Cosmic Rays

John Ellison University of California, Riverside

Quarknet 2008 at UCR

What are Cosmic Rays?

- Particles accelerated in astrophysical sources incident on Earth's atmosphere
 - Possible sources include solar activity, supernovae, rotating neutron stars, and black holes
 - Composition: primarily protons and helium nuclei. Remainder is composed of heavier nuclei and electrons

Air Shower

- Cosmic rays interact with Earth's atmosphere producing an air shower
 - Secondary particles are produced, primarily pions
 - The neutral pions decay to photons, which produce electrons and positrons
 - The charged pions decay to muons via the weak reactions $\pi^- \to \mu^- \overline{\nu}_\mu$ and $\pi^+ \to \mu^+ \nu_\mu$

John Ellison, UCR August 7, 2008

3

Air Shower

- The photons, electrons and positrons are absorbed in the atmosphere
- The pions decay before they reach sea level
- The photons, electrons, and positrons are absorbed by the atmosphere due to interactions with atomic fields
- The muons can reach sea level because
 - 1) Even though they decay, they have sufficiently long lifetime such that the more energetic muons reach sea level before decaying
 - 2) Unlike electrons (which are much lighter) they do not interact with atomic fields so easily
- The neutrinos interact only weakly, so they easily reach sea level (and continue straight through the Earth!)

Particle Fluxes

- At sea level (altitude 0) the muon and neutrino flux dominates
- Approximately one cosmic ray muon passes through your thumbnail every minute!

Muon Decay

- Muons decay $(\mu^- \to e^- + \overline{\nu}_e + \nu_\mu)$ with a mean lifetime of 2.2 μs
 - (mean lifetime = time for an assembly of decaying particles to be reduced by a factor of e)
- If a muon is created in the upper atmosphere (e.g. at h = 10 km) does it make it to sea level?
- We would expect that even if the muons are traveling at close to the speed of light, the average distance they would travel before decaying is

$$d = c\tau = (8 \times 10^8 \text{ m/s})(2.2 \times 10^{-6} \text{ s}) = 660 \text{ m}$$

i.e. they would not make it to sea level

Special Relativity

- Wrong!
- According to special relativity, from our point of view time passes more slowly in a system that is in motion relative to us
- Thus, the moving muon "clock" ticks more slowly. This effect is called time dilation and is described by the simple formula

$$t' = \gamma t$$
 where $\gamma = \frac{1}{\sqrt{1 - v^2 / c^2}}$

Thus, the faster moving muons (e.g. those with speed v=0.998c) will travel on average

$$d' = c\tau' = \gamma c\tau = \left(\sqrt{\frac{1}{1 - 0.998^2}}\right) (660 \text{ m}) = (15.8)(660 \text{ m}) = 10.4 \text{ km}$$

So, the faster moving muons make it to sea level!

Energy Spectrum of Cosmic Rays

- Flux follows power law
 - E^{-2.7} knee
 - $E^{-3.2}$ ankle
 - E^{-2.8} above ankle
- Cosmic rays can have energies above 10²⁰ eV
 - Far higher than energies of beams available in modern accelerators

Cosmic Ray Energies

Ultra-High Energy Cosmic Ray

• e.g. $E_{lab} = 10^{20} \text{ eV}$

 Equivalent to pp collider with CM energy of 433 TeV

- LHC at CERN
 - pp collider with CM energy of 14 TeV
 - Equivalent to $E_{lab} \sim 10^{17} \text{ eV}$
- Detection via:

Spectrometers –
Calorimeters –
Air Shower Arrays

Extensive Air Shower Detectors

Need array of detectors spread over many km

One station of the Pierre Auger extensive air shower observatory in Argentina

Simulation of 1 TeV cosmic ray shower

Cosmic Ray Research

- Many questions to be addressed:
 - What is the origin of cosmic rays?
 - What accelerates cosmic rays, especially at the highest energies (~10²⁰ eV)? AGNs?
 - Are there super-GZK particles?
 - Can we point back to cosmological sources? What are the acceleration mechanisms?
 - What is responsible for the "knee" and "ankle"?
 - Where is the transition from galactic to extragalactic cosmic rays?
 - . . Lots of good info at Pierre Auger Observatory home page

Quarknet Cosmic Ray Detector

Our Quarknet comic ray detector is a simple "benchtop" detector consisting of scintillation detectors read out using photomultiplier tubes

Scintillators

- Produce a short pulse of light in response to charged particle passing through
- Two types: inorganic and organic
- Organic scintillator (used in our detector):
 - Typically plastic doped with dye molecules
 - Mechanism is excitation of molecular levels in primary fluorescent material which decay with emission of UV light
 - Conversion to visible light achieved via fluorescent excitation of dye molecules ("wavelength shifters")

Photomultiplier Tube

- Photon incident on photocathode
- Liberates electrons by photoelectric effect
- Electrons accelerated to 1st dynode
 - Secondary electrons emitted
- Using ~12 stages can get amplification of ~10⁷–10⁸
- Electron cascade collected at anode – induces signal
- Example: $10^8 e^- \cong 2 \times 10^{-11}$ C collected in ~5 ns
 - 50 Ω resistor to ground
 ⇒ V = 200 mV pulse

Schematic of a photomultiplier tube.