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In response to the increasing threat of terrorist attacks and natural disasters, governmental and private organizations worldwide have
invested significant resources in disaster planning activities. This article addresses joint inventory stockpiling of medical supplies for
groups of hospitals prior to a disaster. Specifically, the problem of determining the stockpile quantity of a medical item at several
hospitals is considered. It is assumed that demand is uncertain and driven by the characteristics of a variety of disaster scenarios.
Furthermore, it is assumed that hospitals have mutual aid agreements for inventory sharing in the event of a disaster. Each hospital’s
desire to minimize its stockpiling cost together with the potential to borrow from other stockpiles creates individual incentives well
represented in a game-theoretic framework. This problem is modeled as a non-cooperative strategic game, the existence of a Nash
equilibrium is proved, and the equilibrium solutions are analyzed. A centralized model of stockpile decision making where a central
decision maker optimizes the entire system is also examined and the solutions obtained using this model are compared to those of
the decentralized (game) model. The comparison provides some managerial insights and public health policy implications valuable
for disaster planning.
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1. Introduction

The U.S. healthcare system faces challenges from the oc-
curence of emergency situations. A timely example is the re-
cent outbreak of H1N1 influenza pandemic. In the United
States, the reported percentage of visits for Influenza-Like
Illness (ILI) of week 40 (ending October 10, 2009) is 6.1%
of all visits, almost three times higher than the national
baseline of 2.3% (Centers for Disease Control and Preven-
tion, 2009). This translates into an approximate increase of
42 700 000 patients presenting with ILI symptoms at health-
care facilities across the country (this number is estimated
based on the 2006 total number of visits to physician offices,
hospital outpatient departments, and hospital emergency
departments according to the Centers for Disease Control
and Prevention (2008). Influenza-associated hospitaliza-
tions have also increased tremendously over previous sea-
sons. This shows how adverse events such as a flu pandemic
can create a significant surge on the healthcare system.

Public health organizations and healthcare industries
have intensified their disaster preparedness and response ef-
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forts in recent years as a result of the increasing threat of ter-
rorist attacks and natural hazards. These planning efforts
include the establishment of disaster response procedures
and protocols for all hazards and cooperative relationships
between government agencies and healthcare providers.
Some governmental entities, such as the World Health
Organization, the Department of Health and Human
Services, and the Centers for Disease Control and Preven-
tion (CDC) provide general guidelines and recommenda-
tions for setting and achieving preparedness goals such as
listed on http://Flu.gov/. However, these guidelines typ-
ically lack the detailed instructions and/or methods that
decision makers need to determine appropriate levels of in-
vestment in surge capacity. Surge capacity includes person-
nel, equipment, and medical supplies which become scarce
resources once a disaster occurs. Thus, stockpiling suffi-
cient medical supplies becomes a very important prepared-
ness tactic. Unfortunately, government guidelines do not
address the financial implication of stockpiling supplies
to healthcare providers. In addition, as Toner and Wald-
horn (2006) point out, the lack of specificity and details of
these guidelines have contributed to the unwillingness of
hospital decision makers to commit necessary resources in

0740-817X C© 2011 “IIE”



Hospital stockpiling for disaster planning 349

preparing for adverse events. It is also important to point
out that stockpiling large quantities of supplies is a finan-
cial challenge for hospitals. The Center for Biosecurity es-
timated that a 164-bed hospital would need to spend at
least $640 000 to stockpile minimal Personal Protective
Equipment (PPE; such as masks, gloves, gowns, etc.) and
basic supplies for a 1918-like pandemic (Toner and Wald-
horn, 2006). In addition, hospitals will need to absorb ex-
tra costs for stock rotation and staff education/training
as well as proper arrangement of sufficient ancillary ser-
vices (such as waste and laundry) required by additional
use of PPEs, all of which further impacts their bot-
tom line. Therefore, the financial cost of disaster pre-
paredness planning is one of the most critical issues that
governments and hospitals need to consider. Combined
with the demand uncertainties associated with an ad-
verse event, establishing stockpile requirements for dis-
aster response with a limited budget is very challenging
(Havlak et al., 2002).

Our work focuses on stockpile decision making within a
community of hospitals. We adopt a game-theoretic frame-
work to account for the interactions of hospitals located
in the same area. There are several types of such interac-
tions. First, these hospitals may be located close enough
to each other to serve overlapping populations, and hence
patients may have a choice of which hospital to go to in
an emergency. As a result, demand can be redistributed
from one hospital to another if the former experiences
a shortage. Moreover, hospitals in the same area com-
monly engage in mutual aid agreements, such as Memo-
randa Of Understanding (MOU), to share supplies with
those encountering shortages during emergency situations.
Because of these interactions, hospital stockpile decisions
are inter-dependent: the stockpiling decision of one hospi-
tal in the group affects others in the group, which places
the problem in a game-theoretic setting. Note, however,
that even though decisions made by hospitals in the group
have mutual impact, each hospital is a distinct decision
maker motivated by its own objectives in preparing emer-
gency plans. In our experience, there is often little or no
cooperation among hospitals in the disaster preparedness
planning stage, particularly in areas where competition be-
tween healthcare organizations is intense. The MOU sim-
ply state some cooperative agreement on supplies sharing
after a disaster happens. Therefore, we think that a non-
cooperative game is the appropriate framework for this
problem.

We assume that hospitals want to meet as much of the
surge demand in a disaster as possible, at the lowest pos-
sible cost, considering that shortages incur costs. To cap-
ture the inherent uncertainty underlying disaster planning,
our model incorporates various possible scenarios, each
occurring with some probability and with a given demand
probability distribution in each scenario. We further as-
sume that in the case of a system-wide shortage in the
community of hospitals, each hospital is penalized pro-

portionally to the system’s overall supply shortage. This is
a reasonable assumption because, first, hospitals’ mutual
aid relationships imply that supplies are shared among the
hospitals involved. Second, patient surge demand can be
redistributed depending on hospitals’ response capacities.
Third, if an adverse event is an infectious disease, any un-
treated patient (due to insufficient available surge capacity
at a hospital) will further spread the disease in the com-
munity and thus create more demand to the overall health
system, potentially contributing to further supply shortages
at other hospitals.

We note that our approach uses a stylized game-theoretic
model. Such models are never strict representations of real-
ity; for example, our models do not include service level or
space constraints. However, such models make analytical
solution possible and thus facilitate the discovery of funda-
mental behaviors and insights that would otherwise remain
hidden. This might not be possible with more complex rep-
resentations. The model presented here encompasses the
major features of the problem and serves the purpose of
yielding interesting insights while remaining tractable.

