
An Econometric Analysis of Some Models for
Constructed Binary Time Series�

Don Hardingyand Adrian Paganz

January 3, 2009

Abstract

Macroeconometric and �nancial researchers often use secondary or
constructed binary random variables that di¤er in terms of their sta-
tistical properties from the primary random variables used in micro-
econometric studies. One important di¤erence between primary and
secondary binary variables is that, while the former are, in many in-
stances, independently distributed (i.d.), the latter are rarely i.d. We
show how popular rules for constructing the binary states interact
with the stochastic processes for of the variables they are constructed
from, so that the binary states need to be treated as Markov processes.
Consequently, one needs to recognize this when performing analyses
with the binary variables, and it is not valid to adopt a model like sta-
tic Probit which fails to recognize such dependence. Moreover, these
binary variables are often censored, in that they are constructed in
such a way as to result in sequences of them possessing the same sign.
Such censoring imposes restrictions upon the DGP of the binary states
and it creates di¢ culties if one tries to utilize a dynamic Probit model
with them. Given this we describe methods for modeling with these
variables that both respects their Markov process nature and which
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explicitly deals with any censoring constraints. An application is pro-
vided that investigates the relation between the business cycle and the
yield spread.
Key Words: Business cycle; binary variable, Markov process, Pro-

bit model, yield curve
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1 Introduction

Macroeconometric and �nancial econometric research often feature binary
random variables. We will designate such a random variable as St; and as-
sume that it takes the values of unity and zero. Such binary random variables
arise in a number of ways, although they di¤er in their origin. Because of
this it is useful to distinguish between binary random variables that are pri-
mary and those that are secondary or constructed. In the �rst set one would
include most of those that arise in micro-econometrics. If a time series is in-
volved there will generally be a panel of data on whether an individual makes
a particular decision. In these cases the binary variable is often thought of
as deriving from an underlying continuous latent variable (as in the Probit
model). Also in this set would be cases where a continuous random variable
- on which there are realizations - depends upon a latent binary random vari-
able. The clearest example of the latter would be Markov Switching (MS)
models - Hamilton (1989). In contrast to those cases, this paper is concerned
with secondary binary random variables which are constructed from the real-
izations of a continuous random variable (or variables) yt. This case does not
seem to have been studied much, a notable exception being Kedem (1980).
However, as we will try to illustrate, quite a few interesting econometric
issues arise when such variables are used in empirical work.
Although there are many examples of constructed binary time series, a

selective account of these follows.

1. Cycles in economic activity are often described with a binary random
variable. Here a series yt is chosen to represent economic activity and a
cycle in it involves expansions, St = 1; and contractions, St = 0; which
are extracted from the yt using some rule: In the event that the series
yt represents the level of economic activity then it is the business cycle
that is being isolated. If a permanent component is taken away from
yt we are investigating the growth cycle. In some instances a number
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of variables representing economic activity are utilized to construct the
St e.g. those provided by the NBER:

2. Bull and bear markets are often described with a binary variable. The
underlying variable here will be some asset price e.g. the Dow-Jones
or the S&P500. Similar sets of rules are used to construct the binary
variables as adopted in dating business cycles. A number of series exist
for such St e.g. Pagan and Sossounov (2003) and Candelon et al (2008)
for Asian stock markets.

3. Financial crises. Here a unity indicates that a crisis is occurring while
a zero indicates that this is not a crisis period � see Eichengreen et
al (1995), Kaminsky and Reinhart (1999), Claessens et al (2008) and
Bordo et al (2001). The latter state (p 55) that �We construct the
familiar index of exchange market pressure (calculated as a weighted
average of exchange rate change, short-term interest rate change, and
reserve change...). A crisis is said to occur when this index exceeds a
critical threshold �. Models are then constructed to see if an outcome of
St = 1 can be predicted; and these are the basis of the "vulnerability"
or "early warning systems" literature.

4. IPO markets are often classi�ed as hot (St = 1) and cold (St = 0) -
see Ibbotson and Ja¤e (1975), and Brailsford et al (2001) - depending
upon either the volume of new o¤ers or the excess returns earned on
them.

5. Commodity and real estate markets are often classi�ed as booms and
slumps depending upon movements in the underlying prices e.g. Cashin
et al. (2002).

6. In recent times a literature has emerged which looks at contagion and
which constructs binary variables that aim to capture features of the
joint movement in the extreme values found in two series xt; yt: These
might be equity returns in two countries. This literature is often re-
ferred to as the study of "co-exceedances". It involves the construction
of a binary variable St = 1( y1t > c; x1t > c) - see Bae et al (2003).
Sometimes this is augmented with a quantitative measure of the ex-
tremes such as zt = min(yt; xt)St -see Baur and Schulze (2005): After
construction, the St and zt are often used as the dependent variable
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in some regression model e.g. Bae et al (2003) �t a logistic regression
while Baur and Schulze use a quantile regression.

One could continue on in this vein but, as the examples above indicate,
there are many situations in which binary random variables are constructed
from some observed continuous random variable and then utilized in some
way e.g. in a regression. This therefore raises the question of whether any
econometric problems arise from such operations.
The next section outlines some of the rules used to construct St from yt:

As might be expected the DGP of St will be determined by the interaction
of whatever dating rule is adopted and the DGP for yt: Section 3 shows that
we would expect that the resulting St will exhibit time series dependence i.e.
they will follow a Markov process (MP), and we will describe simple regres-
sion methods for modeling the St. A failure to make an allowance for the
Markov nature of St when it is used in empirical work leads to potentially in-
valid inferences and biases. Yet it has been a common assumption within the
literature that the St have no dependence, as seen in the work of Birchenall
et al (1999), Chin et al (2000), and Estrella and Mishkin (1998) who all advo-
cate and work with a static discrete choice model (which we take to be Probit
for illustrative purposes but this is not important). Whether a dynamic Pro-
bit model would be su¢ cient to capture this dependence is something we
also take up in section 3. A crucial element in this discussion will be the fact
that the rules adopted to construct St from yt are often designed to ensure
that certain patterns are seen in the history of St:We demonstrate that such
censoring imposes restrictions upon the Markov process generating St which
simple dynamic Probit models cannot easily capture, whereas our regression
methods automatically adapt to the phenomenon. Section 4 then considers
how one would model and/or use the St when there are other covariates de-
termining it. Some parametric and non-parametric methods are described
for modelling the relationship between St and the covariates. Finally, Sec-
tion 5 provides an example of the methods that focusses on the question of
whether the probability of a recession depends on the yield spread.

