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What are Cosmic Rays?
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Alr Shower

E Cosmic rays interact with Earth’s atmosphere producing an air
shower

e Secondary particles are produced, primarily pions

e The neutral pions decay to photons, which produce electrons and
positrons

e The charged pions decay to muons via the weak reactions
> uv,and zt > u'v,

p = proton

L = muon

I = pion

V = neutrino
et =electron
e” = positron
= photon
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Alr Shower

E The photons, electrons and positrons are absorbed in the
atmosphere

E The pions decay before they reach sea level

E The photons, electrons, and positrons are absorbed by the
atmosphere due to interactions with atomic fields

F The muons can reach sea level because

e 1) Even though they decay, they have
sufficiently long lifetime such that the

more energetic muons reach sea level
before decaying

e 2) Unlike electrons (which are much
lighter) they do not interact with
atomic fields so easily

p = proton
U= muon

T = pion

V' = neutrino
et = electron
e” = positron
¥ = photon

E  The neutrinos interact only weakly,
so they easily reach sea level (and o
continue straight through the
Earth!)
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E At sea level (altitude 0) the

Particle Fluxes

muon and neutrino flux
dominates
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Muon Decay

E Muons decay (4~ —>e +v,+v,) with a mean lifetime of 2.2 ps

e (mean lifetime = time for an assembly of decaying particles to be
reduced by a factor of e)

E If a muon is created in the upper atmosphere (e.g. at h = 10 km)
does it make it to sea level?

F We would expect that even if the muons are traveling at close to
the speed of light, the average distance they would travel before
decaying is

d =cr =(8x10° m/s)(2.2x107° s) =660 m

E i.e. they would not make it to sea level
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Special Relativity

E Wrong!

B According to special relativity, from our point of view time passes
more slowly in a system that is in motion relative to us

Thus, the moving muon “clock” ticks more slowly. This effect is
called time dilation and is described by the simple formula

1

J1-v?/c?

E Thus, the faster moving muons (e.g. those with speed v=0.998c¢)
will travel on average

t'=yt where y=

1
d=cr'=ycr=| ,|————— [(660 m) = (15.8)(660 m) =10.4 km
r'=yer wl_o_g%z]( ) = (15.8)(660 m)

E  So, the faster moving muons make it to sea level!
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Energy Spectrum of Cosmic Rays

i 10* A | T L L IR BLLL AL BLUL BRI B
:5; e -
[ ] Flux follows power law E a2l _. FLUXES OF COSMIC RAYS _
e E %’ knee EL % i
- E—3.2 ankle é w0 'k "':‘. e {1 particle per m*—second) _
2.8 - * .
- E " above ankle AF " E
10 . -
— -\.‘*: __
B Cosmic rays can have energies 167 “ .
20 - * -
above 107 eV i * §
. . =10 [ "k |
= Far higher than energies of beams 0y K e i
available in modern accelerators _ ¥, (1 particle per mi—year) |
10-13— “ ‘/ &
16" ]
167 -
= ;ﬁ"% ]
—22__ \!& E
LIV &
z ANKLE / " :
10‘25:_ (1 particle per km*—year) _
: ¥a
167 1
John Elllson, UCR August 7’ 2008 II":IIOBI”I;Iﬁallolll;né{ilII:gAIIzI“‘;Iﬁ.IB“I;"é'I“_I“';”gullsl”:lllg{BI“:;:I}1I-1|I”’III::I}1IE“I;Ié1IgI”.IIIgzbl“:II021

ENERGY (eV)



Cosmic Ray Energies

Energies and rates of the cosmic-ray particles
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Extensive Air Shower Detectors

F Need array of detectors Simulation of 1 TeV cosmic ray shower
spread over many km

One station of the Pierre Auger
extensive air shower observatory
in Argentina
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Cosmic Ray Research

E Many questions to be addressed:
e What is the origin of cosmic rays?

e What accelerates cosmic rays, especially at the highest energies
(—10°° eV)? AGNs?

e Are there super-GZK particles?

e Can we point back to cosmological sources? What are the acceleration
mechanisms?

e What is responsible for the “knee” and “ankle”?
e Where is the transition from galactic to extragalactic cosmic rays?

e ... Lots of good info at Pierre Auger Observatory home page
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Quarknet Cosmic Ray Detector

E  Our Quarknet comic ray detector is a simple “benchtop” detector
consisting of scintillation detectors read out using photomultiplier
tubes

Cosmic ray muon

Data acquisition card

Photomultiplier

Scintillator tube

Light guide
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Scintillators

E  Produce a short pulse of light in response to charged particle
passing through

E Two types: inorganic and organic

B Organic scintillator (used in our detector):

= Typically plastic doped with dye molecules

e Mechanism is excitation of molecular levels in primary fluorescent
material which decay with emission of UV light

e Conversion to visible light achieved via fluorescent excitation of dye
molecules ( “wavelength shifters” )
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Photomultiplier Tube

E Photon incident on
photocathode

E Liberates electrons by
photoelectric effect

E Electrons accelerated to 1st
dynode

e Secondary electrons emitted

E Using —12 stages can get
amplification of ~10’—10°

E Electron cascade collected at
anode — induces signal

E Example: 10°%~ = 2x10**' C
collected in —5 ns

e 50 Q resistor to ground
= V = 200 mV pulse
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