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Abstract 

Predictive density for a future observation is derived when the given data comes from circular or spherical distributions. 
Model robustness of these predictive densities for the circular case is exhibited. Predictive intervals corresponding to the 
highest density regions are derived and an example is given. (E) 1998 Elsevier Science B.V. All rights reserved 
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1. Introduction and summary 

If Y--(Y1 . . . . .  Y,) is the "past" and has density Po(Y), what can we say about the distribution of the 
"future" (a single value, a set of values or a function of these), say z? It is generally agreed that the single 
most important aim of statistics is to predict the nature of a future occurrence based on empirical evidence, 
i.e. the observed past. 

There are several approaches to finding predictive likelihoods and predictive densities. Excellent reviews 
can be found in Butler (1986) and Bjomstad (1990). Main approaches include (i) methods based on condi- 
tioning through sufficiency, (ii) Bayes predictive densities and (iii) maximum or profile likelihood methods. 
Specifically, let Y-----(YI . . . . .  y , )N PO(Y) and let Y' =(YI' , . . . ,  Y') denote future observations from the same 
model. The quantity of interest Z is yt  itself or is a function of Y'. Let po(y,z) denote the p.d.f, of  ( Y , Z ) .  
It can be argued that this is the likelihood of the unknowns (Z,O) given y i.e. 

Ly(z,O) = po(y,z). 

The goal is to eliminate the nuisance parameter(s) 0 and obtain the predictive density of Z given Y. Three 
basic approaches include: 

(i) Sufficiency approach. Suppose T( Y, Z )  is a minimal sufficient statistic for 0 based on both Y and Z.  
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Then 

p~°°d(z [y) c< 
p(y, z, O) 

p(T(y, z), O) 

= p(y, z lT(y,z)), 

where factorization criterion makes 0 drop out of  the last expression. 
(ii) Bayes approach. 

f Po(Z,Y)n(O) dO 
paayes(zlY)= f po(y)n(O)dO ' 

where n(0) is a prior for 0. 
(iii) Maximization. 

pmaX(g l Y) : sup PO(Y, Z) : Ly(Z, O(y, Z)), 
0 

where 0(y, z) is the MLE based on both y and z. 
In many natural and physical sciences, one measures directions, for instance, the direction of wind (two- 

dimensional), the direction of  the earth's magnetic pole (three-dimensional). Also, many periodic/cyclical 
phenomena like biorhythms can be represented as measurements on a circle of given circumference. Indeed, 
prediction is clearly as important in the context of  directional data as it is for linear measurements and we 
apply the above ideas in this situation. 

We study some of these approaches for obtaining the predictive density of a future observation, given n 
past observations from the same population. We use the Bayesian approach in Section 5 while the rest of  the 
paper uses the sufficiency approach. For the circular case, we derive the predictive densities assuming that the 
underlying distribution is the von Mises or circular normal (CN) while for the spherical data, we assume that 
the parent population is the von Mises-Fisher model. Some generalizations that include the multimodal as 
well as axial distributions, are also considered. We will show that conditional sufficiency argument of  Fisher 
(1956) leads to exact solutions. We also observe that the Bayesian approach which often becomes intractable, 
also leads to an elegant and computationally appealing representation, in large samples. 

For CN data, we find that the predictive density is symmetric around the mean of the past data and is 
nearly CN although less concentrated. We also demonstrate through exact numerical computations as well as 
simulations that this predictive density derived under the assumption of  CN population is robust against a 
large class of  other symmetric unimodal circular distributions, called the symmetric wrapped stable family, 
introduced by Levy (1939). We compute the highest density regions (HDRs) and illustrate the results with 
an example from a real-life data set. 

2. Distribution on a circle 

We first consider the most commonly used circular distribution - the von Mises distribution (also called 
the circular normal distribution), CN(#0, x), with the p.d.f., 

f (0 ;#o,x)=[2rdo(X)]  - l  exp{xcos (0 -  #o)}, 0~<0, #o<2~,  x>0 ,  
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where 

OC 1 ( 2 ) 2 r  

r:O 

is the modified Bessel function of the first kind and order zero. 