This research answers the following questions. What will
be the hospital stockpile decisions in a decentralized and
centralized decision-making settings? What are the public
policy implications provided by the analytical solutions?
The stockpile of supplies considered in this problem is the
amount beyond what the hospital needs under normal con-
ditions, and the surge patient demand during a disaster is
expected to be much larger than what the hospital expe-
riences during regular operations. We assume that at the
time that the stockpile decisions considered in this arti-
cle are made, the current stockpile is zero (or negligible).
Moreover, we neglect safety stocks or functional inventory
of supplies stored by the hospital due to normal demand
variations for the reason that some of these supplies may
still be needed for treating non-disaster victims. We also
assume a non-zero lead time before newly ordered supplies
can be provided by suppliers since production ramp-up is
unlikely to be fast. As a result, when the disaster occurs,
there is a phase during which the only supplies available
are those that have been previously stockpiled. This phase
ends when suppliers make new deliveries. The demand con-
sidered in our model corresponds to the demand surge due
to the disaster during this phase; i.e., the demand that can
only be satisfied using the available stockpiles (Fantino,
2003; Hung, 2003; Chan-Yeung, 2004).

In a decentralized setting, each hospital aims to minimize
its own cost in a game-theoretic framework. In a centralized
setting, a coordinated decision is made by a central planner
to optimize the overall costs. Our research focuses on the
stockpiling of medical supplies such as PPE, which are used
to protect care providers and patients’ families who care for
the sick or injured. We explicitly exclude flu vaccines from
the scope simply because vaccine production (and hence
stockpiling) is not possible before the outbreak when the
flu strain is discovered.
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1.1. Relevant literature

The hospital stockpiling problem is related to supply chain
management and inventory control research. In particu-
lar, the models of inventory with transshipment are worth
noting; some representative work includes Krishnan and
Rao (1965), Tagaras (1989), and Rudi et al. (2001). Zhao
et al. (2005) consider inventory sharing in a decentralized
dealer network focusing on emergency lateral transship-
ment, which occurs only when one of the participating enti-
ties has a shortage and thus needs transshipment from other
entities. They examine the base-stock, rationing, and shar-
ing policy as decision variables in an inventory sharing and
rationing game model. In contrast, our hospital stockpil-
ing game model considers each hospital’s stockpile level as
its decision variable with consideration of several possible
demand scenarios based on disaster risk assessment, with
the supply sharing policy fixed by the mutual aid agreement
in place, or by the automatic nature of demand redistribu-
tion. Another contrast in our model is the penalty imposed
on each hospital should a community-wide supply short-
age occur for the reasons described earlier, whereas Zhao
et al. (2005) consider lost sales, backorder, and delay costs
as individual dealers fail to fill customer demand. More
fundamentally, in our model hospitals are not only trying
to minimize financial cost but are also taking into account
their mission of serving the population and providing life-
saving supplies, whereas Zhao et al. (2005) as well as most
of the literature on inventory transshipment takes a purely
profit-driven approach.

Mathematical modeling has been applied to medical
stockpiling problems. One class is the application of in-
ventory modeling, which is commonly seen in the field
of supply chain management. Jacobson et al. (2006) use
a stochastic inventory model to analyze whether or not
the CDC-proposed pediatric vaccine stockpile levels are
sufficient, with the consideration of vaccine production
interruptions. Another class of mathematical modeling
is the application of cost–benefit analysis that typically
weighs available options from economic viewpoints. Lee
et al. (2006) examine three neuraminidase inhibitor (e.g.,
Oseltamivir) stockpiling strategies in responding to a flu
pandemic in Singapore: no action, treatment only, and pro-
phylaxis. The results show that the treatment only option
is most economical, but implementing a prophylaxis strat-
egy would save the most lives. Moreover, Medema et al.
(2004) present a case study involving a computer-based sim-
ulation model that combines a vaccine production model
and a cost-effectiveness model of flu intervention strategies.
The analysis shows that vaccination strategies would be the
most cost-effective for the elderly populations in three Eu-
ropean countries.

Recently, there have been several game-theoretic models
applied to the healthcare arena. Chick et al. (2008) study
contractual issues of the influenza vaccine supply chain as
a theoretic game between a manufacturer and the govern-

ment. Their analysis shows that a rational manufacturer
will always under-produce vaccines due to the risk of un-
certain vaccine production processes. Sun et al. (2009) study
the problem of antiviral and vaccine stockpiling in differ-
ent countries and possible international resource sharing
should an epidemic start in a country possessing little or
no such supplies. They combine an epidemic transmission
model and a game-theoretic setup to examine drug allo-
cations among participating countries. Wang et al. (2009)
study a game between selfish countries that each allocate
resources at the onset of an epidemic to minimize the total
number of infected citizens. They show that selfish coun-
tries will allocate resources to lower the disease reproductive
ratio below a threshold in order to avoid a major outbreak.

1.2. Organization

This research focuses on stockpiling medical supplies in
a group of hospitals as a disaster preparedness measure.
It includes several contributions to the current literature
and practice. To our knowledge, this is the first article to
model and analyze disaster stockpiling for a community
of hospitals sharing supplies or serving a common popu-
lation. Our model captures uncertainty by considering a
variety of disaster scenarios. It captures the fact that hospi-
tals share excess supplies in a medical emergency based on
their mutual aid relationships or due to overlapping popu-
lations. In addition, the research integrates these and other
relevant factors into a game-theoretic setting and develops
closed-form solutions for Nash equilibria and the central-
ized solution. We compare centralized and decentralized
stockpiling strategies of a group of hospitals to provide
public health management insights.

The organization of the article is as follows. Section 2
describes the hospital stockpiling game model (i.e., the de-
centralized setting), its properties, and the Nash solutions.
Section 3 discusses the stockpiling problem with a cen-
tralized coordination. Section 4 compares the Nash and
decentralized solutions and draws insights. Finally, Section
5 concludes the work.

2. Hospital stockpiling game model

2.1. Model setup

We consider a group of hospitals {1, . . . , n} serving a given
region. Each hospital i needs to decide the stockpile level si
of its supply for a medical item in anticipation of a disaster.
In this model, the severity and type of disaster is uncertain.
As a result, the overall patient demand, D, for the item in
the region of concern is also uncertain. We consider several
disaster scenarios, l = 1, . . . , L with probability q1, . . . , q L,
where

∑L
l=1 ql = 1. Each scenario corresponds to a certain

type of disaster with a given severity. The conditional total
system-wide demand under scenario l is represented by the
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random variable Dl (total demand given that scenario l
occurs), with a cumulative distribution function Fl (.) dif-
ferentiable on R and a probability density function f l (.)
defined on R and strictly positive on [al , bl ] ⊂ R

+ (bl may
be infinite). Note that Dl is the random variable that repre-
sents the total aggregate demand to be served by the entire
group of hospitals in scenario l. Since in our model, only
the system-wide shortage matters, we make no assumption
on the stochasticity of demand at individual hospitals. In
particular, the different coefficients of variation (ratio of
standard deviation and mean) of the demand at different
hospitals do not play a role.

We impose a penalty cost on hospitals for shortages, de-
fined by unmet patient demand. In this model, the cost per
unit of shortage is p. Moreover, we assume that because of
complete sharing of supplies due to mutual aid agreements
or complete demand redistribution in the group of hospi-
tals, the penalty only depends on the total overall short-
age, i.e., on the difference between the cumulative stockpile
of all hospitals and the total demand realization, and not
on shortages at individual hospitals. Every hospital is pe-
nalized (proportionally) when the amount of system-wide
supply falls short of its realized system-wide demand.

