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Laplace-Weibull Mixtures for
Modeling Price Changes

S. T. Rachev ¢ A. SenGupta

Department of Statistics and Applied Probability, University of California, Santa Barbara,
Santa Barbara, California 93106

B Mandelbrot and E. Fama in the sixties, and W. Ziemba in the seventies, suggested stable
o laws for modeling stock returns and commodity prices. Geometric stable distributions,
with Laplace distribution playing the role of a ““normal” law, have been found to give better
fit to such data. We study the “‘stability”” properties of Laplace and a mixture of Laplace and
Weibull and discuss the statistical inference for such mixture models. Application of the mixture
distribution to modeling price changes in real estate prices in France is given.

(Stable Distribution; E-M Algorithm)

Introduction and Summary

The problem of modeling price changes is of prime im-
portance and usefulness not only to an individual but
to the society at large. Probability distributions have
been enhanced for such purpose both since they enable
objectivity and also because they lend themselves to
statistical inference procedures, e.g., testing of certain
characteristics of the underlying phenomenon, efficient
market hypothesis, prediction over a short range, etc.
Starting with normal distributions, the interplay be-
tween simple probability models and empirical evidence
or lack of it thereof, have come a long way to evolve
into the current interest in geometric stable distributions.
In this quest, we propose below a mixture distribution
incorporating members from both geometric stable and
alternative stable distributions. As will be discussed be-
low, this choice stems from both sound theoretical jus-
tifications and empirical evidence. We exhibit how the
rather complicated associated statistical inference pro-
cedures, both estimation and testing, can be handled in
practice. We conclude with an example on price changes
for one-bedroom apartments in Paris in the period
1984-1989 to demonstrate a reasonably good fit of our
suggested model to this real life data. Certainly we do
not claim that the real world phenomenon is dictated
by our model. Rather, we hope that our model is but
merely one step further in that pursuit compared to the
existing parametric probability models.

0025-1909/93/3908/1029$01.25
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The genesis of modeling price changes or asset returns
may be traced back to the original theory of speculation
by Bachelier (1990) based on the normal distribution.
However, detailed study of empirical distributions by
Mandelbrot (1962, 1967) and Fama (1965) revealed
excess kurtosis in the data, thereby leading them to
abandon the normal theory and propose, with theoret-
ical considerations, the stable Paretian distributions.
These distributions are leptokurtic, possess domains of
attraction and are richer in parameters (four in number),
and are, hence, fairly flexible. The normal distribution
is a member of this family. Further, such distributions
generated interest since the stability of each stable dis-
tribution yielded the property that its “index of stability”
(shape parameter) remains the same regardless of the
scale (sampling interval) adopted—a characteristic felt
to be desirable and expected to be possessed by the
relevant data.

Though some empirical evidence was found for such
models, further recent theoretical empirical studies ex-
ploring the “stability” of the stable Paretian distribution
revealed that (i) the rate of convergence to the stable
law may be too slow to be useful in practice (Du
Mouchel 1973) and (ii) the characteristic exponent does
not, as it should, remain constant with the change in
the sampling period. This contradicted directly the basic
property of stable distributions and sparked further re-
search. DuMouchel (1973) and Bonness et al., (1974)

1029



RACHEV AND SENGUPTA
Laplace-Weibull Mixtures for Modeling Price Changes

suggested mixture distributions as alternative fat-tailed,
or distributions to explain the observed excess kurtosis.
These, however, were not based on probabilistic
schemes, i.e., they were not justified to evolve as limiting
distributions (say, via the central limit theorems) as is
the usual desirable physical interpretation for most
models proposed for the real world context. For further
discussion and extended review, the reader is referred
to Mittnik and Rachev (1992).

