Diboson Production and Drell-Yan Forward-Backward Asymmetry Measurements using the DØ Detector at Fermilab

John Ellison
University of California, Riverside
For the DØ Collaboration

Frontiers in Contemporary Physics III
Vanderbilt University
May 23-28, 2005
The Tevatron

- DØ data recorded to date $\sim 0.7 \text{ fb}^{-1}$
- Results shown in this talk are based on $\sim 150–320 \text{ pb}^{-1}$
- Expect $\sim 1 \text{ fb}^{-1}$ by Fall 2005
- $\sim 4-8 \text{ fb}^{-1}$ by 2009
The DØ Detector
The $WW\gamma$ and WWZ Vertices

- Standard model $U(1)_Y \times SU(2)_L$ predicts existence of gauge boson self-interactions
- Direct measurement:
 - Demonstrate SM predictions are correct, or not...
 - Use as probe of new physics
- **Effective Lagrangian**
 parametrization of new physics in terms of coupling parameters
 - SM tree-level values:
 \[
 g_1^V = 1 \quad (\Delta g_1^V = g_1^V - 1 = 0)
 \]
 \[
 \kappa_V = 1 \quad (\Delta \kappa_V = \kappa_V - 1 = 0)
 \]
 \[
 \lambda_V = 0
 \]
- Unitarity violation avoided by use of **form factor**
 \[
 a(\hat{s}) = \frac{a_0}{(1 + \hat{s}/\Lambda_{FF}^2)^2}
 \]
 \[
 \hat{s} = \text{subprocess CM energy}
 \]
 \[
 \Lambda_{FF} = \text{form factor scale related to scale of new physics}
 \]

\[
L_{WWV} / g_{WWV} = i g_1^V \left(W_{\mu\nu}^+ W_{\nu\mu} - W_{\mu\nu}^+ V_{\nu} W_{\mu\nu} \right) + i \kappa_V W_{\mu}^+ W_{\mu} V_{\nu} + i \frac{\lambda_V}{m_w^2} W_{\mu}^+ W_{\mu} V_{\nu}^2 + \text{CP-violating terms}
\]

- $WW\gamma$ couplings related to magnetic dipole and electric quadrupole **moments of the W**
 \[
 \mu_w = \frac{e}{2m_w} (1 + \kappa_\gamma + \lambda_\gamma)
 \]
 \[
 Q_w^e = -\frac{e}{m_w^2} (\kappa_\gamma - \lambda_\gamma)
 \]

John Ellison, UCR

Frontiers in Contemporary Physics III 4
Expectations for Couplings

• Expected values of $WW\gamma$ couplings in SM and some models beyond the SM

| Model | $|\Delta\kappa_\gamma|$ | $|\lambda_\gamma|$ | $|\tilde{\kappa}_\gamma|$ |
|------------------|--------------------------|---------------------|--------------------------|
| standard model | 0.008 [33, 34] | 0.002 [34] | 10^{-22} [35, 36] |
| 2HDM | 0.016 [37] | 0.0014 [37] | – |
| Multi-doublet | – | – | 4×10^{-6} [38, 35] |
| E6 | 2.5×10^{-5} [39] | 0.003 [39] | – |
| SUSY | 0.005 [40] | 5×10^{-5} [40] | 3×10^{-4} [41] |
| TC | 0.002 [42] | – | 7×10^{-6} [42] |
| 4th generation | – | – | 5×10^{-3} [43] |

– See JE and J. Wudka, hep-ex/9804322
Diboson Production

- Effect of anomalous couplings:
 - Increased *diboson production cross section*
 - Increased *boson transverse momentum* in diboson production