The modeling assumption of a system-wide distributed
penalty caused by a system-wide supply shortage, rather
than individual penalties due to localized shortages, is a
critical assumption in this article. In particular, it implies
that while the stockpiling decision made by a hospital is
directly connected to its stockpiling cost, it does not directly
affect its utility: instead, it affects it indirectly via the total
quantity stockpiled by all hospitals in the group. It can be
justified by one of three external factors that are specific to
the context we consider of disaster planning for hospital in
a common area:

(a) increased risk of disease propagation in the commu-
nity (for the case of a disaster related to an infectious
disease);

(b) demand redistribution;
(c) sharing of resources.

First, when one hospital experiences a shortage and is
unable to provide appropriate treatment or prophylaxis to
protect its patients against an infectious disease, the disease
will propagate faster in the entire community served by the
group of hospitals, and more people will get infected not
only in the fraction of the population served by the hospital
experiencing a shortage but also in the entire region served
by the group of hospitals, which will affect other hospi-
tals. Second, in large metropolitan areas served by multiple
healthcare facilities, patients may easily switch from an un-
dersupplied facility to one with more supplies. Therefore,
when a given hospital experiences a shortage, the popula-
tion that is now unable to receive the necessary supplies
from this hospital is likely to turn to other hospitals in the
area, and thus these hospitals that would otherwise have

enough supplies may incur a shortage as well due to the
increased demand. A third justification for making this as-
sumption is the sharing of resources that occurs in practice
based on MOU that often exist between hospitals of a same
area. These MOU state that in case of an emergency, hospi-
tals agree to help each other if in need. In particular, when
one hospital is short of supplies, it may ask other hospitals
to share some of their supplies. As a result, other hospitals
in the group are negatively affected by the shortage at a
given hospital and will observe a higher demand for their
own limited resources and/or will have to share their own
supplies. This implies what matters at the time of a disaster
in the region is not only how much supply a hospital has
available but rather the level of preparation of every hospi-
tal in the region; i.e., each hospital is affected not by its own
stockpile but by the cumulative stockpile (and shortage). A
shortage in the overall system will hurt not one but all of
the hospitals involved.

In practice, the value of the penalty cost p can be esti-
mated by conducting a thorough cost analysis assessing all
risks involved. It can also be deemed as the avoidable cost
(such as probable work loss days due to an illness) should
there be sufficient level of available medical supplies. While
we recognize that selecting a meaningful value of p is crit-
ical, the task is not within the scope of this study. We will
provide some sensitivity analysis on the value of p to show
its impact on the solutions in this report.

Let ci be the stockpiling cost of one unit of supply at
hospital i . Let S be the overall stockpile level of all partici-
pating hospitals such that S = ∑n

i=1 si . The total shortage,
denoted U, is the difference between the total demand and
the total stockpile if this difference is non-negative (it is
zero otherwise). In disaster scenario l, the total shortage
amount is (Dl − S)+. The total shortage penalty cost at
the systems level is given by pU. Moreover, the shortage
penalty cost incurred at hospital i is a fraction wi of the to-
tal shortage cost, where 0 < wi < 1 and

∑n
i=1 wi = 1. The

fraction wi represents the relative stake of hospital i in the
overall supplies shortage. Its estimation must reflect the rel-
ative effect on hospital i of a system-wide shortage. There
are a variety of ways to evaluate this parameter. One way
could be to interpret the fraction wi as hospital i ’s fraction
of service capacity to the overall system capacity (typically
estimated by its bed size); another way could be to interpret
it as hospital i ’s share of the responsibility in the region’s
preparedness.

The expected total system-wide shortage depends on all
hospital stockpile levels s = (s1, . . . , sn) through its depen-
dency on S:

E[U] =
L∑

l=1

ql E[U| l] =
L∑

l=1

ql E[(Dl − S)+]

=
L∑

l=1

ql
∫ ∞

S
(x − S) f l (x)dx, (1)
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where E[U| l] is the expected shortage amount given that
scenario l occurs. The total cost at hospital i is given by
ci si + pwiU and also depends on all hospital stockpile lev-
els s = (s1, . . . , sn) through the dependency of U on S.

The following is an important assumption of this model.

Assumption 1. ci < pwi , i = 1, . . . , n.

The interpretation of this assumption is as follows. The
marginal cost of stockpiling one unit at hospital i must
be less than the fraction of the marginal penalty cost paid
by hospital i if the system is one unit short overall. This
assumption is not very restrictive as if it does not hold, no
hospital would stockpile at all.

2.2. Best response problem

In hospital i ’s best response problem, the objective is to
determine the stockpile level that minimizes hospital i ’s
expected total cost, assuming that other hospital stockpile
levels s j , j �= i are fixed. We denote s−i = {s j , j �= i}. The
expected total cost at hospital i is

J(si , s−i ) = E [ci si + pwiU] = ci si + pwi E[U].

Note that hospital i ’s expected stockpiling cost, Ji (si , s−i ),
is a function of both si and s−i through the term E[U].
Using Equation (1), the best response problem of hospital
i can be written as

min
si ≥0

Ji (si , s−i )=min
si ≥0

ci si + pwi

L∑
l=1

ql
∫ ∞

S
(x − S) f l (x)dx.

We now analyze the characteristics of hospital i ’s cost func-
tion Ji .

Proposition 1. Ji (si , s−i ) is a continuous, twice differentiable,
convex function of si .

Proof. Continuity and differentiability follow directly from
the definition of Ji (si , s−i ). To show convexity, we calculate
the first and second partial derivatives:

∂ Ji (si , s−i )
∂si

= ci − pwi

L∑
l=1

ql
∫ ∞

S
f l (x)dx

= ci − pwi

L∑
l=1

ql [1 − Fl (S)
]

= ci − pwi + pwi

L∑
l=1

ql Fl (S), (2)

where the last equality follows from
∑L

l=1 ql = 1:

∂2 Ji (si , s−i )

∂s2
i

= pwi

L∑
l=1

ql f l (S) ≥ 0.

�
The following proposition gives the best response func-

tion in a closed form. Let Ḡ(s) = ∑L
l=1 ql Fl (s) be defined

on R, strictly increasing on [a, b], where a = minl al and
b = maxl bl with values in [0,1]. We denote G(.) the re-
striction of Ḡ(.) to [a, b]; thus G(.) is strictly increasing
and invertible from [a, b] into [0, 1], and G−1(.) is strictly
increasing from [0, 1] into [a, b].

Proposition 2. The best response function, i.e., the solution
to the best response problem, can be written as follows:

s∗
i (s−i )

=
{

0 if G−1(1−(ci/pwi ))−S−i < 0,

G−1(1 − (ci/pwi )) − S−i , else,

where S−i = ∑
j �=i s j = S − si . In particular, s∗

i (s−i ) is piece-
wise linear non-increasing with s j , j �= i and with S−i , with
slope equal to 0 or −1.

