The BABAR experiment, CP violation, and the search for new physics

Members of the UCR Babar research group: *Faculty:* Bill Gary, **Owen Long** *Graduate students:* Hulya Atmacan, Gil Vitug, Zafar Yasin *Undergraduate students:* Elizabeth Mullin

What is matter?

- Solids collections of atoms
- Atoms electrons surrounding a nucleus
- Nuclei collection of protons and neutrons
- Protons and neutrons different combinations of up and down quarks.

Everything is made of electrons and quarks. These are fundamental particles.

Images taken from http://particleadventure.org

What is antimatter?

- Almost exactly the same as matter *except* particles and antiparticles have *opposite charge*.
 - Same mass
 - Same lifetime
- It's theoretically possible to have anti-nuclei, anti-atoms, and even anti-solids *antimatter!*
 - Ok then, *where is it* ??? More on this point in a minute...

- Seems kind of superfluous, right? Wrong!
- Relativistic quantum mechanics requires it.

- Seems kind of superfluous, right? Wrong!
- Relativistic quantum mechanics *requires* it.
- What is Quantum Mechanics?
 - The laws of physics *change* as we go from large systems (baseballs flying through the air) to very small systems (electrons orbiting a nucleus).
 - Classical physics \rightarrow Quantum physics.
 - Light behaves like a particle (the photon) which is a *quantum* of energy.
 - Relevant for all of atomic physics and high-energy particle interactions.

- Seems kind of superfluous, right? Wrong!
- Relativistic quantum mechanics requires it.
- What does "relativistic" mean?
 - Special relativity: A. Einstein, 1905.
 - Nothing can travel faster than light.
 - The speed of light is the same for everyone everywhere.
 - The world's most famous equation:

$$E = m c^2$$

mass

Energy

The speed of light (squared)

Photos of Nobel laureates from http://nobelprize.org

- Seems kind of superfluous, right? Wrong!
- Relativistic quantum mechanics requires it.
 - P. A. M. Dirac successfully combined special relativity and quantum mechanics for the electron in 1928, but he found the theory predicted strange negative energy states.
 - Dirac boldly interpreted these as solutions for antiparticles !

- Seems kind of superfluous, right? Wrong!
- Relativistic quantum mechanics requires it.
 - P. A. M. Dirac successfully combined the two (SR and QM) for the electron in 1928, but he found the theory predicted strange negative energy states.
 - Dirac boldly interpreted these as solutions for antiparticles !
 - The only problem was that an antiparticle had never been seen! Initially treated with skepticism.

Creation and destruction

- Einstein told us that energy and mass (or matter) are equivalent with his equation. $E = m c^2$
- It is never more apparent than the creation and annihilation of particle antiparticle pairs.

Annihilation

Antimatter is real!

The discovery of positrons in the laboratory in 1932 removed all doubt about the reality of antimatter.

Figure 1.2 Conversion of a photon to an electron-positron pair in a bubble chamber. An incoming negative pion undergoes charge-exchange at point $A: \pi^- + p \rightarrow n + \pi^\circ$, followed by decay of the neutral pion, $\pi^\circ \rightarrow 2\gamma$. Since the π° lifetime is only 10^{-16} s, the pair appears to point straight to the interaction vertex.

Uniform magnetic field going into plane of slide.

C. Anderson

Figure from *"Introduction to High Energy Physics"*, D. Perkins, 3rd edition.

Aside: using antimatter as a tool

- Antimatter is pretty exotic stuff, but it's used routinely in hospitals – PET scans!
 - Positron Emission Tomography

Proceedings of the National Academy of Sciences, September 8, 2003, "Low Monoamine Oxidase B in Peripheral Organs in Smokers."

- At the beginning, the universe was a very *hot*, *dense* place.
 - Heavy exotic particles and high energy photons all over the place interacting with one another.
 - Equal amounts of matter and antimatter.

• One would perhaps guess this would evolve into one of these scenarios:

- One would perhaps guess this would evolve into one of these scenarios:
 - 1. All matter annihilates with antimatter. Empty universe full of photons (light).

- One would perhaps guess this would evolve into one of these scenarios:
 - 1. All matter annihilates with antimatter. Empty universe full of photons (light).
 - 2. Matter and antimatter separate (somehow). Universe is $\frac{1}{2}$ matter and $\frac{1}{2}$ antimatter.

Matter galaxies and Antimatter galaxies

What really happened?

In the early universe, for every billion ordinary particles annihilating with antimatter, one was left standing...