Theorem 1. Under the sufficiency approach, 
(1) The predictive density of 0n+1 is [liven by 

1 

4~n+i(rL,)' g(0n+l I0I, . . . ,0n)O( 

where 

~n(r 2) = f0 ~ 

249 

(2.1) 

uJo(ru)J~(u) du, (2.2) 

do(x) bein9 the standard Bessel function of zeroth order. 
(2) 9(') above is a symmetric, unimodal density with its mode at 0,, the MLE of ~ based on the past n 

observations, Ol, 02 . . . . .  On. 
(3) The predictive density, 9('), is proportional to the yon Mises model, f (0 ,+l ;  On,2R) for large n. 

Proof. In this model, Tn:(Cn ,Sn)  with S . =  ~ i s i n O i  and Cn = EicosOi Call be seen to be the minimal 
sufficient statistic whose distribution is given by 

p(S,,Cn)= [2trig(x)] -I  exp{x(vSn + #Cn)}~bn(S 2 + C~z), 

where v =  s in#0 ,#= c o s ~  and ~bn(') is defined in (2.2) above (see, for instance, Mardia, 1972, p. 97). 
(1) Following the conditioning approach with the minimal sufficient statistic (Cn+l,Sn+l), 

pc°nd(On+llO1,.. On) = p(O1 .... ,0n+l) 
"' p(Cn+l, Sn+l ) 

- ~ q~n+l(C~+l +S2+l)  (2.3) 

after some simplification, which proves (1). 
(2) Noting C,+l = Cn+cos 0n+l, Sn+l = Sn+sin 0,+l and Cn = Rn cos 0n, Sn = Rn sin 0n where/~n is the direction 

of the resultant vector (Cn,Sn), the expression (2.3) is equal to 

[(27Qn~pn+l(R 2 -k- 1 + 2Rn cos(0n+l - 0,))] - l  

and the statement made in (2) follows from this. 
(3) From Rayleigh's approximation, it follows that 

2 -n- 4~n(r 2) ~ - exp 
n 

for large n. Using this, it can be seen that the predictive density for large n is proportional to 

f {" 2rn "~ 
exp~ ~ - -~ - -~ )  cos(On+t - On)} 
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which is essentially avon Mises distribution with center at 0n, the estimate of/~ based on the past. Indeed, 
= 2rn/(n + 1) can be seen to be the approximate MLE of the concentration parameter x for smaller 

values of x. The predictive density is less concentrated around 0, than the "plug-in" (but incorrect) 
method would suggest, namely a CN(0n, kMLE). [] 

3. Generalized von Mises-type distributions 

3.1. Y-modal yon Mises distribution 

A multi (d)-modal von Mises density CNM(~,x ,d )  can be obtained (see Mardia, 1972, p. 73) from the 
von Mises density and has the p.d.f. 

pM(0)= {2n/o(X)} - l  exp{xcosd(0-  ~ )} ,  0~<0<2rr, 0~<#o<2n/d. (3.1) 

For known d, a sufficient statistic for ( ~ , x )  is (St, Ce) where 

Se= Z sind0i, Ce= E cosd0i. 
i i 

Let 

2 2 Re=s; +cL 
We may thus apply the above approach here also, provided the joint density of (St, CI) can be derived. 
Towards this, we have 

Lemma 1. The joint density o f  (Se, Ce), where ~l,-..,~n are i.i.d, observations from the CNM(~,x ,d )  
distribution is: 

9(st, ce) = [2n/g(x)]- 1 exp(xvse + ~:lmt )L~'n(r~), (3.2) 

where v = sin ~ ,  # = cos #0 and 

/o ~q~n(d) = d Jo(urt)Jg(u)udu=ddpn(r~), (3.3) 

Jo(u) = (2~) -1 Fjfj2~ exp{(iu)cos EO} dO 

f[ = (2~)-1 exp{(iu) cos O} dO. 