Proof. Using the first-order necessary conditions, Equa-
tion (2) and the fact that S = si + S−i , the best response si
is such that:

ci − pwi + pwi Ḡ(si + S−i ) = 0,

if this solution is non-negative. The result follows. �
The best response function is illustrated in Fig. 1 in the

case of two hospitals (n = 2). We observe that there is a
threshold value Qi = G−1(1 − (ci/pwi )) that is the min-
imum total stockpile that hospital i desires the commu-
nity to have. Thus, if all other stockpiles combined have
already attained this value, hospital i stockpiles nothing
additional. Otherwise, hospital i will fill the gap as needed
to reach that threshold. This threshold value is such that
ci = pwi Pr(D ≥ Qi ), i.e., Qi is the value of the total cu-
mulative stockpile where the marginal cost at hospital i of
adding one extra unit to its stockpile is equal to the ex-
pected marginal penalty paid by hospital i if this unit is not
added. In other words, Qi is the quantity in the cumulative
stockpile such that hospital i is indifferent to adding one
unit to its own stockpile; as long as the marginal cost of
adding one extra unit is smaller than the expected penalty
for not adding it, hospital i keeps adding to its stockpile.

Fig. 1. Best response function illustrated in the case with n = 2.
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2.3. Nash equilibrium solution

Inventory levels (s̄1, . . . , s̄n) form a Nash equilibrium if no
hospital can decrease its expected cost by unilaterally alter-
ing its stockpile level:

s̄i = s∗
i (s̄−i ), i = 1, . . . , n.

Graphically, a Nash equilibrium is any point that lies at the
intersection of the best response functions of all the players
in the game.

The following assumption is made without loss of
generality.

Assumption 2. The hospitals are ordered so that:

r1 = . . . = rm < rm+1 ≤ . . . ≤ rn, 1 ≤ m ≤ n,

where ri = ci/wi and m is defined as the total number of
hospitals that have the minimum ratio ri in the group.

We note that by Assumption 1, 0 < 1 − ri/p(< 1). We
now find the Nash equilibrium solution in closed form.

Theorem 1. If m > 1, there are infinitely many Nash equilib-
ria given by

s̄i =
{
αi G−1(1 − (ri/p)), i = 1, . . . , m,

0, i = m + 1, . . . , n,

for any α1, . . . , αm ∈ [0, 1] such that
∑m

i=1 αi = 1.

Proof. It is easy to see that the solution provided satis-
fies s̄i = s∗

i (s̄−i ), i = 1, . . . , n. To show that this is the
only solution, let s̄1, . . . , s̄n an equilibrium solution; i.e.,
s̄i = s∗

i (s̄−i ), i = 1, . . . , n, S̄ = ∑n
i=1 s̄i and S̄−i = ∑

j �=i s̄ j .
If s̄i = 0 ∀i , then S̄−i = 0, ∀i , so G−1(1 − (ri/p)) > S−i and
thus from Proposition 2, s̄i = G−1(1 − (ri/p)) > 0, which
is a contradiction. Therefore, at least one of the s̄i is
positive, say s̄i0 . It follows from the best response func-
tion at hospital i0 that S̄ = s̄i0 + S̄−i0 = G−1(1 − ri0/p), so
all stockpiles at equilibrium must add up to the value
G−1(1 − (ri0/p)). For any i such that s̄i > 0, it follows
from the best response function at hospital i that S̄ =
G−1(1 − (ri/p)) = G−1(1 − (ri0/p)), so ri = ri0 . For any i
such that s̄i = 0, S̄−i = S̄ − s̄i = S̄ = G−1(1 − (ri0/p)) and
thus from the best response function at hospital i it fol-
lows that G−1(1 − (ri/p)) < G−1(1 − ri0/p). Because G−1

is strictly increasing, it follows that ri > ri0 . �
Corollary 1. If m = 1, there is a unique Nash equilibrium
given by

s̄i =
{

G−1(1 − (ri/p)), i = 1,

0, i = 2, . . . , n.

The proof is similar to the proof of Theorem 1 for m = 1,
and is thus omitted.

We interpret the two results above as follows. Hospitals
with a lower ratio ri = ci/wi have a lower per unit cost
and/or receive a higher fraction wi of the total penalty.
Intuitively, having a lower ratio gives more incentives to

stockpile more, as it implies that it costs less to stockpile
or that more is at stake. Also, as explained above, hospital
i desires the total cumulative stockpile to reach at least
Qi . Note that if ri = r j , then Qi = Q j , and a low value
of ri means a high value of Qi . We found that the only
hospitals that stockpile a positive amount at equilibrium
are the hospitals with the minimum ratio r1. These hospitals
cumulatively stockpile jointly the quantity Q1, which is the
highest of all Qi values; all others stockpile a zero quantity.
When there is a single hospital with minimum ratio r1, this
hospital stockpiles its threshold quantity Q1. When there
is more than one hospital with minimum ratio r1, there
are infinitely many equilibria that correspond to different
ways of splitting the total stockpile Q1 that needs to be a
cumulated among all hospitals with the minimum ratio r1.
This means that hospitals with a desired quantity Qi that is
lower than Q1 need not stockpile anything on their own as
they know that others have incentive to stockpile an even
greater quantity by themselves, so their own desired total
quantity Qi will be reached even if they do not contribute
anything towards it, and as a result they have no incentive
to stockpile at all.

The closed-form expression for the total stockpile at
equilibrium follows directly from these results.

Corollary 2. The system-wide total stockpile level at any
equilibrium, Sd, is given by

Sd =
n∑

i=1

s̄i = G−1
(

1 − r1

p

)
, ∀m, α1, . . . , αm.

In particular, the total stockpile at equilibrium is the same
at all Nash equilibria, even though the individual stockpiles
at distinct equilibria are not the same. This total stockpile
is equal to the largest of the threshold quantities Qi , i =
1, . . . , n, which is Q1.

The total expected stockpiling cost for the group of hos-
pitals at a Nash equilibrium can be written as follows:

�∗
d =

n∑
i=1

Ji (s̄i , s̄−i ) = Sd

m∑
i=1

ciαi

+ p
L∑

l=1

ql
∫ ∞

Sd

(x − Sd) f l (x)dx.

We note in particular that �∗
d depends on α1, . . . , αm if there

are multiple equilibria; in other words, the total community
cost is not the same at all Nash equilibria. As a result, we
define the worst total cost at a Nash equilibrium as the
highest possible total cost over all Nash equilibria:

�∗ max
d = Sdcmax + p

L∑
l=1

ql
∫ ∞

Sd

(x − Sd) f l (x)dx,

where cmax = max{c1, . . . , cm}. The worst total cost at a
Nash equilibrium is obtained at the Nash equilibrium
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Fig. 2. Nash equilibrium illustrated in the case with n = 2.

where, of all hospitals with minimum ratio ri = r1, only
the hospital with maximal per unit cost stockpiles.