- Cross sections in the standard model at 1.96 TeV:
 \[
 \begin{align*}
 \sigma(W\gamma \rightarrow l\nu \gamma) &= 16 \text{ pb}^* \\
 \sigma(Z\gamma \rightarrow ll\gamma) &= 3.9 \text{ pb}^* \\
 \sigma(WW) &= 13 \text{ pb} \\
 \sigma(WZ) &= 3.7 \text{ pb}
 \end{align*}
 \]
 * $E_T^\gamma > 8 \text{ GeV}$, $\Delta R(l\gamma) > 0.7$

- Diboson production is an important background in many high-p_T analyses
 - e.g. $H \rightarrow WW$, top, trileptons

- **$W\gamma$ Production**
 - Probes $WW\gamma$ vertex
 - Main background is from $W + \text{jet}$ production; jet mimics a photon
 - Radiative decays suppressed by requiring $E_T^\gamma > 8 \text{ GeV}$, $\Delta R(l\gamma) > 0.7$
Wγ Production

- Event selection \(\int Ldt = 162 (e), 134(\mu) \, \text{pb}^{-1} \)
 - High \(p_T \) electron or muon
 - Missing \(E_T > 25,20 \, \text{GeV} \)
 - Isolated photon with
 - \(E_T > 8 \, \text{GeV}, |\eta| < 1.1 \)
 - \(\Delta R(l,\gamma) > 0.7 \)
- Background estimation
 - \(W + \text{jet} \) events from data
 - Probability for a jet to be misidentified as a photon
 - Estimated from multijet events in data
- SM predictions: Baur and Berger MC generator + parametrized detector simulation

<table>
<thead>
<tr>
<th>Channel</th>
<th>(e)</th>
<th>(\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{obs})</td>
<td>112</td>
<td>161</td>
</tr>
<tr>
<td>(N_{bkg})</td>
<td>60.8 ± 4.5</td>
<td>71.3 ± 5.2</td>
</tr>
<tr>
<td>(N_{obs} - N_{bkg})</td>
<td>51.2 ± 11.5</td>
<td>89.7 ± 13.7</td>
</tr>
</tbody>
</table>
Results: $W\gamma$ Cross Section, $WW\gamma$ Couplings

- Measured cross sections for $W\gamma$ production with $E_T > 8$ GeV and $\Delta R(l\gamma) > 0.7$:

 \[\sigma(W\gamma \to e\nu\gamma) = 13.9 \pm 2.9 \text{ (stat)} \pm 1.6 \text{ (syst)} \pm 0.9 \text{ (lum)} \text{ pb} \]
 \[\sigma(W\gamma \to \mu\nu\gamma) = 15.2 \pm 2.0 \text{ (stat)} \pm 1.1 \text{ (syst)} \pm 1.0 \text{ (lum)} \text{ pb} \]

 Combined Result:
 \[\sigma(W\gamma \to l\nu\gamma) = 14.8 \pm 1.6 \text{ (stat)} \pm 1.0 \text{ (syst)} \pm 1.0 \text{ (lum)} \text{ pb} \]

 Standard Model (Baur and Berger):
 \[\sigma(W\gamma \to l\nu\gamma) = 16.0 \pm 0.4 \text{ pb} \]

- Limits on couplings obtained from likelihood fit to photon E_T spectrum

 - 95% CL 1-d limits for $\Lambda_{FF} = 2$ TeV:
 \[-0.88 < \Delta \kappa_\gamma < 0.96 \]
 \[-0.20 < \lambda_\gamma < 0.20 \]

Wγ Radiation Zero

- Radiation zero in all helicity amplitudes for $W\gamma$ production in SM
 - For $u\bar{d} \rightarrow W^+\gamma$, amplitudes **vanish** for $\cos\theta = -1/3$
 - θ = scattering angle of photon w.r.t. quark direction in $W\gamma$ rest frame
 - Corresponds to dip at $\eta(\gamma) - \eta(l^+) \approx -0.4$

- In practice, zero is partially filled in
 - Effects of pdf’s, higher-order QCD corrections, final state photon radiation

