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Abstract: An intuitive and geometrically motivated chord-length based dis-
criminant statistic is proposed for the classification of a new observation into
one of two circular populations when training samples are available from each of
them. Assuming that each of the two underlying populations is von Mises, the
exact distribution of this statistic is indicated and its relationship to Fisher’s
discrimination and Cox’s Logistic discrimination rules are discussed. The per-
formance of this rule is presented and compared with Fisher’s rule in terms of
exact error probabilities and apparent error rates. This new rule is illustrated
by a real-life data set.

Keywords and phrases: Apparent error rate, classification rule, directional
data, logistic discrimination

5.1 Introduction

Consider the problem of classifying a new observation into one of two distinct
circular populations. For an introduction to analysis of circular or directional
data, see e.g., Mardia (1972), Jammalamadaka and SenGupta (2001). Suppose
we have observations as directional data from these two (identifiable) popula-
tions given as 8i;. J = 1o....ng, i = 1,2 We will utilize these observations as
training samples to provide estimates of parameters of the above two popula-
tions as needed. Let a new observation be denoted by 8. Denote the sample
mean directions by g,.i=12

Morris and Laycock (1974) have discussed the usual Fisher’s discrimination
rule for the von Mises or circular normal {CN) populations when the parame-
ters may possibly be unknown. Fl Khattabi and Streit (1996) have illustrated
the use of classical Bayes rule with offset normal distribution on the circle and
some other distributions on the sphere. Note that such parametric rules become
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quite cumbersome even for applications, when invoked for other popular circu-
lar distributions, e.g.. the family of symmetric wrapped stable distributions
[SenGupta and Pal (2001)]. In a somewhat more extended context, Collett
and Lewis (1981) have discussed the problem of discriminating between the
von Mises and wrapped normal distributions given a set of data assumed to be
coming from one (unknown) of these two populations, These works however
apply the standard linear techniques and do not address the peculiarity and the
distinctive features of directional data.

In Section 5.2 we introduce a very simple and elegant chord-based discrim-
ination rule which is intuitively appealing and geometrically motivated specifi-
cally for circular data and which may be used for arbitrary circular distributions
with possibly unknown functional forms. The basic idea used here is to find
out the average “distance” (in an appropriate sense) from the new observation
to the observations in the two known groups. If the distance from one group
is less than from the other, then the new observation is classified as belonging
to the “closer” population. Though this approach may be used for any circular
distribution, here we illustrate it by the von Mises populations. Next we recall
that in a linear setup, for the univariate or multivariate normal distributions
the Fisher type discrimination rule, which coincides with the Logistic Discrim-
ination {LGD) rule of Cox (1966} with same variances and the Quadratic LGD
rule [see e.g., Anderson (1975)] if variances are different, can be viewed as a
quadratic distance function i.e., with variance-covariance matrix playing the
role of the metric tensor. In Section 5.3 we show that a similar phenomenon
holds for the class of directional distributions also. In Section 5.4 we discuss the
exact distribution of the discriminant statistic and note how one can compute
the threshold value numerically. Section 5.5 presents a study on the efficiency
of the chord-based rule and compares it with Fisher’s rule in terms of their Ap-
parent Error Rates (AERs). Finally in Section 5.6. the new rule is illustrated
by a real-life data set.

5.2 Construction of the Rule

5.2.1 A distance measure

The simplest distance that can be used for circular data is the arc-length, which
in the case of the unit circle is equivalent to the radian measure subtended at
the center of the circle, i.e., the value of the observation in radians.

But to be a proper distance on the circle, the distance measure must be
rotationally invariant, both in terms of magnitude as well as in the sense of
rotation. Thus if we have to consider the arc-length in terms of radian mea-
sure, we have to transform it in a suitable way, 1.e.. take absolute value of the



Diirectional Data 23

difference in angles. modulo 27. We may also have to consider the minimum of
the two arc-lengths into which two points on the circle divides a circle.

These problems do not arise if instead of the arc-length we consider the
length of the chord cut off by the two points on the circle. This is always non-
negative, invariant under rotation, hoth in magnitude and displacement. As
we shall see, this particular form has also other attractive properties due to its
similarity to known descriptive measures. e.g., circular variance [Mardia (1972,
p. 21)].

We ohserve that though the use of chord length as a descriptive measure is
quite natural and may have been in use for long, the approach in the following
section scems to be the maiden attempt in this direction.