Figure 2 shows the Nash equilibrium solutions in the
case of two hospitals. When the hospitals have different ra-
tios of r1 = c1/w1 and r2 = c2/w2, there is only one Nash
equilibrium as shown on the left-hand side graph. Assum-
ing c1/w1 < c2/w2, at the equilibrium hospital 1 stockpiles
the amount Q1 = G−1(1 − (r1/p)) and hospital 2 stock-
piles nothing. On the other hand, when (c1/w1) = (c2/w2),
there are infinitely many Nash equilibria as shown in
Theorem 1.

The existence of multiple Nash equilibria in the game
can be a challenge in practice. As Cachon and Netessine
(2004) point out, it becomes a problem as no player knows
which equilibrium will prevail and the outcome of the game
cannot be predicted. They also state that there are some
commonly used methods for handling multiple equilib-
rium solutions in a game, such as finding a Pareto optimal
equilibrium or rules based on symmetry. As a result, in
the presence of multiple Nash equilibria, the equilibrium
that may seem preferable based on symmetry arguments
is the symmetric equilibrium; i.e., the equilibrium where
αi = 1/m ∀i = 1, . . . , m. Indeed, according to Cachon and
Netessine (2004, p. 23), “a symmetric equilibrium is more
focal than an asymmetric equilibrium” and a symmetric
equilibrium may thus appear “more reasonable than oth-
ers” (see, also, Mahajan and Van Ryzin (2001)).

Cachon and Netessine (2004, p. 23) also suggest that
in the case of multiple equilibria, “an alternative method
to rule out some equilibria is to focus only on the Pareto
optimal equilibrium” as a “most preferred equilibrium by
every player.” Sun et al. (2009), for example, also face a
problem with multiple Nash equilibria and focus on the
Pareto optimal equilibrium which they prove to be unique.
The next subsection explores Pareto optimality among the
multiple Nash solutions.

2.4. Pareto optimality

In this section, we assume that the Nash equilibrium is not
unique; i.e., m > 1. Our goal is to determine whether one

of the Nash equilibria is Pareto optimal. A Pareto optimal
point is a solution such that reducing one of the player’s
cost is impossible without increasing another player’s cost.

To find all the Pareto-optimal points, it suffices to solve
the following problem for all λi ≥ 0, ∀i :

min
s=(s1,··· ,sn )≥0

�P(s) = λ1 J1(s) + . . . + λn−1 Jn−1(s) + Jn(s)

= min
s1,··· ,sn≥0

λ1c1s1 + · · · + λn−1cn−1sn−1 + cnsn

+ (λ1w1 + · · · + λn−1wn−1 + wn)pE[U]. (3)

Let λn = 1, c′
i = λi ci , ∀i , and p′ = p

∑n
i=1 λiwi . Then

problem (3) becomes:

min
s=(s1,··· ,sn )≥0

�P(s) =
n∑

i=1

c′
i si + p′E[U]

=
n∑

i=1

c′
i si + p′

L∑
l=1

ql
∫ ∞

S
(x − S)Fl (x)dx.

Lemma 1. We have c′
i ≤ p′, ∀i .

Proof. By Assumption 1, ci < pwi . Because λi ≥ 0,
p > 0, and wi > 0, it follows that c′

i = λi ci ≤ pλiwi ≤
p

∑n
j=1 λ jw j = p′. �

We want to find the Pareto-optimal point that corre-
sponds to a given set of values of λi , i = 1, . . . , n. Let
J = {i : c′

i = min j c′
j } be the set of hospitals with mini-

mum value of c′
i , and j = |J | the number of such hospitals.

The following theorem provide a closed-form solution for
Pareto-optimal points.

Theorem 2. If j > 1, there are infinitely many Pareto-optimal
points given by

ŝi =
{

γi G−1(1 − (c′
i/p′)), i ∈ J ,

0, i /∈ J ,

for any {γi , i ∈ J } such that γi ∈ [0, 1] and
∑

i∈J γi = 1.

Proof. Let (ŝ1, . . . , ŝn) be an optimal solution, and let
Ŝ = ∑n

i=1 ŝi and Ŝ−i = Ŝ − ŝi . The partial derivatives of
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�P(s1, . . . , sn) are

∂�P

∂si
(s1, . . . , sn) = c′

i − p′
L∑

l=1

ql
∫ ∞

S
f l (x)dx

= c′
i − p′

L∑
l=1

ql (1 − Fl (S))

= c′
i − p′ + p′

L∑
l=1

ql Fl (S),

and

∂�P

∂si∂s j
(s1, . . . , sn) = p′

L∑
l=1

ql f l (S).

It is clear that the Hessian matrix of �P is positive semi-
definite for all (s1, . . . , sn), so �P is convex. We note that a
convex function of a variable attains its minimum on R

+ at
zero if its derivative at zero is positive and at a point where
its derivative equals zero otherwise. As a result, we have:

(a) if c′
i − p′ + p′G(Ŝ−i ) > 0, then ŝi = 0;

(b) if c′
i − p′ + p′G(Ŝ−i ) ≤ 0, then ŝi satisfies c′

i − p′ +
p′G(Ŝ) = 0.

In other words, ŝi = G−1(1 − (c′
i/p′)) − Ŝ−i if this quantity

is non-negative, and ŝi = 0 otherwise. The result follows
using a reasoning similar to the proof of Theorem 1. �

The following corollary can be proved similarly (and the
proof is thus omitted).

Corollary 3. If j = 1, there is a unique Pareto-optimal point
given by

ŝi =
{

G−1(1 − (c′
i/p′)), if i ∈ J ,

0, if i /∈ J .

The closed-form expression for the total stockpile SP at a
Pareto-optimal point corresponding to a given set of values
of λi , i = 1, . . . , n, follows directly from the results above.

Corollary 4. The system-wide total stockpile level SP at a
Pareto-optimal point corresponding to a given set of values
of λi , i = 1, . . . , n, is given by

SP =
n∑

i=1

ŝi = G−1
(

1 − c′
i1

p′

)
∀ j, γi , i ∈ J ,

where c′
i1

is the minimum of all the coefficients c′
i ; i.e., c′

i1
=

mini c′
i .

In particular, the total stockpile at a Pareto-optimal
point is the same at all Pareto-optimal points correspond-
ing to the same λi , i = 1, . . . , n, even though the individual
stockpiles at distinct solutions are not the same. Note, how-
ever, that the total stockpile depends on λi , i = 1, . . . , n.

2.4.1. Particular case: A two-hospital game
Let us consider a two-hospital setting. As explained above,
the study of Pareto-optimal points is of particular im-
portance in the case of multiple Nash equilibria, so we
assume that the Nash equilibrium is not unique; i.e.,
(c1/w1) = (c2/w2).

Proposition 3. There is no Nash equilibrium that is Pareto
optimal in a two-hospital game with multiple Nash equilibria.