DØ preliminary, muon channel

- **Wide η coverage essential**; extend for electrons and photons in future

SM, no det. effects
WW Cross Section

- **WW production**
 \[p\bar{p} \rightarrow W^+W^- \rightarrow \ell^+\nu\ell'^-\nu' \]
 in three decay modes: ee, μμ, eμ

- **Selection**
 - \[\int Ldt = 252 (ee), 224 (\mu\mu), 235 (e\mu) \text{ pb}^{-1} \]
 - Two oppositely charged leptons with \(p_T > 15 \text{ GeV} \)
 - At least one with \(p_T > 20 \text{ GeV} \)

- **Additional selection based on**
 - Missing \(E_T, m_T, \Delta\phi(\text{jet, } E_T), \Delta\phi(\mu,\mu), \Sigma E_T^{\text{jet}}, Z \text{ mass window} \)

- **Good agreement of data with SM WW production + backgrounds**

- **Monte Carlo**
 - PYTHIA + parametrized detector simulation

Graphs showing data for different lepton pairs ee, μμ, eμ.
WW Cross Section Results

- Probability of background fluctuation is very low: 5.2σ

- **Measured cross section**
 \[\sigma(p\bar{p} \rightarrow W^+W^-) = 13.8^{+4.3}_{-3.8}\text{(stat)}^{+1.2}_{-0.9}\text{(syst)} \pm 0.9\text{(lum)} \text{ pb} \]

- Good agreement with NLO calculations 12.0-13.5 pb
 - Ohnemus/Campbell and Ellis

<table>
<thead>
<tr>
<th>Channel</th>
<th>ee</th>
<th>μμ</th>
<th>eμ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N_{obs})</td>
<td>6</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>(N_{bkg})</td>
<td>2.30 ± 0.21</td>
<td>1.95 ± 0.41</td>
<td>3.81 ± 0.17</td>
</tr>
<tr>
<td>(N_{WW(SM)})</td>
<td>3.42 ± 0.05</td>
<td>2.10 ± 0.05</td>
<td>11.10 ± 0.10</td>
</tr>
</tbody>
</table>
WZ Production

- Sensitive to WWZ vertex
 - cf. WW production, which depends on WWZ and WWγ
 - Allows study of WWZ coupling parameters with **no assumptions** about WWγ couplings

- SM cross section is 3.7 pb

- WZ → ℓν ℓ⁺ℓ⁻ mode is clean and unambiguous
 - But has low branching fraction 1.5%

- WZ → ℓν jj mode has larger branching fraction (15%)
 - But cannot distinguish WZ from W+jets, WW
WZ → Trileptons

- Event selection
 - $\int L dt = 320 \ (eeee), 290 \ (\mu\nu\nu\mu)$
 - $280 \ (e\nu\mu\mu), 290 \ (\mu\nu\mu\mu) \ \text{pb}^{-1}$
 - 3 charged leptons $p_T > 15 \ \text{GeV}$, missing $E_T > 20 \ \text{GeV}$, M_Z window
- Candidates:
 - 2 $\mu\nu\mu\mu$ events, 1 $e\nu$ ee event

- Total estimated background
 - 0.71 ± 0.08
 - $Z+$jet background estimated from dilepton + jet events and $P(j \rightarrow e), P(j \rightarrow \mu)$
 - Other backgrounds are from $Z\gamma, ZZ,$ and $ttbar$
Results and Limits on WWZ Coupling

- Probability of background of 0.71 events to fluctuate to three or more candidates is 3.5%
 - Assume excess events due to WWZ signal: Cross section
 \[\sigma(p\bar{p} \rightarrow WZ) = 4.5 \pm^{+3.8}_{-2.6} \text{ pb} \]
 <13.3 pb at the 95% C.L.
 - Agrees with SM (Campbell+Ellis)
 \[\sigma^{NLO}_{SM}(p\bar{p} \rightarrow WZ) = 3.7 \pm 0.1 \text{ pb} \]

