, t) ≥ 0}

= {(u, p) ∈ R2N |u ≥ 0, p ≥ 0, pi ≤ αi(t)/βi(t), i = 1, . . . , N,

N∑

i=1

ui ≤ K(t).}

The set Q(I, t) is given by

Q(I, t) =
{( N∑

i=1

(
pi(αi(t)−βi(t)pi)−fi(ui)−hi(t)Ii

)
+c, u−α(t)+β(t)×p

)∣∣∣c ≤ 0, (u, p) ∈ Ω(t)
}

.

• Continuity:
It is clear that
(i) the integrand F of the objective function

(I, u, p, t) 7→
N∑

i=1

(
pi(αi(t)− βi(t)pi)− fi(ui)− hi(t)Ii

)
,

(ii) the function ϑ describing the dynamic evolution (u, p, t) 7→ u− α(t) + β(t)× p,
(iii) the function ξ giving rise to control inequality constraints

(u, p) 7→
(
p, α(t)/β(t)− p, u, K(t)−

N∑

i=1

ui

)
,

and
(iv) the function $ giving rise to pure state variables inequality constraints I → I
are continuous functions in all their arguments.

• There exists an admissible pair:
Consider the policy

pi(t) = αi(t)/βi(t), ui(t) = 0, i = 1, . . . , N, ∀t ∈ [0, T ].

Under this policy, İi(t) = ui(t) − αi(t) + βi(t)pi(t) = 0, so the generated state trajectory
satisfies Ii(t) = I0

i ≥ 0 ∀t ∈ [0, T ]. As a result, this policy satisfies all constraints so it is an
admissible pair.

• Roxin’s condition holds:
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Let x1, x2 ∈ R, y1, y2 ∈ RN such that (x1, y1), (x2, y2) ∈ Q(I, T ) with

x1 =
N∑

i=1

(
p1

i (αi(T )− βi(T )p1
i )− fi(u1

i )− hi(T )Ii

)
+ c1

x2 =
N∑

i=1

(
p2

i (αi(T )− βi(T )p2
i )− fi(u2

i )− hi(T )Ii

)
+ c2

y1 = u1 − α(T ) + β(T )× p1

y2 = u2 − α(T ) + β(T )× p2

c1 ≤ 0
c2 ≤ 0

(u1, p1) ∈ Ω(T )
(u2, p2) ∈ Ω(T )

Let λ ∈ [0, 1]. We want to show that (x̄, ȳ) ≡ λ(x1, y1) + (1− λ)(x2, y2) ∈ Q(I, T ).
Let (ū, p̄) = λ(u1, p1) + (1− λ)(u2, p2).
It is easy to verify that (ū, p̄) ∈ Ω(T ).
It is also clear that ȳ = ū− α(T ) + β(T )× p̄.
Since the function (u, p) 7→ ∑N

i=1

(
pi(αi(t) − βi(t)pi) − fi(ui) is concave in (u, p), it follows

that
N∑

i=1

(
p̄i(αi(T )− βi(T )p̄i)− fi(ūi)− hi(T )Ii

)
≥

λ
N∑

i=1

(
p1

i (αi(T )−βi(T )p1
i )−fi(u1

i )−hi(T )Ii

)
+(1−λ)

N∑

i=1

(
p2

i (αi(T )−βi(T )p2
i )−fi(u2

i )−hi(T )Ii

)
.

By observing that the right hand side of this inequality may be rewritten as
λ(x1 − c1) + (1− λ)(x2 − c2), we obtain that there exists c3 ≤ 0 such that

N∑

i=1

(
p̄i(αi(T )− βi(T )p̄i)− fi(ūi)− hi(T )Ii

)
+ c3 = x̄− λc1 − (1− λ)c2

Letting c̄ ≡ λc1 + (1− λ)c2 + c3 ≤ 0 implies that

x̄ =
N∑

i=1

(
p̄i(αi(T )− βi(T )p̄i)− fi(ūi)− hi(T )Ii

)
+ c̄.

Therefore, (x̄, ȳ) ∈ Q(I, T ) and Q(I, T ) is a convex set.

• The admissible controls are bounded:
The constraints defining the admissible controls provide bounds to the prices 0 ≤ pi(t) ≤ αi(t)/βi(t)
and to the production rates 0 ≤ ui(t) ≤ K(t), where αi(.), βi(.) and K(.) are positive- and
finite-valued functions of time. Since the time horizon is finite, there exists bounds on the
control variables at each time.
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• The state variable is bounded:
The inventory level is bounded below by zero. Moreover, the control variables pi(t) and ui(t)
are bounded (as we discussed above). As a consequence, İi(t) = ui(t) − αi(t) + βi(t)pi(t) is
bounded too. Since the time horizon is finite, it follows that there exists also an upper bound
on the state variable Ii(t) for all t.

This proves that all assumptions in Theorem 4 hold for Problem (1).
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