Proof. First we recall that under the assumption (c1/w1) =
(c2/w2), the Nash equilibria correspond to any arbitrary
split of

Sd = G−1
(

1 − c1

pw1

)
= G−1

(
1 − c2

pw2

)

among s̄1 and s̄2. We consider three cases.

Case 1: 0 ≤ λ < c2/c1; i.e., c′
1 < c′

2 so there is a unique
Pareto-optimal point associated with λ: ŝ1 =
G−1(1 − (c′

1/p′)), ŝ2 = 0. This point is a Nash equi-
librium iff

G−1
(

1 − c′
1

p′

)
= G−1

(
1 − c1

pw1

)
,

or, equivalently:

λc1

p(λw1 + w2)
= c1

pw1
,

which is impossible as w2 �= 0.
Case 2: λ > c2/c1 (in particular λ �= 0); i.e., c′

1 > c′
2 so there

is a unique Pareto-optimal point associated with λ:
ŝ1 = 0, ŝ2 = G−1(1 − (c′

2/p′)). This point is a Nash
equilibrium iff

G−1(1 − c′
2/p′) = G−1

(
1 − c2

pw2

)
,

or, equivalently:

c2

p(λw1 + w2)
= c2

pw2
,

which is impossible as λw1 �= 0.
Case 3: λ = c2/c1; i.e., c′

1 = c′
2 so there is an infinite number

of Pareto-optimal points associated with λ, corre-
sponding to any arbitrary split of

SP = G−1
(

1 − c′
1

p′

)
= G−1

(
1 − c′

2

p′

)

among ŝ1 and ŝ2. One of these points is a Nash
equilibrium iff they all are Nash equilibria, which
is the case iff

G−1
(

1 − c′
1

p′

)
= G−1

(
1 − c1

pw1

)
,

which is impossible as w2 �= 0. �
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Fig. 3. Nash equilibria and Pareto-optimal points illustrated in
the case with n = 2.

The following proposition compares the total stockpile
at a Pareto-optimal point and at a Nash equilibrium.

Proposition 4. The total stockpile level at any Pareto-optimal
point is greater than at a Nash equilibrium in a two-hospital
game with multiple Nash equilibria.

Proof. If λ < c2/c1, then since G−1 is increasing and w2 >

0:

SP = G−1
(

1 − c′
1

p′

)
= G−1

(
1 − λc1

p(λw1 + w2)

)

> G−1
(

1 − c1

pw1

)
.

If λ > c2/c1, then since G−1 is increasing and w1 > 0:

SP = G−1
(

1 − c′
2

p′

)
= G−1

(
1 − c2

p(λw1 + w2)

)

> G−1
(

1 − c2

pw2

)
.

If λ = c2/c1, then since (c1/w1) = (c2/w2):

SP = G−1
(

1 − c′
1

p′

)
= G−1

(
1 − λc1

p(λw1 + w2)

)

= G−1
(

1 − 1
p((w1/c1) + (w2/c2))

)

= G−1
(

1 − c1

2pw1

)
> G−1

(
1 − c1

pw1

)
.

�

Figure 3 illustrates the set of Pareto-optimal points in
the case of two hospitals with multiple Nash equilibria.

3. Stockpiling with centralized coordination

We now consider the case in which stockpile decisions at
each hospital are centrally coordinated to minimize ag-
gregate costs. One example of this setting is a situation
where a healthcare network/organization or local gov-
ernment agency wants to determine sufficient pandemic
stockpile levels of its member hospitals while minimizing
the overall investment. The centralized setting can also
be viewed simply as a benchmark to compare the perfor-
mance of the Nash equilibrium with the best possible over-
all outcome. The centralized solution provides the minimal
possible overall costs, should all hospitals coordinate their
decisions in the interest of the entire system. We note that
the centralized setting does not allow any risk pooling be-
cause the stochasticity of the demand is introduced at the
aggregate level via the total demand for the entire group
of hospitals and not at the individual hospital’s level. The
goal of the central planner is then to decide the stockpiles
that minimize the expected total cost for the n hospitals:

min
s=(s1,...,sn )≥0

�c(s) =
n∑

i=1

Ji (si , s−i )

=
n∑

i=1

ci si + p
L∑

l=1

ql
∫ ∞

S
(x − S) f l (x)dx. (4)

It follows from Assumption 1 that ci < p, i = 1, . . . , n.
Let I = {i : ci = min j c j } be the set of hospitals with

minimum unit stockpiling cost and k = |I| the number of
hospitals with minimum unit cost. The following theorem
provides a closed-form solution for the centralized problem
(4).

Theorem 3. If k > 1, there are infinitely many centralized
solutions given by

s̃i =
⎧⎨
⎩βi G−1

(
1 − ci

p

)
, i ∈ I

0 i /∈ I
for any {βi , i ∈ I} such that βi ∈ [0, 1] and

∑
i∈I βi = 1.

The proof is similar to the proof of Theorem 2 and is
thus omitted.

The following corollary can be proved similarly to Corol-
lary 3.

Corollary 5. If k = 1, there is a unique centralized solution
given by

s̃i =
⎧⎨
⎩G−1

(
1 − ci

p

)
if i ∈ I,

0 if i /∈ I.

The interpretation behind these two results is simple.
Since the central planner takes a system perspective and
attempts to minimize the overall costs, the best strategy is to
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Fig. 4. Centralized solution and Nash equilibrium illustrated in the case with n = 2.

have only hospitals with the lowest per unit cost stockpile a
positive quantity. If there is a single hospital with minimum
unit cost, it is the only one to stockpile at the centralized
optimum. If there are multiple hospitals with minimum unit
cost, these hospitals may split the total quantity to stockpile
among themselves arbitrarily with no effect on the total
cost. The total quantity to stockpile cumulatively is the
threshold value Sc such that the marginal cost of buying an
extra unit of supply (at the minimum possible cost) equals
the expected marginal penalty paid by the system if that
unit is not purchased. In other words, ci0 = pPr(D ≥ Sc)
must be satisfied, where ci0 = mini ci .

The closed-form expression for the total stockpile Sc at a
centralized solution follows directly from the above results.

Corollary 6. The system-wide total stockpile level at any
centralized solution, Sc, is given by

Sc =
n∑

i=1

s̃i = G−1
(

1 − ci0

p

)
, ∀k, βi , i ∈ I,

where ci0 is the minimum of all the unit costs in the system;
i.e., ci0 = mini ci .

In particular, the total stockpile at a centralized solution
is the same at all centralized solutions, even though the
individual stockpiles at distinct solutions are not the same.

The centralized solutions (as well as Nash equilibrium
solutions) are illustrated in Fig. 4 in the case of two hospi-
tals in several different cases.

The total expected stockpiling cost at a centralized solu-
tion is given by

�∗
c = ci0 Sc + p

L∑
l=1

ql
∫ ∞

Sc

(x − Sc) f l (x)dx.

Note that �∗
c does not depend on βi , i ∈ I even if there are

multiple centralized solutions.