- 95% CL limits on WWZ coupling parameters for \(\Lambda_{FF} = 1.5 \) TeV:

\[
\begin{align*}
\Delta g^Z_1 &= \Delta \kappa_Z = 0 \\
\lambda_Z &= \Delta \kappa_Z = 0 \\
\lambda_Z &= \Delta g^Z_1 = 0 \\
\lambda_Z &= 0, \Delta g^Z_1 = \Delta \kappa_Z \\
\end{align*}
\]

\[
\begin{align*}
-0.53 < \lambda_Z < 0.56 \\
-0.57 < \Delta g^Z_1 < 0.76 \\
-2.0 < \Delta \kappa_Z < 2.4 \\
-0.49 < \Delta g^Z_1 = \Delta \kappa_Z < 0.66 \\
\end{align*}
\]

- Limits are model-independent (no WW\gamma coupling assumptions)
- Factor of \(\sim 3 \) better than Run I

\[
\begin{array}{c}
\text{Condition} \\
\Delta g^Z_1 = \Delta \kappa_Z = 0 \\
\lambda_Z = \Delta \kappa_Z = 0 \\
\lambda_Z = \Delta g^Z_1 = 0 \\
\lambda_Z = 0, \Delta g^Z_1 = \Delta \kappa_Z \\
\end{array}
\]
Anomalous ZZγ and Zγγ Couplings

- **Effective Lagrangian**

\[
L_{Z,V} = -ie \left[Z^\mu (\begin{array}{c} h_1^V F^{\mu\nu} + h_3^V \tilde{F}^{\mu\nu} \\ \frac{\Box + m_V^2}{m_Z^2} \end{array}) V_\nu \right] \\
- ie \left[h_2^V F^{\mu\nu} + h_4^V \tilde{F}^{\mu\nu} \frac{\Box + m_V^2}{m_Z^4} \partial_\alpha \partial_\mu V_\nu \right]
\]

- \(h_1^V \) and \(h_2^V \) violate CP; \(h_3^V \) and \(h_4^V \) conserve CP

- All coupling parameters are zero in the SM at tree-level

- Form factor to ensure unitarity

\[
a(\hat{s}) = \frac{a_0}{\left(1 + \frac{\hat{s}}{\Lambda_{FF}^2}\right)^n}
\]

\(\hat{s} = \) subprocess CM energy \(\Lambda_{FF} = \) form factor scale

\[
n = 3 \text{ for } h_{1,3}^V \text{ and } n = 4 \text{ for } h_{2,4}^V
\]

- ZZγ couplings related to **transition moments of the Z**, e.g.

\[
\mu_w = \frac{-e}{\sqrt{2}m_Z} \frac{E_\gamma^2}{m_Z^2} \left(h_1^Z - h_2^Z \right)
\]

\[
Q_Z^e = \frac{2\sqrt{10}e}{m_Z^2} h_1^Z
\]
Zγ Production

- Two charged leptons
 - p_T > 15/25 GeV (ee)
 - p_T > 15/15 GeV (μμ)
- M(ll) > 30 GeV
- Photon requirements same as in Wγ analysis
 - E_T > 8 GeV
 - ΔR(l,γ) > 0.7
 - |η| < 1.1
- Data sets:
 - 286 pb⁻¹ (μμ), 324 pb⁻¹ (ee)
- Main background is from Z + jet, where jet mimics a photon

<table>
<thead>
<tr>
<th>Channel</th>
<th>ee</th>
<th>μμ</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_obs</td>
<td>138</td>
<td>152</td>
</tr>
<tr>
<td>N_bkg</td>
<td>23.6 ± 2.3</td>
<td>22.4 ± 3.0</td>
</tr>
<tr>
<td>N_{Zγ(SM)}</td>
<td>95.3 ± 4.9</td>
<td>126.0 ± 7.8</td>
</tr>
</tbody>
</table>

