### **Cosmic Rays**

### John Ellison University of California, Riverside

Quarknet 2009 at UCR

### What are Cosmic Rays?

- Particles accelerated in astrophysical sources incident on Earth's atmosphere
  - Possible sources include solar activity, supernovae, rotating neutron stars, and black holes
  - Composition: primarily protons and helium nuclei. Remainder is composed of heavier nuclei and electrons



### **Air Shower**

- Cosmic rays interact with Earth's atmosphere producing an air shower
  - Secondary particles are produced, primarily pions
  - The neutral pions decay to photons, which produce electrons and positrons
  - The charged pions decay to muons via the weak reactions  $\pi^- \to \mu^- \overline{v}_\mu$  and  $\pi^+ \to \mu^+ v_\mu$





### **Air Shower**

- The pions decay before they reach sea level
- The photons, electrons, and positrons are absorbed by the atmosphere due to interactions with atomic fields
- The muons can reach sea level because
  - 1) Even though they decay, they have sufficiently long lifetime such that the more energetic muons reach sea level before decaying
  - 2) Unlike electrons (which are much lighter) they do not interact with atomic fields so easily
- The neutrinos interact only weakly, so they easily reach sea level (and continue straight through the Earth!)



### **Particle Fluxes**

- At sea level (altitude 0) the muon and neutrino flux dominates
- Approximately one cosmic ray muon passes through your thumbnail every minute!



Note: points show measurements of negative muons with  $E_{\mu} > 1 \text{ GeV}$ 

### **Muon Decay**

- Muons decay  $(\mu^- \rightarrow e^- + \overline{v_e} + v_\mu)$  with a mean lifetime of 2.2  $\mu$ s
  - (mean lifetime = time for an assembly of decaying particles to be reduced by a factor of e)
- If a muon is created in the upper atmosphere (e.g. at h = 10 km) does it make it to sea level?
- We would expect that even if the muons are traveling at close to the speed of light, the average distance they would travel before decaying is

 $d = c\tau = (8 \times 10^8 \text{ m/s})(2.2 \times 10^{-6} \text{ s}) = 660 \text{ m}$ 

i.e. they would not make it to sea level

# **Special Relativity**



### Wrong!

- According to special relativity, from our point of view time passes more slowly in a system that is in motion relative to us
- Thus, the moving muon "clock" ticks more slowly. This effect is called time dilation and is described by the simple formula

$$t' = \gamma t$$
 where  $\gamma = \frac{1}{\sqrt{1 - v^2 / c^2}}$ 

Thus, the faster moving muons (e.g. those with speed v=0.998c) will travel on average

$$d' = c\tau' = \gamma c\tau = \left(\sqrt{\frac{1}{1 - 0.998^2}}\right)(660 \text{ m}) = (15.8)(660 \text{ m}) = 10.4 \text{ km}$$

So, the faster moving muons make it to sea level!

## **Energy Spectrum of Cosmic Rays**

- Flux follows power law
  - E<sup>-2.7</sup> knee
  - $E^{-3.2}$  ankle
  - E<sup>-2.8</sup> above ankle
- Cosmic rays can have energies above 10<sup>20</sup> eV
  - Far higher than energies of beams available in modern accelerators



# **Cosmic Ray Energies**



### **Extensive Air Shower Detectors**

Need array of detectors spread over many km



One station of the Pierre Auger extensive air shower observatory in Argentina

### Simulation of 1 TeV cosmic ray shower



### **Cosmic Ray Research**

- Many questions to be addressed:
  - What is the origin of cosmic rays?
  - What accelerates cosmic rays, especially at the highest energies (~10<sup>20</sup> eV)? AGNs?
  - Are there super-GZK particles?
  - Can we point back to cosmological sources? What are the acceleration mechanisms?
  - What is responsible for the "knee" and "ankle"?
  - Where is the transition from galactic to extragalactic cosmic rays?
  - . . . Lots of good info at Pierre Auger Observatory home page

### **Quarknet Cosmic Ray Detector**

Our Quarknet comic ray detector is a simple "benchtop" detector consisting of scintillation detectors read out using photomultiplier tubes



### **Scintillators**

- Produce a short pulse of light in response to charged particle passing through
- Two types: inorganic and organic
- Organic scintillator (used in our detector):
  - Typically plastic doped with dye molecules
  - Mechanism is excitation of molecular levels in primary fluorescent material which decay with emission of UV light
  - Conversion to visible light achieved via fluorescent excitation of dye molecules ( "wavelength shifters" )





## **Photomultiplier Tube**

- Photon incident on photocathode
- Liberates electrons by photoelectric effect
- Electrons accelerated to 1<sup>st</sup> dynode
  - Secondary electrons emitted
- Using ~12 stages can get amplification of ~10<sup>7</sup>-10<sup>8</sup>
- Electron cascade collected at anode – induces signal
- Example: 10<sup>8</sup>e<sup>-</sup> ≅ 2×10<sup>-11</sup> C collected in ~5 ns
  - 50  $\Omega$  resistor to ground  $\Rightarrow$  V = 200 mV pulse



#### Schematic of a photomultiplier tube.

### **Typical Signals from PM Tube**

Organic Scintillator



#### Plastic

Vert.scale : 0.2 V/cm Hor.scale : 10 ns/cm Source : <sup>207</sup> Bi 10µCi

### Inorganic Scintillator

#### NaI

Vert.scale : 0.2 V/cm Hor.scale : 5µs/cm Source : <sup>137</sup>Cs 10µCi

### Plateau – Setting the Operating Point



John Ellison,

16