Proof. Let xe = re cos dO, Ye = re sin dO be the rectangular coordinate representation of an arbitrary two- 
dimensional variable. If  O(tl,t2) represents its characteristic function, then by the inversion theorem, the 
p.d.f, of (xt, ye) is given by, 

/?F f (xe,  Ye) = (2~) -2 exp(-itlx - it2y)~(tl, t2) dtl dt2. (3.4) 

Writing tl = p cos d~, t2 = p sin dO, 

~b(tl, t2) = E[exp{iprt cos d(0 - ~b)}] -= ~e(P, ~b), 



Then the joint c.f. of (S:, 

p(r/ ) = (21r)-l dr: . fo ~ 

= (2rt)-~dr: f0 ~ 

= r/ Sn(r~ ) 
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say. The joint density of r: and 0 is, 

/?/0 f i  (r:, O) = (2~)-Zr:: exp{- ip  r: cos :(0 - 4)}P @(0, ~b) dp d4~. (3.5) 

Then invoking change of variables (xi,y:)--,(r:,O), using (3.5), integrating out 0 and interchanging the 
order of integrations, the density of r~ is given by 

fl(r:)=(2~r)-2r:d fo fo exp{-ipr:cos:(O-c~)}dO p @(p, dp)d~bdp 

27~ 

=(2rt)-lr/{ fo fo pdo(Or/) @(p, dp)dqbdp, (3.6, 

where do(u) is as defined in (3.3) above. 
Now, let 01 . . . . .  0n be i.i.d, random variables following the uniform distribution on (0, 2rq. Then the c.f. of 

(cos dO, sin dO) is, 

= Jo(p). 

C:) is [~(p)]n and inverting this as in (3.4) we get the p.d.f, of R: is, 

o 2~ pJo(-pr: )[~(p)] n d(o dp 

fo 2~ PJo (-pr/ )J~(p) d~a dp 

(3.7) 

(see Section 4.5.5 of Mardia, 1972). 
Let, & = ~ i  sin :Oi = R: sin £:, C: = ~ i  cos :Oi = R: cos ~:. From this discussion, it is seen that, for uniform 

samples, the distribution of Y: is uniform and J?/ and R: are independent. Thus the joint p.d.f, of 0?/,R:) is 

r/LPn(r})/(2rt), 0<<.£/<2~,R: >0. (3.8) 

Thus, the joint p.d.f, of (S:,C:) on transforming, is 

9o(se, c~ ) = (27t)-l Lp,(r 2 ). (3.9) 

Now consider the general case where 01 . . . . .  0n are i.i.d, random variables following the multimodal yon 
Mises distribution CNM (/~0, K, :).  The joint p.d.f. 9,<(s:,c:) of (&, Cr) is then, 

" i{ II(dOi/2n)" (3.10) 9~-(s:,ci) : {Io(K)} exp{x(vs: + #c:}} o:Z, sinlO,=s:.Z, coslO,=c:} i 

But the integral represents the density of (C:,S~) when 01 . . . . .  0n is random sample from the circular 
uniform distribution on (0,2re], which is given in (3.9). On substituting (3.9) in (3.10), (3.2) follows. 

We thus have the following: 

Theorem 2. The predictive density of O,+l is given by 

1 
O(0,+ll01 . . . . .  0,)c* 

~n+, (r2 n+, '" 
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Proof. This follows exactly as in part (1) of Theorem 1 by virtue of  the above Lemma. [] 

Remark. Arnold (1941 ) suggested an angular distribution of  the yon Mises type for a circular random variable 
restricted to only a semi-circular are, i.e. 0 E (0, n]. Its generalization to the t-angular ease is given by 

g(0*)= [t/(2rdo(X))]exp{xeost(O* - go)}, 0<<.0", #o<2n/t. 

The predictive density of  0* is equivalent to that in part (1) of  Theorem 1 above as 0 = tO* ~ CN(go, x), and 
t is known. 