5.2.2 Average distance of a point from a group

Let two points on the unit circle be denoted by 6;.0;. Then the square of the
chord-length between the two is given by 2{1 — cos{#; — 6)). Based on this we
take the distance measure as

dij =1 - COS(GQ' - 9]) (51)

Note that d;; has the following properties : It is always non-negative, symmetric

in its indices and is invariant under rotation. A measure of deviation between

two points on a circle, e.g., two circular observations. the true mean direction

and its estimator [SenGupta and Maitra (1998)], etc. may thus be based on it.
The average distance d,(#) of f from the group &. is given by

1

T

di(@) = 1 — ZCOS(F),;_?- —8). (5.2)

Note that this is similar to the sample circular variance with a shift in the mean
direction. Let

_ 1 1 Y e _
Ty = — 3 coslby). Si = — Y sin(0y). Ri = VO + 5, tan(0,) =
g Y

Q| &l

5.2.3 The chord-based rule

Let the new observation to classify be 8. Let dy; be the distance of 8 from 6;.
the circular mean for group i, i = 1, 2. Define D(8) = do (0) — dpa(@). Suppose
that prior probabilities for the two populations are equal and let ¢ be a real
constant. The classification rule is then given as follows:

If D{f) < ¢ assign @ to popnlation I,

and assign 6 to population 2 otherwise. (5.3)
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Now B - _ o
D(#) = (cos(fa) — cos(#1)) cos + (sin(8y) — sin(#,)) siné. (5.4)
Let van(d0) = sin{fy) — sin(é_l) (5.5)
AT T Cos(Ba) — cos(f1)
Note that P(6; = 8) = 0, assuming that we are dealing with underlying

continuous distributions and hence 6y is well defined (with probability 1}.
Then (5.4) can be written as

D(6) = /2 —2cos(8 — B2) cos(0 — o). (5.6)

Note that by (5.5), there will be two solutions for fo.
The classification rule in (5.3) now reduces to an equivalent but a very

simple form as
If cos(§ —6p) > K assign € to population 1,
and assign @ to population 2 otherwise, (5.7)

where K is an appropriate constant.

Remarks. ~ _
1. The direction &y is orthogonal to the bisector of #; and &s.
9. As is often done for the sake of simplicity of the classification rule [see,
e.g.. Rao (1973, p. 575, Eq. (8e.1.8))], we can take K = 0. The rule as given by
equation (5.7) then simply partitions the circle into sectors of width 180°. In
this case, explicitly, the sectors can be specified as one semicircle having &y as its
midpoint, and the complementary arc. Note that if the sample mean directions
are equal, unequal cirenlar variances have no effect on the rule. In this case
is simply the inean direction itself. However, when the sample mean directions
Cc:; g:,;)i,f‘fc;};};(;ﬂ:; ‘21;10;1!1:;1 varf'af‘mfs d(,) affect &. It is 'obvious thf:)t the rude
Finally. in casé specifi d} O CO‘;(?.I f '€ case of mfe.q.ual prior probabilities also.
- In case specified misclassification probabilities are to be maintained, K

can be suitably determined by using the distribution of cos(f — y) as discussed
in Section 5.4.

5.2.4 An extension of the chord-based rule

Let I = di(61), Vs = da(8y). i.e., V; is the average intragroup “distance” from

cach other for the observations in group or sample ;. Note that V; is nothing

but the sample “circular variance” for sample i, see, e.g., Mardia (1972, p. 21)
Define the intra-group average d;; from the sample mean direction as

1 _
di = 1 - = cos(8;; — 0,). (5.8)

T
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Then d;; =1 — R; = V,. Take constants «a; > 0,i=1,2, and 3, and define

Di(8) = (dl(e) - dl“;—d"’i) o (dg(()) - i“_;ldﬂ) LB

The classification rule is given by
If Dy(8) < 0 assign 6 to population 1

and assign @ to population 2 otherwise. (5.9)

Now Dq (@) reduces to
{agcos(fz) — ycos(fr)}cosb + {aa sin{f,) — a1sin(f1)}siné

+%(CM1 - (‘!2)(]%1 + RQ) y (5.10)

Let _ _
(a9} sin(Hg). — (X] SiIl(f;l)

tan(fpy) = (5.11)

g cos(fz) — apcos(fy)
Then by (5.11), there will be two solutions for §p. However, as is done [see,
e.g., Jammalamadaka and SenGupta (2001)] for defining 8, 8y also may be
defined uniquely by taking the quadrant specific arc-tan function by interpreting
the numerator and denominator of the ratio in the right-hand side of (5.11)
accordingly.

