
Statistics & Probability Letters 1 (1982) 46-50 July 1982 
North-Holland Publishing Company 

Tests for Simultaneously Determining 
Numbers of Clusters and Their Shape with 
Multivariate Data 
Ashis  Sen G u p t a  

Department of Statistics, University of Wisconsin, Madison, W1 53706, U.S.A. 

Received May 1982; revised version received May 1982 

Abstract. Given a set of data, very little is known about tests to determine number  of clusters a n d / o r  elements of the clusters. 
Even in the simplest case of detecting between only one or two clusters with multivariate normal data, theoretically the number  
of tests needed seems to be infinite. Alternatively, suppose N independent estimates of generalized variances (GVs) are 
computed from a given set of p-dimensional vector observations. Assuming multivariate normality, tests based on GVs are 
proposed which objectively and uniquely determine, simultaneously, the number  of clusters and their corresponding elements. 
Only a reasonably small number  of tests are required for this stepwise procedure. The exact percentage points are either 
available from existing tables or can be computed from a result presented. 
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1. Introduction 

Given a set of points, clustering techniques based on different criteria, e.g., similarity measures, distance 
functions, correlations, etc. have received considerable attention. However, statistical tests for determining 
clusters for the given set of points are scarce and need detailed research. In the present paper, we deal with 
the problem of clustering in a more general set-up. Most often, the characteristics that need to be clustered 
have repeated data. For example, in clustering of schools by performance (Hartigan, 1975), scores on 
various students for each school are collected. In clustering of cities by demand of some specified articles, 
one usually collects data from different shops in each city. In such situations one has already some natural 
subgroupings, to be termed 'subclusters' of observations. For example, scores on various students for a 
specific school, sales of the articles in various shops for a specific city, etc., constitute the elements of a 
subcluster. Usually, the mean of each subcluster is used as a 'point '  for forming clusters (e.g., see Hartigan, 
1975; p. 118, Mezzich and Solomon, 1980, p. 109). In many cases, the means may be nearly equal and as 
such clustering on the basis of means will not be adequate. The variations within each subcluster need then 
be taken into consideration to provide precise differentiation among the clusters (see Mezzich and 
Solomon, 1980, p. 63]. For our analysis, we will start with the original set of data. We will emphasize the 
case of nearly equal means. Further, if multivariate normal distributions with equal means for the original 
observations are assumed, clustering on the basis of equal multivariate scatter is a natural choice. In such 
cases, given the multi-dimensional observation vectors in each subcluster, a measure of multi-dimensional 
scatter will be used as a criterion for determining the clusters. One can use the dispersion matrix ~ or its 
determinant, a scalar, the generalized variance ]Y.I. 

For a k-dimensional random vector, grouping by equal covariance matrices demands componentwise 
equality for all the ½k(k + 1) distinct elements of the matrices. If k is not small, this choice is quite 
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restrictive and may not be desirable. However, in such situations, the generalized variance is more 
convenient to work with and is being proposed here as a criterion. Note first that it is reasonable to expect 
that any scalar function of ~, used as a measure of multi-dimensional statistical scatter, should take into 
consideration the magnitude of the correlations among the variables. Secondly, it is known that the 
expected volume of the simplex formed by the k + 1 random points in k dimensions or k randorff points 
and the mean vector is equal to the generalized variance, ]Z 1. This is a natural generalization of the fact 
that the expected distance between two points or one point and the mean is the variance in one dimension. 
Thirdly, if the probability that a random point will lie in a k-dimensional ellipsoid of unit volume is large, 
then the population is well concentrated about the mean. For multivariate normal populations, l Y.I has a 
further interesting interpretation. For such populations, the smaller the generalized variance, the higher the 
'concentration'  of the variable around X=/~ ,  since the density function at X= /~  is a monotonically 
decreasing function of l Y~I. For more details, the reader is referred to Wilks (1967). Hence, using 
generalized variance, elements of different clusters will have different degrees of multivariate concentration 
as reflected by the volume l Yl . 

2. Clustering by generalized variance 

Suppose that the means of the given k subclusters are nearly equal. Assuming multivariate normality for 
the p-dimensional observations with population dispersion matrix E i for the ith subcluster, one may 
attempt to differentiate the populations by Y~,. In principle, one needs to consider all possible groups of 
subclusters, the total number being the sum of Stirling numbers of the second kind - an incredibly large 
number, even for small k. Let AlP = i~,1 denote the population generalized variance (GV) and so A] will be 
called standardized generalized variance (SGV). With AlP or A ] it is justifiable to consider only contagious 

2 2 2 partitions, i.e., if d~ < dj < d k and d 2 and dk are included in the same cluster, then so should d f where the 
d 2 are sample SGVs. This reduces, to a great extent, the number of partitions to be considered to 
E k t k - l x - - 2  k-~ _ still quite prohibitive. However, if the number of groups, g, is specified beforehand, g = l ~ g _ l l  - -  

then only k J (g l) partitions need be considered. In any case, since the sample SGVs may be the same for 
different sample sizes, a test based on, say for g : 2, the ratio of two SGVs will lead to different 
conclusions with differing sample sizes for the same SGVs. Hence, we restrict ourselves to the case of equal 
sample sizes. Further, we will propose a simple alternative testing procedure to obtain clusters in the 
absence of any knowledge of g. 