4. Comparison of the Nash equilibrium and centralized
solutions and sensitivity analysis

After examining the decentralized and centralized settings,
we need to further understand the difference in their so-
lutions and what this implies in terms of planning pre-
paredness and public policy. One measure of the overall
performance of the solution is the aggregate total cost in-
curred. Another major criterion in measuring the level of
preparedness is the aggregate amount of stockpile.

4.1. Efficiency of the system

Let us define the worst loss of efficiency in cost to be

ρd = �∗ max
d

�∗
c

.

By definition, ρd ≥ 1. A ratio close to one means that the
total cost in the decentralized setting is larger but close to
the total cost in the centralized setting. Thus, decentralizing
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or decoupling the decision making does not lead to a large
relative loss in terms of expected cost. A ratio much greater
than one means that the equilibrium may be very inefficient
in terms of cost, when its performance is compared with
what could be achieved should a coordinated decision be
made.

Let us also define the loss of efficiency in quantity as

σd = Sc

Sd
.

From Corollaries 2 and 6, we have that:

σd = G−1(1 − (ci0/p))
G−1(1 − (c1/pw1))

.

The closer σd is to one, the closer the total cumulative
stockpile in the decentralized planning setting is to the total
cumulative stockpile in the centralized setting. A larger
ratio means that the equilibrium leads to a much lower
total quantity than what would be achieved in a centrally
coordinated setting.

The worst loss of efficiency in quantity and the loss of
efficiency in cost are illustrated in Fig. 5 in the case of two
hospitals, L = 3 scenarios (q1 = 0.2, q2 = 0.5, q3 = 0.3),
where the demand distribution follows a normal distribu-
tion with mean of 100, 300, and 500 and standard deviation
of 30, 70, and 120 in each of the three scenarios, respectively.

4.2. Aggregate amount of stockpiles

We now focus on the ratio σd that compares the aggregate
amount of stockpile in the centralized and decentralized
settings.

Proposition 5. The total stockpile at a Nash equilibrium is
lower than the total stockpile at a centralized solution: Sd <

Sc (i.e., σd > 1).

Proof. The result follows from the fact that ci0 ≤ c1 <

c1/w1 and that G−1 is strictly increasing. �
This result is illustrated in Fig. 5 where we observe that σd

is always greater than one. It implies that if a region decides
to centralize its stockpiling decisions, it would always result
in a larger total stockpile than if each hospital makes its
own decision by minimizing its expected cost with shared
resources. Therefore, centralizing the decision would not
only reduce the overall costs, it would also yield a larger
overall stockpile.

4.3. Sensitivity to the penalty coefficient

It is clear from the closed-form expressions obtained that
the total stockpile quantities in both settings are non-
decreasing with the parameter p as a higher penalty value
gives incentives to stockpile more. We now investigate how
the efficiency ratios vary with this penalty coefficient.

Lemma 2. As p becomes infinite, σd tends to a value of one.

Proof. The result is clear if b is finite as limp→∞ Sd =
limp→∞ Sc = G−1(1) = b. We now assume b = ∞; i.e.,
limx→1 G−1(x) = +∞. We have that:

1 − ci0

p
= 1 − c1

pw1
+ 1

p

(
c1

w1
− ci0

)
.

As p → ∞, the second term above becomes arbitrarily
small. Therefore, for a large p:

G−1
(

1 − ci0

p

)
� G−1

(
1 − c1

pw1

)

+ 1
p

(
c1

w1
− ci0

)
(G−1)′

(
1 − c1

pw1

)
= G−1

(
1 − c1

pw1

)

+ 1
p

(c1/wi ) − ci0∑L
l=1 ql f l (G−1(1 − (c1/pw1)))

.

Therefore, for a large p:

σd � 1

+ 1
p

(c1/wi ) − ci0

G−1(1 − (c1/pw1))
∑L

l=1 ql f l (G−1(1 − (c1/pw1)))
.

Now,

lim
p→∞

1
p

= 0, lim
p→∞

(c1/w1) − ci0

G−1(1 − (c1/pw1))
= 0

and

lim
p→∞

1∑L
l=1 ql f l (G−1(1 − (c1/pw1)))

< ∞;

therefore, limp→∞ σd = 1. �

Figure 5 illustrates this result. This implies that while the
centralized total stockpile is always greater than the decen-
tralized total stockpile, for a very large value of the penalty
parameter, the stockpile amount at the decentralized equi-
librium becomes close to the centralized stockpile amount.
As a result, in a setting where each hospital makes its own
decisions and sharing or demand redistribution apply, a
public policy that renders it very costly to have shortages
would not only lead to a higher stockpile level but also
would make the system as well prepared as if the decisions
had been made in a coordinated fashion.

It is also worth pointing out that the worst loss of ef-
ficiency in cost for the decentralized setting is not mono-
tonic with p, as shown in Fig. 5. Indeed, an increase in
the penalty value does not always decrease the worst loss
of efficiency in cost. The rationale of this observation is
that if cmax �= ci0 , the hospital that stockpiles at the cen-
tralized solution is not the one that stockpiles at the Nash
solution. In this case, the purchasing cost at the “worst”
Nash equilibrium is given by cmaxSd, and the purchas-
ing cost at the centralized solution is given by ci0 Sc. We
have limp→∞ Sd = limp→∞ Sc = G−1(1) = b, but because
cmax �= ci0 , limp→∞ cmaxSd �= limp→∞ ci0 Sc and there-
fore the expected stockpile costs do not converge to the
same value as the unit penalty cost approaches infinity.
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Fig. 5. The loss of efficiency in quantity, σd, and the worst loss of efficiency in cost, ρd, are illustrated here for two hospitals (n = 2).
Parameters (c1, c2, w1, w2) are given respectively: (5, 5, 0.5, 0.5), (5, 5, 0.6, 0.4), (4, 6, 0.4, 0.6), (4, 6, 0.5, 0.5), and (4, 6, 0.3, 0.7).

Although in Fig. 5, σd appears monotonically decreasing
in p, another example depicted in the left-hand-side graph
in Fig. 6 shows that this is not generally the case. Similarly,
the worst loss of efficiency in cost, ρd, is not in general
monotonically decreasing in p as shown in the right-hand-
side plot in Fig. 6.

4.4. Sensitivity to the cost parameters

The effect of reducing the per unit purchasing cost
on the total stockpile level is clear from the expres-
sions of aggregate stockpile levels. As c1 decreases, 1 −
(c1/pw1) increases, leading to an increase of Sd = G−1
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Fig. 6. A two-hospital example showing that the ratio of loss of efficiency in cost and quantity is not necessarily monotonically
decreasing in the penalty cost p. Parameters used: L = 3, demand distributions with means = [100, 300, 500] and standard deviations
[30, 70, 120], c = [4, 6], w = [0.4, 0.6], q = [0.8, 0.1, 0.1].

(1 − (c1/pw1)), and thus Sd increases. Similarly, Sc in-
creases if ci0 decreases.