5.3 Relationship of Chord-based Rule with Other
Rules

5.3.1 Fisher’s rule

Assume that the underlying populations are in the CN family. i.e., CN (i, 5i).
; = 1,2. Recall that the density function corresponding to CN{p, k) is given by

1
f(O:p k)= m explk cos(@ —p)}l, O0=p< 27,k > 0.

Note that, given the parameters, the standard Fisher type (‘maximum likeli-
hood’) function would have the form

—1InJy(k1) + Ing(ka) + {x1 cos(p1) — 2 cos(p2)} cos(f)

+{rk sin(p1) — ko sin(gz) } sin(8) + Ié] (5.12)
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= —Inlp(x1) + Inlp(xz) + /&7 + K3 — 2K kg cos(py — pa)

1 K2 8N py — Ky sinp ) 4 (5.13)

X COS (9 — tan
K2 COB [ty ~ K1 COS L

Putting a; = #; in {5.10) and observing that

% Inlp(x) = A{x),

we have

In To(x) = f A(r)dx.

Recall from the ML estimation of  for the CN population, that R is asymp-
totically A(x). Note also that kR?/2 approximates the integral { A(x)dx by a
triangle. Note also that

d A(r)

- =1— A%(K) - 22/

—A(x) () — 2
and hence that for small change in k, the order of change in A(x) is less than
that of k. Therefore,

In To(k1) - In Io(r) = f:? A(R)dr ~ %[A(K,l) + A(k)] (k2 — ry),

by the trapezoidal rule. Note that, if x; and k2 are very close to each other,
asymptotically (5.10) approximates (strongly converges to) the corresponding
portion of (5.12). The equivalence between Fisher’s rule and our rule then
becomes clear. Thus although we have kept the rule flexible by introducing the
constants a;s, a recommended choice in case von Mises distributions seem to
be the underlying populations, is that which is found by substituting the pairs

ke = ATYR), i=1,2.

2.3.2 Cox’s logistic discrimination rule

In the above discussion, the modified rule ean easily be identified as a semipara-
metric rule which approaches the Fisher type rule (ratio of densities) when the
underlying populations are circular normals and they are close to each other in
terms of population parameters.

Since LGD models the ratio of densities in the case when the log ratio is
linear in the underlying random variable, observe that LGD cannot be directly
applied to discriminate between two von Mises populations. However, note that
a simple generalization of LGD can still be used in such cases, since the log-
ratio in this case is linear on the sine and cosine transformations of 8. This also
bypasses the rather computationally tricky problem of having to estimate K,
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A(x) and their logarithms, as the constant term in the expression of the LGD
subsumes all the Bessel function terms. This can also be approached through
the method of Generalized Pseudo Maximum Likelihood estimation [see Roy
(1999)). Also, the rule based on chord lengths as given above, however then
need not assume independence of the linear components as done for the LGD
rule.

5.4 Exact Distribution of D(6)

The distribution of § conditional on R = r is von Mises with mean direction
i and concentration parameter xr. The joint distribution of C = Rcos#,
S = Rsinf is given by

1

f(C. S) — In(ﬁ}eﬁ(cos(u)ansin(p)S)@ﬂ(CZ + SZ) (5‘14)
0

Here ¢, is the density of R? when #y,....8, is a random sample from a circular
uniform distribution. The joint distribution of U = «j cos(8;) — agcos(fs),
V = asin(fy) — azsin{fs), given Ry = ri, Ky = ro, a1, 02, is given by

K171 cus(,f.u)f—1 +Kara cos(pa) L

(27)2 Ig(kar1)o(Kara)

Cps _
X / exp {(mrl cos(,u;)gE + Kora cos{pg)) cos(f2)
2 1

fuwvy =

. Cr: . . .= —
s sin(un) 22 + wars sin() s B) } d.