- What really happened?
 - Most of the matter and antimatter *did* annihilate each other, but we wound up with some matter left over at the end and *no antimatter*.
- How could this happen?
 - The laws of physics are not exactly the same for matter and antimatter.
 - The asymmetry is due to a strange phenomenon called CP violation.

CP Violation

 If the laws of physics were the same after CP transformation, matter and antimatter would behave *exactly* the same. But we know CP symmetry is violated...

С

The discovery of CP violation

 In 1964 Cronin and Fitch experimentally observed the CP forbidden decay J. Cronin

V. Fitch

1980

- Total surprise (at the time).
- Plausible explanation came years later (1972).
- Explanation only recently (2002) tested.

Quantum interference

• Quantum mechanics tells us that if there's more than one path, you must consider them *all simultaneously*.

Which path did it take?

Classical physics: either *A* or *B*. Quantum physics: both *A* and *B* !

CP violation experiments

- Ordinary matter (electrons, protons, neutrons) in normal conditions does not violate CP.
- Some Heavy particles (quarks) do violate CP as they quickly decay to more ordinary particles.
- We can study CP violation by making heavy quark-antiquark pairs in the laboratory using accelerators.

A bottom quark factory

The BABAR Experiment

The BABAR Experiment

Reconstructed Event End View

• Uniform magnetic field going into screen.

$$F = m rac{v^2}{r} = qvB$$

$$p = mv = qBr$$

- Charged particles coming out leave "tracks".
- Energy measured in outer detector.

Measuring (time dependent) CP asymmetries

- $B^0\overline{B}^0$ system from Y(4s) evolves as coherent system
 - Need to explicitly measure time dependence
 - B⁰ mesons guaranteed to have opposite flavor at time of 1st decay and we can use 'other B⁰' to tag flavor of B⁰_{CP} at t=0

A CP Violation Measurement

Measures interference of this path...

The matter-dominated universe

- We now have a working, tested model for CP violation. Does it explain our universe?
- **No!** The CP violation that we understand from experiments gets it totally wrong.
 - Would allow for much more annihilation to occur.
 - No galaxies. Just a few protons rattling around...
- We need new sources of CP violation to explain how the universe evolved to its present state from the big bang.

Backup material

Quantum amplitudes

- Probabilities for paths are expressed as *amplitudes*.
 - Amplitude is described by a magnitude (length) and a phase (angle)

Interfering quantum amplitudes

• Quantum mechanics says that we must consider all paths (or amplitudes) for a process.

 The magnitude of the total amplitude (length of the black arrow) determines the probability that the process will happen.

CP Violation from interfering amplitudes

- Only the relative phase (or angle) between *A* and *B* is different, but that is enough to generate CP violation.
- In this example, the antimatter process will be *less likely* because the total amplitude is smaller!

Features of CKM quark mixing matrix

• Off-diagonal elements are small. Couplings that cross generations are *suppressed*.

Features of CKM quark mixing matrix

- Off-diagonal elements are small. Couplings that cross generations are *suppressed*.
- The CP-violating phases occur in the smallest elements. CP violation is rare. You need to look for it in specific places...
- Mesons (quark-antiquark bound states) that contain a *bottom quark* (or antiquark) exhibit a variety of *CP* violating effects.

The PEP-II B factory – specifications

- Produces B⁰B⁰ and B⁺B⁻ pairs
 Y(4s) resonance (10.58 GeV)
- Asymmetric beam energies
 - Low energy beam 3.1 GeV
 - High energy beam 9.0 GeV
- Boost separates B and B and allows measurement of B⁰ life times
- Clean environment
 - ~28% of all hadronic interactions is

A bottom quark factory

CP violation experiments

• Mesons (quark-antiquark bound states) that contain a *bottom quark* (or anti-quark) exhibit a variety of *CP* violating effects.

CP violation experiments

• Mesons (quark-antiquark bound states) that contain a *bottom quark* (or anti-quark) exhibit a variety of *CP* violating effects.

 The BABAR experiment at the Stanford Linear Accelerator Center (SLAC) is producing and analyzing hundreds of millions of B meson decays.

B-factory 'flagship' measurement: sin2 β from J/ ψ K_S

• Interference between **mixing** and **single real decay**

- *Extraordinarily clean* theory prediction (~1% level)
 - Single real decay amplitude \rightarrow all hadronic uncertainty cancel

 $-A_{CP}(t) = sin(2\beta) sin(\Delta m_d t)$

- Experimentally easy
 - 'Large' branching fraction $O(10^{-4})$
 - Clear signature (J/ $\psi \rightarrow l^+l^-$ and K_S $\rightarrow \pi^+\pi^-$)

Interesting discrepancy...

Blue points should agree with the *red point* at the top.

Could be a sign of something new!