2 Constructing the States

Rules for determining the states can be of two types, depending on whether
they emphasise turning points in the underlying series or focus on sequences
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of observations that terminate a phase such as an expansion or a recession.
A turning point rule �nds local maxima and minima in the series yt: These
represent (say) the peaks and troughs of a business cycle: A termination rule
prescribes an event which would cause a change in the value of the state St.
In turn termination rules could either be non-parametric or derive from a
parametric model of yt:
To illustrate these distinctions suppose we consider de�ning a business

cycle. Perhaps the simplest de�nition is what might be termed the calculus
rule. This says that a peak in a series on activity, yt; occurs at time t if
�yt > 0 and �yt+1 < 0: Thought of in this way it is a turning point rule:
The reason for the name is the result in calculus that identi�es a maximum
with a change in sign of the �rst derivative from being positive to negative.
A trough (or local minimum) can be found using the outcomes �yt < 0 and
�yt+1 > 0: The states St are simply de�ned in this case as St = 1(�yt > 0);
so that St depends only on contemporaneous information: This rule has been
popular for de�ning a business cycle when yt is yearly data, see Cashin and
McDermott (2002 ) and Neftci (1984). Note that we might also think of this
rule as a termination rule since recessions terminate when growth is positive,
showing that the two types of rule are not always distinct.
In practice one does not de�ne a recession in this way. When data occurs

at (say) the quarterly or monthly frequency one needs to recognize that
common usage of a word like �recession�would identify it with a sustained
decline in the level of economic activity i.e. something that lasts for several
periods. If one applied the calculus rule most likely there would be too many
turning points, since the growth rate might often switch sign between one
period and the next. Visualizing a peak in a series leads one to the idea that
a local peak in yt occurs at time t if yt exceeds values ys for s in a window
t�k < s < t+k; and where k is chosen in some way: One can de�ne a trough
in a similar way. By making k large enough we also capture the idea that
the level of activity has declined (or increased) in a sustained way. Of course
we need to limit the window in time over which this test is applied. For later
reference we note that, in this instance, St depends upon yt�j; j = 0; :::; k
and so future values of yt are needed to determine the value of St i.e. to
know whether a turning point occurred at time t we need to know the future
behavior of yt:
A turning point rule based on a non-zero window is the basis of the NBER

business cycle dating procedures summarized in the Bry and Boschan (1971)
dating algorithm. In that program, designed for the analysis of monthly data,

5



k = 5: However, because much analysis is conducted with quarterly data, an
analogue with such data would seem to be k = 2. We will refer to this latter
rule as the BBQ rule. It is an automated dating rule and therefore di¤ers from
the NBER Dating Committee�s decisions since the latter utilizes a number of
series for yt and exercises some judgement. But the correspondence in dates
produced by the automated procedure (BBQ) and the NBER choices is close,
and the situation is therefore reminiscent of the popular use of an interest
rate rule to describe the Fed�s setting of the Federal Funds rate. It captures
the essence of decisions without the �ne detail. These turning point rules
have been used in other contexts than the business cycle e.g. the dating of
bull and bear markets in equity prices by Pagan and Sussonov (2003), Bordo
and Wheelock (2006) and Claessens et al (2008).
A termination rule that is often cited in the �nancial press is that a

recession can be identi�ed by a �two quarters rule�summarized as (assuming
that it is symmetric when de�ning expansions):

St = 1 if (�yt+1 > 0;�yt+2 > 0jSt�1 = 0):
St = 0 if 1(�yt+1 < 0;�yt+2 < 0jSt�1 = 1) (1)

St = St�1 otherwise.

This rule is non-parametric in the sense that it looks for patterns in the
data without making any assumptions about the DGP of yt: Lunde and
Timmermann (2004) used a variant of this non-parametric rule for stock
prices while hot and cold markets for IPO�s were identi�ed by Ibbotson and
Ja¤ee (1975), with a hot market being signalled by whether excess returns
and their changes for two periods exceed the median values. Eichengreen et
al. (1995) and Classens et al (2008) employ rules of this type to establish
the location of crises in time.
Parametric (model-based) termination rules proceed by working with a

parametric model of �yt: Perhaps the best known of these arises by assuming
that �yt is a function of a latent binary variable �t that follows a Markov
process, and to then construct a series of binary states using the MS rule
St = 1fPr(�t = 1jFt) � 0:5g; where Ft is a set containing either the past
history of the observed random variable �yt or perhaps the complete sample
of observations - see Hamilton (1989). Of course one could use other para-
metric models of �yt to produce St e.g. a SETAR model, and the threshold
for Pr(�t = 1jFt) could be set di¤erently to 0.5. In all cases like this a clas-
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si�cation into binary outcomes St is produced which will e¤ectively involve
checking if movements in some function of the �yt (and its lags) exceeds
a threshold. Notice that in the MS case the binary states that de�ne re-
cessions and expansions etc are the St not the �t: There may be no simple
relation between these two binary random variables and it will be rare for
St = �t: Others who have used parametric termination rules are Maheu and
McCurdy(2000) (an MS model for stock prices), Brailsford et al (2001) ( an
MS model for IPO�s) and Abiad (2003) (an MS model to establish crises).
Another important feature of many constructed states is that extra cen-