3. Statistical tests 

We will consider two approaches to the testing problem with contagious partitions only. 

3.1. Likelihood ratio test 

Result 3.1. (i) The L R  test for H01: Xa, l -- 1 . . . . .  T, i -- 1 . . . . .  c, c specified, are observations from p-variate 
normal populations with SGVs A ] all equal, against Hi1: the given sets of  observations come from c p-variate 
normal populations with SGVs  not all equal, is given b y  

m t 

L ( c ) = m a x  ~ 1-[ ( d f / O ~ ) r e / 2 < L o  
p ( c )  i = 1  j = l  

r n i E p ( c )  

where the maximization is over all contagious partitions p(c) of  the k subclusters into c clusters; for a f ixed  
partition, say p'(c), (m 1 . . . . .  me)  E p ' ( c ) ;  d 2 and 602 are defined below and L o is a constant to be determined 
f rom the specified level of  the test. 
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(ii) The L R  test for  Ho2 : same as H0j ,  c not specified, against H12: same as H t l, c not specified, is given by 

L = m a x  L (  x ) < Loo 
c 

where Loo is a constant to be determined from the specified level o f  the test. 

Proo t .  Let  l~m d e n o t e  the  L R  tes t  for  H 0 :  A ] all  equal ,  i --- 1 , . . . , m ,  aga in s t  H~ : n o t  H 0. Surely ,  

L ( c ) = m a x  1-I ~/,~. 
p ( c )  m l E p ( c )  

W e  der ive  71,,, b e l o w  in a more  gene ra l  f o r m  (Sen G u p t a ,  1981) where  the  n u m b e r  of  o b s e r v a t i o n s  can  be  
p o s s i b l y  d i f f e r en t  for  d i f f e ren t  p o p u l a t i o n s .  

Test for the equality of  SGVs  of  c ( >  2) independent multivariate normal populations. Let  x a, l = 1 . . . . .  Ni, 
i = 1 . . . . .  c d e n o t e  c r a n d o m  samp le s  f r o m  c i n d e p e n d e n t  p o p u l a t i o n s  Ne,(/~ t, Y.;), i = 1 . . . . .  c, r espec t ive ly .  
W e  are  i n t e r e s t ed  in  tes t ing  H o : A  2, i---- 1 . . . . .  c, all  equal ,  aga ins t  the  a l t e r n a t i v e  H i : a t  leas t  one  inequa l i ty .  

U n d e r  b o t h  H 0 a n d  H i , / i  t = if;, i = 1 . . . . .  c. Le t  0,j, i--- 1 . . . . .  c , j  = 1 . . . . .  p;, be  the cha rac t e r i s t i c  roo t s  of  
E(1S~ re spec t ive ly  where  St, i = 1 . . . . .  c, a re  the  s a m p l e  sums  of  p r o d u c t s  m a t r i c e s  for  X;, i = 1 . . . . .  c, 
r espec t ive ly .  F o r  f i nd ing  the M L E s  of  E; ,  i = 1 . . . . .  c, u n d e r  H 0, i t  suff ices  to c o n s i d e r  the  ob jec t ive  func t ion  

P, 

d p = ~ ¢ +  ~ ~] (½NilnOij--½Otj)  
i = 1  j = l  

+ ~' i t+ l -~; In Otj -- I n s  2 --  In 0,+ i j  --  In s~+ l 
i = 1  j = l  j = l  Pi+l 

where  x is a c o n s t a n t  a n d  X;;+t are  u n d e t e r m i n e d  L a g r a n g e  m u l t i p l i e r s  wi th  c + 1 be ing  r e p l a c e d  b y  1 in  
the  suffixes.  D i f f e r e n t i a t i n g  ~ wi th  r e spec t  to  the  O;j's a n d  e q u a t i n g  to  zeros  we have  tha t  

p ; ~ + ( X , ; + l - X ; _ , t  ) - - p ; 0 ; j ,  i =  l . . . . .  c , j =  l . . . . .  p , ,Xo ,  =X,~ 

Ois=-Oij, = O i j =  sT /62 ,  i =  1 . . . . .  c 

where  602 is the M L E  of  Oo 2, the c o m m o n  u n k n o w n  va lue  of  A 2, i = 1 . . . . .  c. So 

Oo 2 p i N , + O  2 ( X ; ; + , - ~ , _ , t )  = p,si 2 = 0 2 =  p,s,2/ p;N, .  
i =  l i 1 i =  l i =  l i =  l 

N o t e  tha t  this  agrees  wi th  the  M L E  for  o 2 of  the u n iva r i a t e  case.  Hence ,  we get  the  fo l lowing  l e m m a .  

L e m m a  3.2. The L R  test for  H0:  A2,, all equal, against H t :  at least one of  the A], i = 1 . . . . .  c, different is given 
by 

re ject  H 0 i f  and only if  *l = ~I ( d 2 / 6 ~  )N;e' /2< *lo 
t = l  

where TIo is a constant to be determined from the specified level of  the test. 

m i C o n s i d e r  now the L R  test  b a s e d  on  the Y.; s. Let  S ( m t )  = Y~j=ISj. 