The explanation of the effect of changing the unit cost
on stockpile levels is intuitive: a lower unit stockpiling cost
gives incentives to stockpile more. A decrease in unit stock-
piling cost may result from several different reasons. One
possibility is a monetary subsidy provided by the govern-
ment in the form of a subsidy per unit stockpiled as a form
of cost sharing. This type of subsidy would result effectively
in a decrease in the cost per unit at hospitals and thus an
increase in the total stockpile. Another situation where the
unit stockpiling cost could be lowered is when the group
of hospitals or health organizations in a region make their
orders as one large buyer instead of several smaller buyers,
resulting in a greater purchasing power for price negotiation
with suppliers (i.e., economies of scale). A strategically lo-
cated warehouse and efficiently managed stockpile can also
help reduce the supply unit cost.

4.5. Sensitivity to the weight parameters

The effect of the weight parameter wi of hospital i on its
stockpile level is quite straightforward. First, we know that
the weights wi do not affect Sc. Also, clearly, as w1 increases,
Sd = G−1(1 − (c1/pw1)) increases. Intuitively, the central-
ized aggregate stockpile is independent of the weights of
each hospital as only the overall penalty matters. At the de-
centralized solution, the aggregate stockpile goes up when
the hospital(s) that actually stockpile is (are) responsible
for a larger share of the overall penalty.

4.6. Insights

Based on the characteristics of the centralized and Nash
solutions, some managerial insights can be drawn for dis-

aster preparedness purposes. First, in a coordinated setting
a higher aggregate stockpile quantity will result than in a
decentralized setting. This implies that a centralized ap-
proach leads to a better prepared community than what
may result in the decentralized setting in which each hospi-
tal makes its own decision considering supply sharing.

As Lemma 2 shows, the loss of efficiency in quantity
becomes arbitrarily close to one for large values of the
unit penalty cost. This means that if the perceived unit
penalty cost due to supply shortage can be made very large,
e.g., because of the serious threat of a disaster with high
mortality rate or because the government is imposing a
monetary penalty for supply shortages, σd would become
close to one, meaning that the aggregate stockpile amount
would be close to that of the centralized setting.

From the analysis of the sensitivity to unit supply cost
ci we can conclude that a discounted unit cost leads to
a higher total stockpile. Such a discount can be achieved
by government-provided subsidy for disaster planning pur-
poses, or by hospitals forming a large purchasing con-
sortium in order to negotiate a better pricing with their
suppliers.

It is worth noting that in this problem, it may be reason-
able to assume that all hospitals in the group have similar
unit costs since in the healthcare industry, there are few
suppliers/distributors that carry a given item in a region,
and hospitals typically purchase medical supplies in groups
(e.g., by affiliation) but not individually. Thus, in the decen-
tralized setting, the hospital with the largest stake in overall
shortage penalty (i.e., largest wi ) will stockpile all the group
needs (since it has the smallest ratio of ri = ci/wi ).

In summary, when the decision making for hospi-
tal stockpiling in preparation for disasters is done in a
centralized manner, the aggregate cost is lower and the
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aggregate stockpile quantity is higher; hence the commu-
nity is better prepared for disaster at a lower cost. The
optimal centralized solution has only the hospital(s) with
lowest unit cost purchase supplies, but in practice this stock-
piling cost would be distributed among all participating
hospitals. In contrast, when the decision making is decen-
tralized, only the hospital(s) with the lowest ratio of cost
over weight will stockpile for the entire community, yield-
ing higher overall costs and a lower aggregate stockpile.
This incurs a large sunk cost for the hospital(s) that do
stockpile, which is likely recurrent every few years due to
the need for stock rotation while all other hospitals in the
group do not invest at all prior to the onset of a disaster.
Therefore, from the perspective that disaster preparedness
should be a community-wide, shared effort aiming at best
serving the need of a population when a disaster occurs,
the decentralized setting presents serious drawbacks. There
exist several ways for the government to remedy the situa-
tion such as by providing subsidies to help lower the cost of
stockpiling. Another possibility is imposing extra shortage
penalties as a means to give more incentives for hospitals
to stockpile larger quantities.

5. Conclusions

The stockpiling of medical supplies by hospitals in prepa-
ration for a disaster is a task demanding immediate
attention and action. We present this problem as a game-
theoretic model aiming at providing an estimate of how
much each hospital would stockpile in a decentralized set-
ting when minimizing its total cost. The model captures
the interdependency of the decisions of hospitals serving a
common population and/or participating in a mutual aid
agreement for sharing resources. This model is compared
to a centralized setting in which a coordinated stockpile
decision is made for the system as a whole by a central
planner while minimizing the overall expected stockpiling
cost. These models provide managerial insights for pub-
lic health practice in preparing sufficient medical supplies,
pharmaceutical or not, to respond to adverse events. In
particular, we found that increasing the shortage penalty
or decreasing the procurement cost would improve the effi-
ciency of the equilibrium, in the sense that the equilibrium
stockpile would be larger and closer to the stockpile of
the system optimum. This could be achieved via a gov-
ernment intervention such as imposing a tax on supplies
shortage during a disaster or subsidizing the purchase of
supplies to encourage adequate planning. The efficiency of
the equilibrium may also be improved via contracts among
participating hospitals and possibly government.

Although our modeling approach relies on a number of
assumptions that may not hold in a strict sense in reality,
we feel that the solutions we obtain reflect the reality that
our partner hospital has observed in the recent past while
preparing for an influenza pandemic: this large hospital has

been stockpiling supplies while some other smaller hospi-
tals in the area had decided not to do so. Therefore, we feel
that the assumptions and model have been set up appro-
priately to reflect the main characteristics of the problem,
while remaining tractable enough to allow for an analytical
approach.

One extension of this work is evaluating the performance
of Nash stockpile levels and the centralized solutions when
real demand distributions deviate from the assumed ones.
In the current model, hospitals are assumed to have full
knowledge of the probability of each disaster scenario and
its demand distribution. However, in reality there is little
scientific evidence available on how to estimate the severity
a specific disaster and its probability of occurrence. Future
research will involve relaxing the assumption that the exact
probability distribution is known.

Another extension is setting up the problem as a coopera-
tive game. In a cooperative game, hospitals form coalitions
and determine the best binding agreement that achieves
the optimum of its objective. In such a game, the decisions
of each hospital can be the fraction of excess supply it
shares with others when needed. This article takes a non-
cooperative game approach to represent our observations
of the way hospitals make decisions—individually, to max-
imize their own utility. However, considering a cooperative
approach could reveal interesting insights and suggest a
potential alternative to how decisions are currently being
made.

Our stockpile game is a simultaneous game. If hospitals
make stockpile decisions sequentially, we expect the result-
ing stockpiles of each hospital to be very different. This
extension can shed light especially on the leader–follower
behavior among hospitals of interest.

Finally, another possible direction of extension is to de-
sign implementable contracts among hospitals and possi-
bly involving government in a transfer payment scheme
such that each hospital’s objective becomes aligned with
the system’s objective. It then improves the performance of
the equilibrium and achieves coordination of the system,
thereby avoiding inefficiencies due to the decentralization
of the decision making.
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