soring rules are applied based on imposing a minimum or maximum time that
can be spent in a particular state. Thus, for the business cycle dates as pub-
lished by the NBER, recessions and expansions must be �ve months long and
a complete cycle must last for 15 months. In quarterly terms these are best
interpreted as requiring a two quarter minimum phase length and 5 quarters
for a complete cycle. To implement these restrictions one generally proceeds
in a two stage fashion. In the �rst stage turning points are established with
the basic rule. Then if (say) there is some recession which only lasted one
quarter, the turning points which demarcate that recession are deleted and
the revised set of turning points will not have such a recession embodied in
them. Consequently, the �nal turning points are a sub-set of the original ones
i.e. the original ones are censored. We might term this a "hard" censoring
constraint since it explicitly over-rides the original set of dates. However, it
may also be the case that "soft" censoring is present which stems from the
nature of the basic rule that determines turning points, phase changes etc.
An example would be the �two quarters�rule, as this automatically makes
recessions and expansions have a minimum duration of two quarters. It also
seems likely that, for non-parametric dating rules that utilize a threshold on
yt for deciding on the value of St; the threshold is often implicitly chosen in
order to produce such an outcome. Minimum duration of phases is certainly
evident in a lot of the St that have been constructed.1

1In many instances use has been made of the Bry and Boschan algorithm for detecting
turning points in series such as stock prices. Thus in these cases the binary random
variables must obey the NBER censoring constraints.
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3 The DGP of The Binary States

3.1 Interactions of Rules and the DGP of �yt
Because the St are binary time series they need to be thought of as coming
from a Markov Process (MP). The issue then becomes what order of MP they
are likely to be and how the underlying data yt and rules interact to determine
this. It is impossible to provide a general account of this for any given St,
partly due to the di¢ culty of agreeing on a process for �yt ( and perhaps
even the nature of yt) and partly because the rule used for constructing the
St may not be fully disclosed e.g. as with the NBER Business Cycle Dating
Committee. This will necessitate working with models of St that adapt to
the data: Nevertheless, in order to gain an understanding of how the DGP of
�yt interacts with a rule, it will be useful to run through a number of simple
cases in which one of these is varied and the other is held constant.
We begin by studying what type of MP eventuates when yt is generated

as a random walk with drift

�yt = �+ �et; (2)

where et is i:i:d(0; �2); and the calculus rule is employed for dating i.e. St =
1(�yt > 0):We will tentatively assume that this generates a �rst order MP -
termed MP(1). Hamilton (1994 p684) shows that if the St is an MP (1) the
following identity holds:

St = p01 + (1� p01 � p10)St�1 + �t; (3)

where �t is discrete and conditionally heteroskedastic ( since it depends upon
St�1) and

pjk = Pr(St+1 = kjSt = j): (4)

We therefore need to evaluate the pjk under the chosen scenario: This is
straightforward since

p10 = Pr(St+1 = 0jSt = 1)
= Pr(�yt+1 < 0j�yt > 0)
= Pr(�yt+1 < 0) =  ;

due to independence of �yt: In the same way p01 = 1�  and, from (3),

St = 1�  + (0� St�1) + �t; (5)
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showing that there is no serial correlation in the states St i.e. it is anMP (0):
What happens if one relaxes the assumption that yt follows a random

walk with drift ( and Gaussian innovations) but retains the calculus rule?
Kedem(1980, p34) sets out the relation between the autocorrelations of the
�yt and S(t) processes. Letting ��y(k) = corr (�yt;�yt�k) ; and �S(k) =
corr (St; St�k) ; he determines that

�S(k) =
2

�
arcsin

�
��y(k)

�
: (6)

Thus an AR(k) process for �yt will mean an MP(k) for the St process. It is
probably not surprising that the DGP of �yt a¤ects the DGP of St:
Now let us return to the case where yt is a random walk with drift and

use the �two quarters rule�for dating phase shifts rather than the calculus
rule. Proceeding as before we take the St process to be an MP(1).2 Then
the appendix shows that

p10 =
 2

(1 +  )
; p01 =

(1�  )2

2�  
(7)

p11 =
1 +  �  2

(1 +  )
; p00 =

1 +  �  2

2�  
: (8)

Hence, using (3), we will have

St =
(1�  )2

2�  
+ [1� (1�  )2

2�  
�  2

(1 +  )
]St�1 + �t; (9)

and this example shows that the dating rule employed will make the St
process at least an MP(1):

3.2 Estimating Models of St
As these examples show it will be rare for the St to have no dependence. In
general it will follow an MP of non-zero order also so we now brie�y look at

2The process might actually be of second or higher order but, for the purpose of com-
parison with the combination we started with, it is useful to focus upon the implications
for an MP(1). Note that the situation is like approximating an AR of higher order with
an AR(1).
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the form of MPs. These have a simple additive structure, which is evident
in the MP(2) below

St = �0 + �1St�1 + �2St�2 + �4St�1St�2 + �t; (10)

where Et�1(�t) = 0: Higher order MPs involve all products of St�j taken two
at a time, then three at a time etc. To illustrate this an MP(3) would be

St = �0 + �1St�1 + �2St�2 + �3St�1St�2 + �4St�1St�3

+�5St�2St�3 + �6St�1St�2St�3 + �t:

For simplicity we will generally work with the second order case above.
Estimation of (10) is easy. OLS will provide consistent estimators, al-

though one might improve on its e¢ ciency by making an assumption about
the nature of the heteroskedasticity in �t. The main di¢ culty is that, as the
order of the MP increases, we may �nd that there are not enough observa-
tions in a given sample to ensure that the regressors are independent of one
another. In work with MPs various simpli�cations have been proposed that
involve restricting the parameters in some way e.g. Raftery (1985), but we
do not use these in what follows, although they may be useful in empirical
work.
Most of the extant literature working with the St has not adopted the

MP framework. Instead a static Probit model has been proposed and the
assumption used in constructing the log likelihood was that the St had no
dependence. Since this is unlikely to be correct the likelihood has therefore
been mis-speci�ed. In an attempt to deal with the dependence it has been
suggested that a dynamic Probit (DP) model might be used instead - see
Deuker(1997). Now one has to exercise some care here in deciding on what
is meant by a DP model. In micro-econometrics the Probit model has the
following structure