- Sample is a factor of 10 larger than in Run I
Z\gamma Results

- Measured cross section for $Z\gamma$ production with $E_T^{\gamma} > 8$ GeV, $\Delta R(l_\gamma) > 0.7$, and $M(ll) > 30$ GeV:
 \[
 \sigma(Z\gamma \rightarrow ll\gamma) = 4.2 \pm 0.4\text{(stat+syst)} \pm 0.3\text{(lum)} \text{ pb}
 \]
 - Good agreement with SM (Baur, Han, and Ohnemus):
 \[
 \sigma_{\text{SM}}^{\text{NLO}}(Z\gamma \rightarrow ll\gamma) = 3.9^{+0.1}_{-0.2} \text{ pb}
 \]
- Limits on anomalous couplings set using maximum likelihood fit to photon E_T spectrum
- 95% CL 1-d limits for $\Lambda_{FF} = 1$ TeV:
 - $-0.23 < h_{10,30}^{Z} < 0.23$
 - $-0.020 < h_{20,40}^{Z} < 0.020$
 - $-0.23 < h_{10,30}^{\gamma} < 0.23$
 - $-0.019 < h_{20,40}^{\gamma} < 0.019$
 - Best limits to date
Drell-Yan Production and A_{FB}

- Forward-backward asymmetry depends on v and $a-v$ couplings of the quarks and leptons to the Z
 - Sensitive to $\sin^2 \theta_W$, but need high luminosity (see JE, J. Rha, and U. Baur, hep-ex/0011009)
- Can measure A_{FB} at cm energies above LEP II energy
 - Confirm γ^*/Z interference (dominates at high cm energy)
 - Study possible new phenomena that affects A_{FB}, e.g. Z', extra dimensions, ...
 - $A_{FB} \sim 0.6$ in SM
- Electron angle measured in Collins-Soper frame
- Select ee events
 - Electron $E_T > 25$ GeV, $|\eta| < 1.1$
 - At least one EM cluster must have a track match (with E/p)
 - Charge sign measurement
 - Int. lum. = 177 pb$^{-1}$
M_{ee}: Data – Monte Carlo Comparison

- 5259 candidates for M_{ee} > 70 GeV
- Monte Carlo
 - PYTHIA/PHOTOS event generator
 - M_{ee}-dependent K-factor to account for O(\alpha_s^2) QCD corrections
 - Parametrized detector simulation
- Main background is from multijet events; jets mimic electrons
 - N_{QCD} = 62.5 \pm 8.0
- Other backgrounds much smaller
 - Main one is W+jets (11.1 \pm 3.4)
Drell-Yan Differential Cross Section

- Differential Drell-Yan cross section obtained by correcting for:
 - Kinematic acceptance
 - Geometric acceptance
 - Detector resolution
 - QED final state radiation
 - Detection efficiencies
 - Backgrounds

- Observe agreement with NNLO QCD calculations

* $O(\alpha_s^2)$ calculation:
Hamberg, van Neerven and Matsuura, Nucl. Phys. B 359, 343 (1991);
A_{FB} Results

- Data agree with SM Monte Carlo prediction
 - Consistent with A_{FB} \sim 0.6 at high M_{ee}

![Graph showing Raw A_{FB} and Corrected A_{FB} with M_{ee} (GeV/c^2) on the x-axis and A_{FB} on the y-axis. The graph includes data points and Monte Carlo predictions.]
Summary

- Studies of $W\gamma$ production
 - Model-independent limits on $WW\gamma$ couplings
 - Looking for radiation zero
- $WW \rightarrow$ dileptons production cross section is consistent with NLO SM calculation
 - Understanding is important for Higgs search
- Evidence for WZ production (trileptons)
 - Model-independent limits on WWZ couplings
- Studies of $Z\gamma$ production
 - Factor of 10 more statistics than Run I
 - Limits on $h_{20,40}$ are the best to date
- Drell-Yan
 - Differential cross section $d\sigma/dM_{ee}$ and forward-backward asymmetry; consistent with SM predictions