4. von Mises--Fisher distribution on a sphere 

We consider the analogue of Theorem 1, when the directions are three-dimensional, i.e. the observations 
are taken on a sphere. The most commonly used unimodal distribution in such a case is called the von 
Mises-Fisher distribution F(x,  #), with the p.d.f. 

f 2 ( x ; x , # )= CO c) ,  exp{xx'#}, x ' x = l / I Z =  1, x ,#ES3.  

with C (x ) =  x/(4~t sinh x). Then, we have: 

Theorem 3. The predictive density o f  x,+l = (xl,~+l,X2,~+l,X3,~+l)' is given by 

1 
g(Xn+ 11Xl . . . . .  X n ) CX hn+l(rn+l )/72+1 ' (4.1) 

where, R 2 is the squared length o f  the vector resultant in three-dimensions defined by 

n 

2 2 R~=Xi~+X2~+X2~,  X i ~ = E x i  j, i = 1 , 2 , 3  
j=l 

and 

2,,2nrn (n) h~(r) = (n - E ( -  1 )k (n -- r -- 2k) n-2. 
k=0 

/ I I t Proof. Observe trivially that x~ =(xl~,x2~,x3~ ) is a sufficient statistic for (/~,x). The joint density of  X is 
(of. (8.6.30) of  Mardia, 1972): 

h(x l ,x2 ,x3  ) = {2C(K))neXX3ho(Xl,X2,X3 ), 

where h0(-) is the joint p.d.f, of  X under the isotropic ease, i.e. when the corresponding angles (O, ~b) form 
a random sample from the uniform distribution: 

g ( O , $ ) = ( 4 n ) - l s i n O ,  O~<O<ff, 0<~b <2~t. 

Then proceeding exactly as in part (1) of Theorem 1, it suffices to compute h0('), which is given in (8.6.24) 
of Mardia as 

ho(r ) = (47t)- l hn(r)/r2. 

The proof is then immediate. [] 
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5. Bayesian predictive density 

The Bayes predictive density of a future observation uf given the past ul . . . . .  un is given by 

..... un)= f~ J, p(uyl#,x)p(u,x[u, ..... 9(uf lul  un)d#dx. 

Let the priors be given by 

p(#) = Cp(xO ) exp(xo#'P.o) 

and 

253 

p(K) o< I0(r) -c exp(rA). 

Assume (#, x) and the observations (ul . . . . .  un, uf) are independent. Defining 

n 

IEu,, uo=Eu:, 
l 

we have 

0(" ) cx Cp(~) exp(r#' uf )C~(r) exp(rR#' uo) 

x Cp(xo) exp(ro~)I~c(x) exp(xA) d# dx, 

= K fo ~ C~ +l (x)C[~l(rE)I~C(r) exp(xA) dx, 

where 

R2 = llx(u: +Ruo) + x o ~ l l ,  

C p( x ) = ( 2rO-  P/:KP/2-1I~/~_ I ( X ) 

and K is the normalizing constant. This needs to be numerically evaluated. O(uf l ul . . . . .  u.) above may simplify 
somewhat if we take as prior 

P(#1, x) oc tc-l/2I(# E Sp) 

based on non-informative (vague) prior for # and Jeffrey's prior for r (which is not a proper prior here). 

5.1. Case of  laroe x 

In case there is a prior reason to believe that only large values of  x need to be considered, some further 
simplifications result. These are somewhat analogous to the standard Laplace saddle-point-type approximations 
of  the posterior. 

Let 

p(x)C<IoC(x)exp(xA)I(x>M),  M>0,1arge and known. 

For large x, it is known that for all v/> 0, 

Iv(x) '~ (2~c) -1/2 exp(x). 
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Using this approximation, we get 

Cp(rC) ~_ x ip -  1)/2 exp(-tc)(2rO - (p -  1)/2. 