�t = x0t� + "t; "t~n:i:d:(0; 1)

(11)

zt = 1(�t > 0);

and this implies that E(ztjxt) = �(x0t�); where �(�) is the c.d.f. of the stan-
dard normal: A natural correspondence to our case would seem to be to set
St = zt: But what are the xt? If xt = �t�j then the estimation task becomes
very complex indeed. Possibly for this reason a popular version of the DP
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model used in working with the St has been to set xt to lags of St rather than
�t. Such a model has been studied by de Jong and Woutersen (2007) and
used by Dueker (1997) inter alia. A likelihood is derived for this model under
the assumption that E(St�1"t) = 0: However the latter is generally not true
of constructed St�1 since these are often formed using contemporaneous and
future values of the underlying data they are constructed from For example,
with the two quarters rule for business cycle turning points, St depends on
the outcomes of �yt;�yt+1 and �yt+2; and so there must be a correlation
between St�1 and "t: Studies that just add St�1 to the single index and pro-
ceed with a Probit model will therefore produce inconsistent estimators of �:
This is also true of the St set out by the NBER. Modelling the dependence
between St�1 and "t would be a very complex task, particularly if we do not
know exactly what rule is used and what yt the St are based on.
There is another approach. As noted above the Probit model implied a

speci�c functional form connecting zt and xt i.e. �(x0t�): Although there is
nothing to suggest that this will be true when xt = St�1; we might neverthe-
less assume that it is correct: It is this assumption that we will take to be a
DP model. To investigate its adequacy in capturing the MP process that is
the DGP of St we assume that the orders of the MP and DP processes are
equal. Then a DP(2) process would be

Pr(St = 1jSt�1; St�2) = E(StjSt�1; St�2) (12)

= �(c0 + c1St�1 + c2St�2 + c3St�1St�2): (13)

To compare this to an MP(2) suppose we perform an expansion of �(c0+ zt)
around zt = 0; where zt = c1St�1 + c2St�2 + c3St�1St�2: Then we would get
�(c0 + zt) = c0 + �1zt + �2z

2
t + ::: where �j =

@j�(c0+z)
@zj

jz=0: Now the terms
zjt can be written as 
1jSt�1 + 
2jSt�1 + 
3jSt�1St�2 by utilizing the fact
that Sjt�k = St�k: The coe¢ cients 
kj are functions of the four coe¢ cients
cj: Hence

E(StjSt�1; St�2) = c0 +  1St�1 +  2St�2 +  3St�1St�2; (14)

and so the DP(2) has the form of an MP(2). Consequently, in this case,
provided we make the number of parameters in the DP model the same as
in the MP process, the former is capable of replicating the latter.
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3.3 E¤ects of Censoring Rules on the DGP of the States

Now, as we observed earlier, censoring is a pervasive feature of situations
where the St are constructed. To investigate how this impacts upon the
models needed to capture the dependence in St we will begin with an MP(2)
process for St. For illustrative purposes, the NBER censoring constraint
that recessions and expansions have a minimum duration of two quarters is
chosen. One reason for this is that the data employed in Section 5 has been
generated in such a way. Thus we begin with

Pr(St = 1jSt�1; St�2) = �0 + �1St�1 + �2St�2 + �3St�1St�2:

Consider any 3-tuple of fSt; St�1; St�2g: In the event that fSt�1 = 0; St�2 =
1g it must be the case that St = 0; since recessions have to be of two-period
duration. Similarly fSt�1 = 1; St�2 = 0g means that St = 1: Thus the
censoring restriction implies that

Pr(St = 1jSt�1 = 0; St�2 = 1) = 0 (15)

Pr(St = 1jSt�1 = 1; St�2 = 0) = 1: (16)

There are no restrictions for the 3-tuples fSt = (0; 1); St�1 = 1; St�1 = 1g and
fSt = (0; 1); St�1 = 0; St�1 = 0g. Translating (15) and (16) into parametric
restrictions on the MP(2) we get

�0 + �2 = 0 (17)

�0 + �1 = 1: (18)

Thus the presence of censoring induces restrictions upon the nature of the
MP(2). Indeed, in the regression (10) we would have a zero residual for any
sequence (1; 1; 0) and (0; 0; 1) i.e. the observations at the beginning of an
expansion and a contraction.
The parametric restrictions above does show up in regressions with NBER-

de�ned states representing the business cycle. Using the St from their web
page over 1953/2 to 2001/4 we get

St = 0:429 + 0:571St�1 � 0:429St�2 + 0:37St�1St�2: (19)

Imposing the constraints on (10) involves estimating a regression of the form

�St = �0(1� St�1 � St�2) + �4St�1St�2;
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and this gives identical results to those in (19) i.e. the regression model (10)
automatically imposes any censoring constraints even if they are unknown to
us, and this is a decided advantage of it.
To see what happens if the MP is of higher order, suppose we are dealing

with an MP(3). Then this will be

St = �0 + �1St�1 + �2St�2 + �3St�1St�2 + �4St�1St�3

+�5St�2St�3 + �6St�1St�2St�3 + �t;

and the restrictions become

1 = �0 + �1 + �4St�3

0 = �0 + �2 + �5St�3

Since St�3 could be either one or zero, unless �4 = 0 there would be two
incompatible restrictions for the �rst set above, these corresponding to St�3 =
1 and St�3 = 0. A similar argument for the second restriction means that
�5 = 0: Consequently, we are left with just the term St�1St�2St�3 as an
addition to the MP(2) model3.
Are such restrictions compatible with a DP model? It is clear that a DP

model would need to satisfy

1 = �(c0 + c1)

0 = �(c0 + c2);

and this would mean that c0+ c1 =1 and c0+ c2 = �1: Thus, although we
saw in the previous sub-section that the DP model is a restricted MP, once
one imposes censoring constraints on the states this correspondence breaks
down. Indeed, in the few studies where St�j have been added to the single
index in a DP model, an example being Dueker (1997), it is noticeable that
only St�1 has been added. If St�2 had been included �(�) would take values
that cannot be de�ned in a log likelihood.