Combining this with (5.14}, we have the joint distribution of {C, S, U, V) (where
cos(f) = C and sin(f) = §). given Ry = r1, Ra = ra, a1, a3, to be

myry cos{u )%+w2r2 cos(pz) %4—& cos(8—pt)

(2m)3 Ip{w) To{K171 ) 0 (K2r2)
% C)l(l) [ E(m-r; cos(m)%lzﬂeyrg cos(p2)) cos(fa)
J g
(k171 -“iﬂ(ﬂl)%%*"‘i??”?Siﬂ(ﬂﬁ‘))sm(ﬁz)dézl (5 15)

HC, 85U VY =

X e

To get the distribution of the statistic, the conditional density in (5.15)
multiplied by the joint density h,, (R1)hn,(Rz2) [for the definition of h,(R),
see e.g., Mardia (1972, p. 94)| has to be integrated over regions of the form
d=aCU + (1 — a)SV. This fact may be used in invoking numerical integra-
tion to obtain the constant K of Section 5.2 when specified misclassification
probabilities are to be met.
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Table 5.1: Comparison of Fisher’s and chord-based rules

ny=ny =10, =0,k =0.10

Kga = 0.10
42 LE1 ,'.32 Rl R2 ERRl AERl ERRQ AER2
0.1} 005 | 0.12 | 0.09 | 0.09 0.15 0.19 0.13 0.25
0.2 0.05 | 0.1710091 | 0.089 | 0.14 0.16 0.14 0.25
0.3 0.05 | 0.26}0.091 | 0.09 | 0.137 0.15 0.146 0.24
0.4 | 0.055 | 0.36 | 0.092 | 0.091 | 0.135 | 0.148 | 0.145 0.24
0.5! 0.05 | 0.48 | 0.093 [ 0.092 | 0.13 0.14 0.148 0.21

Ko = 0.20
M2 ,[f] ;32 R1 Rg ERR] AER1 ERRQ AERQ
0.1 005 | 0.12 | 0.09 | 0.18 0.15 0.17 0.25 0.3
0.2 0.05 | 0.17 | 0.091 | 0.19 0.14 0.16 0.22 0.26
0.3 005 |0.26 [ 0.091 | 0.19 | 0.132 | 0.145 0.2 0.25
0.4 10.055 | 0.36 { 0.092 | 0.192 | 0.129 0.14 (.19 0.24
05 005 | 048 | 0.093 | 0.192 | 0.126 | 0.134 0.18 0.22

e = 0.30
1o ,!1?1 ,[32 Rl R;g ERRI AERI ERR2 AER2
0.11 005 1012 0.09 | 0.28 0.i6 0.17 0.25 0.3
0.2 005 | 0.17 [ 0.091 ]| 0.280 | 0.14 0.16 0.22 0.26
03] 005 [0.26]0091] 029 | 0.132 | 0.145 0.2 0.25
0470055036 |0.092]0.291 | 0.129 0.14 0.19 (.24
057 0.05 | 0.48 | 0.093 | 0.292 ] 0.126 | 0.134 0.18 0.22
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5.5 Efficiency of the Rule

As is apparent. closed form expressions for error probabilities do not exist and
the actual values have to be numerically computed for each pair of training
samples.

Table 5.1 presents and compares the performances of the Fisher’s and the
chord-based rules, where we have taken p; = 0 (angles are given in radians)
without loss of generality. ERR; denotes the calculated error probability from
the exact distribution of the modified statistic as given above, ERRjy the calcu-
lated crror probability from the Fisher type (ratio of densities) discrimination
rule, AER, the apparent error rate from the modified statistic as given above,
and AER, the apparent error rate from the Fisher type discrimination rule. It
is clear that our proposcd rule outperforms Fisher’s rule in terms of both ERR
and AER over all the parameter combinations considered.

5.6 A Real-life Example

We now consider the data on pigeon-homing, as referred to in Mardia {1972,
pp. 156-157), in which the internal clocks of 10 birds were reset by 6 hours
clockwise while the clocks of 9 birds were left unaltered. Assuming that the
underlying distributions are von Mises with equal concentration parameters las
in Mardia (1972. p. 157)], we classify each observation in the two samples on
the basis of the remaining observations, by comparing the average chord-length
distance from each group.

The result shows that the apparent error rate (AER) is 0.0 for the control
group, 0.25 for the experimental group and 0.117 for the combined sample.

The AERs or the sample misclassification probabilities show that the rule
correctly classifies all the observations in the control group, and 75% in the
experimental group.
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