Result 3.3. The L R  test for  H~v against H~'~, where H*~ is the same as H u~, u --  0, 1, v : 1, 2, above with A 2 

48 



qolume 1, Number 1 STATISTICS & PROBABILITY LETTERS July 1982 

replaced by Y'i is given by 

reject HI1 if 

reject HI2 tf 

L*(c )  = maxp(c) i---1 f i  {~j=l (]SJl l /m' /]S(mi) ' )}  < L J ( c ) '  
m i E p ( c )  

L* ---- m a x L * ( c )  < L~' 0 
c 

where L~o( C ) and L'~o are constants to be determined from the specified levels of the tests. 

Proof. LR criterion for H0: Ej ' s  all equal, j--- 1 . . . . .  m~ against H~:at  least one of the Ej ' s  different is given 
by the term within the second bracket. The rest follows as in Result 3.1. 

3.2. Union intersection test 

For some vector a,  consider the linear compound a'X. We use the heuristic approach of Roy to produce the 
test by the union intersection (UI) principle. 

Result 3.4. The U1 tests for H~v against H~'v, defined in Result 3.3, v = 1, 2 are given by 

reject H~l if U(c) = max I I  
m i 

1-[ ( X , ( S ( m i ) S j - ' ) } ' / C < U o ( c ) ,  
p ( c )  i = 1  j = l  

ra, E p (  c) 

U =  max U( c ) > U o 
c 

maximum characteristic root of V and Uo(c), U o denote some constants to be 

reject H~2 if 

where XI(V) denotes the 
determined 

Proof. It suffices to note that, after some simplifications, it follows that the term within the square bracket 
corresponds to the UI criterion for testing equality of Y,j's, j = 1 . . . . .  m, with equal sample sizes for the m i 
populations. 

4. Distributions of the criteria 

The exact distributions for the above test criteria seem intractable. When c, the number  of clusters, is 
specified, the percentage points may be available through simulation. For c = 2, percentage points for the 
LR test, based on equal means assuming equal covariance matrices, were obtained through simulation by 
Engelman and Hartigan (1969) for p --- 1 and bT  Lee (1979) for p = 2. For p > 2 and additionally when c is 
not specified, the problem becomes compounded. In this case, one may attempt to exploit advantageously a 
test due to Birnbaum (1974) which does not require explicit knowledge of the critical values of the test 
statistics. It will be of interest to consider the distribution of 71,, for the above tests and also for a test to be 
proposed in Section 5. The exact distribution of 712 for any p and ~/m for any m, p = 2 are available from 
Sen Gupta  (1981). 

Result 4.1. The null distribution of ~1,, for any m, p = 2 is that of Bartlett's test statistic for homogeneity with 
parameters (d f )n i = p( N - p ) + 1, i ~ 1 .. . . .  m, N being the common sample size. 

Proof. The exact distribution of Bartlett 's test statistic is available from Theorem 1 by Chao and Glaser 
(1978). Consider their generalization Lk. o. Also the exact distribution of ~,~ for p = 1 can be deduced from 

49 



Volume 1, Number 1 STATISTICS & PROBABILITY LETTERS July 1982 

Theorem 4.4.1 by  Sen G u p t a  (1981). I t  then suffices to note  that,  for our  case, a j  = 1 / m ,  v = m p ( N - p )  

and  hence the exact  null  densi ty  of ~,~ is the same as that  of Lp~N_p)/2. ,  ,. 

The above  result  enables  us to get the percentage  poin ts  for ~m via the use of tables  by  Dyer  and Kea t ing  
(1980). 

When  N is large, a mul t ivar ia te  Fma x cr i ter ion p roposed  by  Sen G u p t a  (1981), whose large sample  
d i s t r ibu t ion  is convenient ly  tabula ted ,  may  also be used in stead of  Ore" 

5. Alternative test 

A stat is t ical  test  to ob ta in  clusters is p roposed  which is s imple  and  also requires cons iderab ly  less 
computa t ions  than the above  procedures .  The  cluster conf igura t ion  will be unique  for the given procedure .  

P rocedure  5.1. Ar range  the sample  GVs  based  on an equal  number  of observat ions ,  N, in, say, a decreas ing 
order ,  d~ ~> • • • 1> d ] .  Wi th  k subclusters,  go to k*, the 'm id -po in t '  of  the subclusters.  Test, H0: A] . . . . .  
A2k.. If  H0~ is accepted,  proceed to test if 2 d k . + l  can also be  inc luded in the cluster,  i.e., H~:  A] . . . . .  A~. 
= A~.+I.  I f  H0~ is rejected, test H~* : A  2 . . . . .  A2 ._ l  . Cont inue  this process.  This will give one cluster,  
say (d?  . . . . .  d r ) .  Repea t  the same technique with  all . . . . .  dg.  

The above  process  will need only abou t  ¼ k ( k  + 1) opera t ions  and thus achieves t remendous  saving. 
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