3In the previous version of this paper we described how one can test for the order of an
MP, starting with some pre-de�ned higher order and testing downwards, just as is done
in any standard autoregressive set up. To compare an MP(2) and MP(3) with NBER
censoring restrictions we therefore need to test if the coe¢ cient of St�1St�2St�3 is zero:
The t ratio for this is -0.63 when working with the NBER data, so an MP(2) seems the
preferred model for that data.
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Is there a formulation of the DP model that will adapt to censoring?
Technically a variant that ensures this is to assume that

E(StjSt�1; St�2) = c0St�1St�2 + c1(1� St�1)(1� St�2)

+St�1(1� St�2)� (1� St�1)St�2;

as this makes Pr(St = 1jSt�1 = 0; St�2 = 1) = 0 and Pr(St = 1jSt�1 =
1; St�2 = 0) = 1: There are certain technical di¢ culties with this formulation
and we leave its development for later research. It should be said however
that the correct formulation is to treat St as an MP, so that the DP model
is just an approximation. Consequently, it is not clear why there are any
advantages in using a DP estimator over the simple regression based MP
estimator given above. Any di¢ culties encountered in estimating the MP
process due to high orders will be shared by the DP process as well.

4 The Impact of Covariates upon the DGP
of the States

4.1 MPs with Covariates and no Censoring Restric-
tions

We now wish to introduce covariates into the Markov process.4 Again it
is simplest to discuss the issues when there is a single covariate. From a
theoretical perspective the extension to the multiple variable case will be
obvious, although in practice it may be di¢ cult numerically. Moreover, in
many applications there is just a single covariate such as the yield spread.
To gain some appreciation of how this complicates the analysis we provide
a treatment in the appendix of Pr(St = 1jxt) when the two quarters dating
rule is applied to a series whose growth rate is driven by some variable xt:
It emerges that this conditional probability is not a function of just the
contemporaneous value of xt ( as in the static Probit model) but involves
all past values of xt: This points to a modi�cation of the Markov process in
which xt in�uences the transition probabilities; we will call such processes
MPC. For the second order MP an appropriate generalization to an MPC(2)
format might be

St = �(xt) + �(xt)St�1 + 
(xt)St�2 + �(xt)St�1St�2 + �t; (20)
4We are referring to extra determinants of St over and above its past history.
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where �(xt); �(xt), 
(xt) and �(xt)are some non-linear functions of xt: Using
the same argument as earlier it should be clear that a dynamic Probit model
would have the same form as (20), with the polynomials e¤ectively being
of in�nite order but combined together by functions of a small number of
parameters.

4.2 MPs with Covariates and Censoring Restrictions

In the MPC(2) case the censoring restrictions now imply that

�(xt) + �(xt) = 1

�(xt) + 
(xt) = 0

so that the Markov process becomes

�St = �(xt)(1� St�1 � St�2) + �(xt)St�1St�2 + �t (21)

If the polynomials were linear we would be adding on to the regression of
the previous section the regressors xt(1�St�1�St�2) and xtSt�1St�2: In that
instance we can test the signi�cance of the extra regressors to determine if
there is any contribution from xt. If the order of the polynomials is unknown
we could proceed with various non-parametric approaches such as splies. In
the next section we describe how to use kernel methods to perform non-
parametric analysis that exploits the additivity of the terms in the MPC.5

5It may be possible to extend the DP model to handle censoring in the covariate case
as described in the case when there are no covariates. It is hard to know whether it
is worth developing such an extension. The proposed MPC estimator is non-parametric
versus a parametric form for the DP, but we could have made the procedure parametric
simply by assuming some known forms for the polynomials. Basically the Probit model
assumes a speci�c parametric functional form for the conditional mean and then some
extra assumptions are needed for it to handle censoring. Because the non-parametric
MPC estimator is more general, we have not further developed the modi�ed DP estimator
described above.
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4.3 Non-parametric Estimation of the MPC Model

To estimate the MPC(2) model we observe from (20) that

E(StjSt�1 = 1; St�2 = 1; xt) = �(xt) + �(xt) + 
(xt) + �(xt) (22)

E(StjSt�1 = 1; St�2 = 0; xt) = �(xt) + �(xt) (23)

E(StjSt�1 = 0; St�2 = 1; xt) = �(xt) + 
(xt) (24)

E(StjSt�1 = 0; St�2 = 0; xt) = �(xt); (25)

so that the polynomials in the MPC can be identi�ed from the conditional
expectations. Moreover

E(Stjxt) =
1X
j=0

1X
k=0

E(StjSt�1 = j; St�2 = k; xt) Pr(St�1 = j; St�2 = kjxt):

(26)
Consequently, it is necessary to evaluate a number of conditional expectations
if E(Stjxt) is to be computed.
Let S1t = St�1 and S2t = St�2:Then we have

E(StjSt�1 = s1; St�2 = s2; xt) =

Z
sf(sjs1; s2; x)ds

= [

R
sf(s; s1; s2; x)ds

f(s1; s2; x)
]

Replacing the densities by a kernel estimator produces

Ê(SjS1; S2; x) =

266664
R
s 1
Th4

TX
t=1

Kz(
St�s
h
; S1t�s1

h
; S2t�s2

h
; xt�x

h
)ds

1
Th3

TX
t=1

Kz�(
S1t�s1
h

; S2t�s2
h

; xt�x
h
)

377775 ;
whereKz andKz� are multivariate kernels for the variables zt = [ St S1t S2t xt ]

0

and z�t = [ S1t S2t xt ]
0: After making a change of variable to  t =

St�s
h
(

so that s = St � h  t);

Ê(SjS1; S2; x) =

266664
1
Th3

TX
t=1

R
(St � h t)Kz( t;

S1t�s1
h

; S2t�s2
h

; xt�x
h
)d 

1
Th3

TX
t=1

Kz�(
S1t�s1
h

; S2t�s2
h

; xt�x
h
)