Then, 

9(Uf ]Ul,... ,Un)OC K,(n+I)(p--I)+c)/2[HI~(U f + Ruo)  + ~o/tol[] -(p-1)/2 

exp[~c{(A -- n - c - 1) + II~,(u s + R u o )  + ~omll}] dK 

Specializing to p = 2, and choosing xo = O, i.e. uniform prior for/~, we simplify to 

/? g(Uf lU 1 . . . .  ,Un)  (X l£(n+c+l)/2[l£[l(Uf +Ruo)[]] -1/2 exp[x{(A - n - c - 1) + ]luf + Ru0ll}] d~c 

/? = Ilu s +Ruo[1-1/2 t¢ (n+c)/2 exp[~c{(A - n - c - 1) + ]luf +Ruo l l } ]dx ,  (5.1) 

where B is the normalizing constant. 
Note that, taking C = 0 and A = -1  yields p(x)  cx exp( -x) .  For large n, (5.1) behaves as a usual incomplete 

Gamma integral, i.e. 

9(uf lul  . . . . .  u,)  =gl luf  + Ruoll-1/aI'~,+c+a)/2{M/(n + c + 1 - A - []uf + Ru011)} (5.2) 

where B is the normalizing constant, i.e. 

g - I  = fsp Iluf + eu°H-l/2F(n+c+2)/2 {M/ (n  + c + 1 - A - Iluf + Ruo]])} du/. 

(5.2) is quite simple to calculate, especially for the CN population with p = 2. Such Bayes predictive densities 
can and have been numerically evaluated and provide encouraging results. 

6. Robustness against symmetric wrapped stable family 

Exact computation of the predictive densities is done through numerical integrations using Gauss-Laguerre 
64-point quadrature in IMSL and are plotted in Figs. 1-4. The predictive density curve is superimposed on 
the true CN curve in Fig. 1 while in Figs. 2-4, we show what happens when the predictive density of  
Theorem 1, based on the CN distribution is used when the data is actually from various members of  the 
symmetric wrapped stable family. All these results clearly indicate the encouraging performance and model- 
robustness of the predictive density as derived above. As can be expected, these results improve considerably 
for larger sample sizes. 

Note. Observations from a wrapped stable distribution, g(0), 

1 1 ~ o(O)=~+-~-~p"~cos(nO), 0<0<2rt, p~>0, 0 < ~ < 2  
n=l 

are simulated by generating observations from the corresponding stable distribution and then taking mod 2ft. 
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Fig. 1. Predictive density for vonMises (0, 2), n -  20. 

Wrapped Stable, alpha=l, n=20 
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Fig. 2. Predictive density for wrapped stable with ~ = 1.0, n = 20. 

7. HDR computation and an example 

Consider the following example from Batschelet (1981) giving data on the time of  day of major traffic 
accidents in a major city. The time (h) is converted to angle 0/) (in degrees) by the formula t /=  15 × h. The 
n = 21 observations are given in Table 1. 
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Wrapped Stable, alpha=1.5, n=20 
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Fig. 3. Predictive density for wrapped stable with a = 1.5, n = 20. 

Wrapped Stable, alpha=2, n=20 

o 

C, 

0 

o 

o 
<5' 

t 

Angle 

Fig. 4. Predictive density for wrapped stable with a = 2.0, n = 20. 

Assuming a von Mises distribution of the data, we get/i = 248.59 ° which translates to 16 h 34 min in time 
scale. Also, ~=0.7021 is the MLE of the concentration parameter. The 90% HDR is given by (104.50 °, 
32.68°), i.e. (6h 58min, 2h 11 min) while the 75% I-TDR is given by (9h 45min, 23h 24min). 

The large widths of the predictive intervals in this example can be explained by the fact that the data is 
not very concentrated and the sample size is not very large. 
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Table 1 

h : min Angle h : rain Angle 

00:56 14 16:44 251 
03:08 47 17:04 256 
04:52 73 17:20 260 
07:16 109 17:24 261 
08:08 122 18:08 272 
10:00 150 18:16 274 
11:24 171 18:56 284 
12:08 182 19:32 293 
13:28 202 20:52 313 
14:16 214 22:08 332 
16:20 245 
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