377775 :
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If the kernel is symmetric then
R
 tKz( t;

S1t�s1
h

; S2t�s2
h

; xt�x
h
)d = 0; leaving

Ê(SjS1 = s1; S2 = s2; x) =

266664
TX
t=1

StKz(
S1t�s1
h

; S2t�s2
h

; xt�x
h
)

TX
t=1

Kz�(
S1t�s1
h

; S2t�s2
h

; xt�x
h
)

377775 ;

where s1 and s2 take the values of zero and unity. Because the variables S1t
and S2t are binary,

Sjt�sj
h

is either zero, when Sjt = sj; or will be a large
number, because h ! 0 with T: Thus, with a product kernel of the form
K1(

S1t�s1
h
)K2(

S2t�s2
h
)K(xt�x

h
); we get

Ê(StjSt�1 = j; St�2 = k; x) =

X
t2Ijk

StK(
xt�x
h
)

X
t2Ijk

K(xt�x
h
)

(27)

where Ijk = ft s.t. St�1 = j; St�2 = kg:
In the same way

Pr(St�1 = j; St�2 = kjxt) =

TX
t2Ijk

K(xt�x
h
)

TX
t=1

K(xt�x
h
)

(28)

(27) and (28) are then used to compute (26).
To determine the asymptotic distribution of the estimator of m(x) =

E(Stjxt = x) we have St = E(StjSt�1; St�2; xt) + �t and St = m(xt) + vt;
giving vt =

P1
j=0

P1
k=0Kt�t1 (t 2 Ijk) : Then, from Theorem 3.5 of Pagan

and Ullah (1999, p110),

(Th)
1
2 (bm (x)�m(x)) = f̂�1

"
(Th)1=2

TX
t=1

Kt(m(xt)�m(x))

#
+f̂�1

"
(Th)�

1
2

TX
t=1

vt

#
;

(29)
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Since under general conditions bf�1 converges in probability to f�1 the terms
that we need to focus on are those in square brackets. Because �t is a martin-
gale di¤erence with respect to fSt�jg1j=1, Kt is bounded by a suitable choice
of kernel, and 1 (t 2 Ijk) is also bounded, vt will be a martigale di¤erence
with bounded moments provided those of �t are.

6 Under these conditions a
central limit theorem will apply and the last term in brackets will converge
to N

�
0; lim
T!1

E 1
h
vt

�
: Turning to the �rst term in brackets Theorem 3.6 of

Pagan and Ullah (1999) showed that, when xt was i:i:d: and m(�) was well
behaved, it was op(1): Following the structure of that proof it will also be
true that the result holds when xt follows a dependent process that has a
suitable mixing condition imposed on it, and so we will assume that the xt
(and m(�)) are such as to asymptotically eliminate the �rst term.
To evaluate the variance of the asymptotic distribution we use the law of

iterated expectations to get

E

�
1

h
vt

�
= E

 
E

(
1

h

1X
j=0

1X
k=0

K2
t �
2
t1 (t 2 Ijk) jxt

)!

= E

 (
1

h

1X
j=0

1X
k=0

K2
t �

2 (xt; t 2 Ijk) Pr (t 2 Ijkjxt)
)!

; (30)

where �2 (xt; t 2 Ijk) is the variance of St conditional on x and t 2 Ijk:
Because St is binary we have

�2 (xt; t 2 Ijk) = E
�
�2t jxt; t 2 Ijk

�
= E(StjSt�1 = j; St�2 = k; x) [1� E(StjSt�1 = j; St�2 = k; x)] :

Evaluating the expectation in (30) yields

E

�
1

ht
vt

�
=

1X
j=0

1X
k=0

Z
1

h
K2
t �

2 (xt; t 2 Ijk) Pr (t 2 Ijkjxt) f (xt) dxt: (31)

Making a change of variable to  = xt�x
h
, the right hand side of (31) becomes

1X
j=0

1X
k=0

Z
K ( )2 �2 (x+ h ; t 2 Ijk) Pr (t 2 Ijkjx+ h ) f (x+ h ) d 

(32)
6Because St is binary the variance of �t will be Pr(St = 1jSt�1; St�2; xt)(1 � Pr(St =

1jSt�1; St�2; xt)) and so will be bounded.
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Applying Corollary 1 of Lemma 1 of Pagan and Ullah (1999,p 364) to
(32),R
K ( )2 �2 (x+ h ; t 2 Ijkj) Pr (t 2 Ijkjx+ h ) f (x+ h ) d converges to

�2 (x; t 2 Ijk) Pr (t 2 Ijkjx) f (x)
R
K ( )2 d as T ! 1: Thus (Th)

�1
2

TX
t=1

vt

converges in distribution to

N
 
0; f (x)

Z
K ( )2 d 

1X
j=0

1X
k=0

�2 (x; t 2 Ijk) Pr (t 2 Ijkjx)
!

(33)

so that of (Th)
1
2 (bm (x)�m(x)) becomes

N
 
0;

R
K ( )2 d 

f (x)

1X
j=0

1X
k=0

�2 (x; t 2 Ijk) Pr (t 2 Ijkjx)
!
: (34)

We use (34) to establish asymptotic con�dence intervals for the non-parametric
estimator of the MPC process.

5 An Application to the Probability of Re-
cessions Given the Yield Spread

We apply the methods developed above to assess the extent to which the
yield spread (spt) a¤ects the probability of a recession occurring. Estrella
and Mishkin (1998) did this by applying a static Probit model to the NBER
states i.e. they ignored the dependence and censoring in the binary variable
St. In this application we use the methods described earlier to take account
of the fact that the NBER states St are neither independent, identically
distributed nor uncensored: The conditional mean is calculated using (26)
with a kernel that is a product of Gaussian densities.
Estrella and Mishkin (1998) �nd that the best �t occurs with the yield

spread being lagged two quarters, and we continue with that assumption
here, so that xt = spt�2 in this application. Figure 1 plots the probability of
a recession given the spread i.e. E(1�Stjspt�2); against spt�2: It is assumed
that the NBER St follow an MPC(2) process and the conditional expecta-
tion is computed using (26).7 Also shown on the �gure are the estimate of

7As reported earlier the NBER states were tested for MP(3) against MP(2) and the
latter was favoured.
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Pr (St = 0jspt�2) obtained from a static Probit model and the 95% con�dence
bands obtained using the asymptotic results for the estimator of 1�E(Stjxt)
given in (34). It is clear that there is a di¤erence between the probability of
recession obtained from the static Probit and MPC(2) models at a number
of values for the spread. Most notably this occurs for spreads in the range
-0:55% to 0:5%; although there is close to being a signi�cant di¤erence for a
spread around �1% - at that point the static Probit model yields a predicted
probability of recession that is much lower than the MPC(2) model.

Figure 1: Probability of recession from MP(2) and Probit models conditional
on the yield spread lagged two quarters
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Having established that making an allowance for the nature of St is both
theoretically and empirically important it is of interest to evaluate the extent
to which the yield spread is useful for looking at the probability of moving
from an established phase to the opposite one. To assess this we focus on
either the probability that an expansion which has lasted for two or more
periods will be terminated or the probability of continuing in a contraction
that has lasted for two or more periods. The former is the quantity E(St =
0jxt; St�1 = 1; St�2 = 1) while the latter is E(St = 1jxt; St�1 = 0; St�2 = 0).
The probability of leaving an expansion that has lasted for two or more
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quarters is shown in Figure 2. There is a substantial di¤erence between
the estimates obtained from the non-parametric estimates of the MPC(2)
model and those from a dynamic Probit model that uses spt�2 and St�1 as
covariates (the variant used in some of the cycle literature). The dynamic
Probit model over predicts the probability of leaving an expansion for yield
spreads in the range -1.1% to 0.3%, and under predicts the probability of
leaving an expansion for yield spreads below �1:1%. These di¤erences are
statistically signi�cant at the 5% level for spreads in the interval �0:75% to
0%. The main �nding that the probability of terminating an expansion is
low for spreads above �0:75 should be of interest to policy makers.

Figure 2: Probability of terminating an expansion that has lasted for two
quarters
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The probability of continuing in a recession that has lasted for two quar-
ters is plotted in Figure 3. Again the probabilities are from the MPC(2)
model estimated non parametrically and the dynamic Probit model. There
is a substantial di¤erence between the predicted probabilities from the two
models, and this di¤erence is both economically and statistically signi�cant.
The most important di¤erence between the probabilities from the two meth-
ods is that the MPC(2) model suggests that there is no decrease in the
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Figure 3: Probability of continuing in a recession
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probability of staying in a recession with a rise in the yield spread from zero
to 2.5 per cent. In contrast the DP(2) model suggests that the probability of
remaining in recession declines monotonically as the yield spread increases.
Of course, one may question the accuracy of the asymptotic con�dence

intervals as there are only 10 per cent of cases where the economy is in
contraction for two or more periods. But, even allowing for this caveat, the
results presented above are likely to be of considerable practical interest.

6 Conclusion

We have made the argument that constructed states St require careful treat-
ment if they are to be used in econometric work, since they are very di¤erent
in their nature to the binary states often modelled in micro-econometrics.
When engaging in a broad range of estimation and inference methods one
has to allow for the fact that they are essentially Markov processes. But, to
date, the nature of the St has mostly been ignored, with the potential for
misleading estimates and inferences. We have suggested some methods to
deal with this fact. In the application these methods produce results that
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di¤er from those obtained by a standard Probit procedure that does not allow
for the Markov process nature of the binary states and which forces a par-
ticular functional form upon the data. We have shown that these di¤erence
are economically and statistically signi�cant.

Appendix A

The determination of these transition probabilities becomes much more com-
plex with the �two quarters rule�as the conditioning event St�1 = 1 will place
some restrictions upon the past sample paths for f�ytg that are associated
with an ETS. For example the sequence

f�yt+1;�yt;�yt�1;�yt�2; ::::::g = f�;�;�:;+; ::::g (35)

would be incompatible with St�1 = 1 since the negative growth at t�1 would
match with the negative growth at t and so the expansion would have been
terminated at t� 1: It is clear that the sample paths {�yt�1;�yt�2; :::g that
are compatible with St�1 = 1 and f�yt+1 < 0;�yt < 0g must have the form
f+; :::g and in such paths we must encounter a f+;+g before we encounter
a f�;�g: If this did not happen e.g. we had for f�yt�1;�yt�2; :::gthe path
f+;�;+;�;�; :::g; then the recession would have begun at t� 5 and would
still be running when we reach t� 5
Now let us consider an enumeration of the paths that are consistent with

St�1 = 1: This is done in the matrix below where the �rst column represents
time and subsequent columns represent paths along which we are assured
that St�1 = 1: The notation used is as follows:

� �+�indicates �yt > 0;

� ���indicates �yt < 0;

� ���before a ��� indicates that any pattern for the observations can
occur along the path up to and including that point;

� ���following a �+�indicates that any pattern for the observations can
occur along the path from that point forward.

Thus looking at the second column the �+;+� at t and t � 1 assures
us that St�1 = 1 along all paths that exhibit this pattern at t and t � 1.
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Similarly, the ���at t and the �+;+�at t� 1 and t� 2 assures us that all
paths with this pattern are consistent with St�1 = 1: Similar logic can be
applied to all the subsequent paths.266666666666664

t+ 1 � � � � � � � � �
t + � + � + � � � �

t� 1 + + � + � + � � �
t� 2 � + + � + � � � �
t� 3 � + + � + � � �
t� 4 � + + � � � �
t� 5 � + + � � �
t� 6 � + � � �
... � . . .

377777777777775
(36)

To understand the derivation of these paths suppose we start with the
four possible outcomes for (�yt;�yt�1g; namely {+;+g; f�;+g; f+;�g and
f�;�g: The last would give St�1 = 0 and the �rst St�1 = 1; thus the
�rst becomes the second column of the table. The other two outcomes do
not enable us to decide what the state for St=1 is and so we proceed to
observation t � 2 and consider what happens to each of them as we add on
a � or a +: Thus f�;+;+g will give St�1 = 1 and that becomes the third
column. But f�;+;�g produces no resolution and one needs to proceed to
t � 3: Augmenting f+;�g with a + also fails to resolve the indeterminacy
while adding on a � result in St�1 = 0: Consequently that path has to be
continued on to t � 3 as well. The process continues in this way and all
columns of the matrix will eventually be enumerated by such a strategy.
To formalize the discussion it is helpful to separate the set of paths that

are consistent with St�1 = 1 into two subsets. Let Et be the set of paths
such that f�yt > 0 and St�1 = 1g and Ft be the set of paths such that
f�yt < 0 and St�1 = 1g : If we introduce the notation that

� [+�]jt represents the fragment of the path along which there are j rep-
etitions of the pattern in the [+�].with the leading term in the pattern
being located at time t,

� [++]t represents the fragment of path where the pattern "++" occurs
with the �rst " + " being at t and the second at t� 1
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� [�]t represents the case where �yt < 0;

the sets Et and Ft can be enumerated as

Et =
n
[++]t ; [+�]t [++]t�2 ; [+�]

2
t [++]t�4 ; :::; [+�]

j
t [++]t�2j ; ::::

o
(37)

Ft =

�
[�]t [++]t�1 ; [�]t [+�]t�1 [++]t�3 ;

[�]t [+�]
2
t�1 [++]t�5 ; :::; [�]t [+�]

j
t�1 [++]t�2j�1 ; ::::

�
: (38)

Thus, using the notation that Pr (Et) represents the probability that the
path is drawn from the set Et, and recognizing that the paths are mutually
exclusive, we have ( to simplify notation we have omitted the conditioning
on =t+1 in equations (39), (40), (41) and (43).8)

Pr (Et) =
1X
j=0

Pr
�
[+�]jt [++]t�2j

�
(39)

and

Pr (Ft) =
1X
j=0

Pr
�
[�]t [+�]

j
t�1 [++]t�2j�1

�
: (40)

By de�nition

Pr (St�1 = 1) = Pr (Et) + Pr (Ft) : (41)

Interest also centres on the joint event Pr fSt = 0; St�1 = 1g ; this will
involve the set Gt+1 de�ned as

Gt+1 =

�
[��]t+1 [++]t�1 ; [��]t+1 [+�]t�1 [++]t�3 ; [��]t+1 [+�]

2
t�1 [++]t�5 ; :::

:::; [��]t+1 [+�]
j
t�1 [++]t�2j�1 ; ::::

�
(42)

Then, since St is a stationary process,

8To simplify notation we have omitted the conditioning on =t+1 in equations (39), (40),
(41) and (43).
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p10 =
Pr(St = 0; St�1 = 1)

Pr(St�1 = 1)
=

Pr (Gt+1)

Pr (Et) + Pr (Ft)
: (43)

If Pr(St = 1; St�1 = 0) is constant, which essentially requires �yt to be a
random walk with time invariant drift and variance, then Pr(St = 1; St�1 =
0) = Pr(St = 0; St�1 = 1) (as the number of peaks and troughs must be the
same). Using this in conjunction with Pr(St = 0) = 1 � Pr(St = 1) we can
directly derive p01 from the same information as used to construct p10. If
Pr(St = 1; St�1 = 0) is time varying (as would be the case where �t depends
on some exogenous variable) then one also needs to enumerate the various
paths where St�1 = 0:
Considering the limits of Et etc we get

Pr(E) =
1X
j=0

(1�  )2 [ (1�  )]j

=
(1�  )2

1�  (1�  )
(44)

Pr(F ) =
1X
j=0

 (1�  )2 [ (1�  )]j

=
 (1�  )2

1�  (1�  )
(45)

Pr (G) =

1X
j=0

 2 (1�  )2 [ (1�  )]j

=
 2 (1�  )2

1�  (1�  )
(46)

and so

p10 =
 2

(1 +  )
(47)

p11 =
1 +  �  2

(1 +  )
(48)
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p01 =
(1�  )2

2�  
(49)

p00 =
1 +  �  2

2�  
(50)

Now in some of the literature we deal with it is assumed that the process
for �yt depends linearly upon some other variable xt in the following way:

�yt = a+ bxt + ut (51)

where the xt are taken to be strictly exogenous (and so can be conditioned
upon) and ut is n:i:d:(0; 1): If  t = �(�a� bxt) ; applying the enumeration
method results in

Pr (Et+1j=t+1) =
1X
j=0

Pr
�
[+�]jt+1 [++]t+1�2j

�
=

�
1�  t+1

�
(1�  t) (52)

+
1X
j=1

("
j�1Y
i=0

�
1�  t+1�i

�
 t�i

# �
1�  t�2j+1

� �
1�  t�2j

�)

and

Pr (Ft+1j=t+1) =
1X
j=0

Pr
�
[�]t+1 [+�]

j
t [++]t�2j

�
=  t+1 (1�  t)

�
1�  t�1

�
+ (53)

 t+1

1X
j=1

("
j�1Y
i=0

�
1�  t�i

�
 t�i�1

# �
1�  t�2j

� �
1�  t�2j�1

�)
:

Letting Pt = Pr (St = 1j=t+1) under the two quarters rule gives

Pt = Pr (Et+1j=t+1) + Pr (Ft+1j=t+1) (54)

It is clear from this expression that the use of the two quarters dating
rule means that Pt is a function not only of xt but also of xt+1 and the entire
past history of xt:Moreover it does not have a single index form i.e. does not
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depend upon �+ xt� alone. Only if the dating rule had been the �calculus�
one would Pr(St = 1j=t+1) = (1 �  t) be a function of xt only. Clearly the
lesson of this analysis is that one cannot just assume that Pr(St = 1) is a
function of a contemporaneous variable only; it is necessary that one know
how the St were generated in order to be able to write down the correct
likelihood.
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