These led us to look at two basic properties that a
probability distribution should possess if it is to model
the price changes. First, it should possess the “’stability”
property allowing for possibly different behavior in dif-
ferent segments of the data; i.e., it is able to model pro-
cesses that may, with some small probability, change
in each segment. In our context of price changes, such
segmentation may arise from, say, ““breaks’ caused by
unexpected major changes (e.g., catastrophes, wars,
etc.), which could with some small probability, occur
in any segment, causing a crash in the market. This
distribution should also incorporate possible distortions
within each period between two successive breaks,
caused by minor changes (e.g., spread of rumours,
mergers, filing of bankruptcy, etc.). The first necessitates
a model capable of incorporating random breaks, while
the second calls for its capability to incorporate “out-
liers.”” The random breaks can be related to the notion
underlying Clark’s (1973 ) subordinated stochastic pro-
cess model wherein the investment horizon is a random
variable. This gives rise to the geometric stable distri-
butions for which the study of domain of attraction,
which was pioneered by Robbins (1948), Gnednenko
and Fahim (1969). Explicit representation for its char-
acteristic function was obtained by Klebanov et al.
(1984). Next, the outliers can be handled by expanding
our model to mixture families. Further, note that, as
already mentioned above, mixture distributions have
also been found (DuMouchel 1973, Bonness et al. 1974)
to capture the excess kurtosis and fat-tailed character-
istics of the empirical data sets on common stock prices
remarkably well. These motivated us to propose con-
taminated geometric stable distributions and in partic-
ular the Laplace-Weibull mixture. The second important
property of a probability model, we believe, is its ro-
bustness. Since our models are mere approximations to
the real world, it is imperative that inference procedures
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should not be too sensitive to the exact distributional
assumptions; but rather, should hold for some *’close”
models as well. This statistical concept is translated to
the probabilistic requirement that our distribution pos-
sess a ““domain of attraction.” We show below that this
is indeed the case for our model. Further, we are able
to give estimates of such ““closeness.”” Finally, since suc-
cessive price charges do appear to be non i.i.d. random
variables, a legitimate concern is the i.i.d. approximation.
This could possibly necessitate a plot of the time series
to look at the autocorrelation function, i.e., a correlal-
ogram analysis. However, this i.i.d. approximation has
been, so far, universally adopted in practice based on
empirical evidence; but it lacks theoretical justification.
Here again, it is very reassuring to observe that recent
results (e.g., Bolthausen 1982, Gudynas 1985, Rack-
auskas 1990, Rachev and Ruschendorf 1991) establish
that geometric stable distributions arise by virtue of the
central limit theorem for dependent non i.i.d. random
variables, such as martingale differences which are ap-
plicable to our log differences for the price changes.
This precludes the necessity of any correlalogram anal-
ysis. Section 2 below gives further insights on and jus-
tifications for the specific choices of the mixture com-
ponents. Section 3 deals with the statistical inference
procedures for our model and §4 illustrates it with a
real data set.

2. A Contaminated Geometric
Stable Distribution—Motivations

and Justifications
Let X; denote the log difference in the prices of an asset
at the times #o + i and ¢, + (i — 1). Assume that X;, i
=1,2,..., M, are ii.d. random variables. Based on
stability considerations discussed above, we require that

X1 % an(XyoXae oo v o Xu) + b, (2.1)

where < denotes equality in distribution, a,, and b,, are
normalizing factors, - stands for the compounding
scheme—summation, multiplication, max, min, etc., and
M is a deterministic or random integer. However, in
each period we expect with probability p € (0, 1), the
occurrence of an event which dramatically alters the
characteristics of the underlying process as will be re-
flected through {X;}. Denote by T(p) the period in
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which such an event is expected to occur and thus M
=T(p). Alternatively, T(p) represents the random mo-
ment at which the crash in the price changes occurs.
T(p) is assumed to be independent of { X; } . Prices, and
thus price changes, up to M and after M will reflect the
influence of the crash, and hence, may possibly be gov-
erned by a different probabilistic process. Thus, the sta-
bility properties of X; are only preserved up to period
T(p), the moment of the crash. T(p) is assumed to fol-
low a geometric distribution, i.e.,

P[T(p)=kl=(1-p)'p, k=1,2,.... (2.2)

The choice of the geometric distribution stems naturally
from physical considerations that the underlying phe-
nomenon governing the price changes is not affected
drastically till the occurrence of a disaster, or until its
“waiting time”’ is over. Further, analytically, it can be
shown (Melamed 1988) that the solution of (1.1) leads
to a family of probability distributions for M, which are
either simple versions of the geometric distribution in
(2.2), or are constants.

DEFINITION. The random variable Y, with distri-
bution function (d.f.) G, is said to be geometrically sta-
ble, if there exists a sequence of independent, identically
distributed (i.i.d.) random variables X ¥, X, ., a
geometric r.v. T(p), P {T(p) =k} =pg*', k=12,
....,q=1-p,0<p <1, independent of X’s, and
constants 4 = a(p) > 0 and b = b(p) € R such that

T(p)

ap) S (XD +b(p)>Y, as p—>0. (2.3)

PROPOSITION. (MITTNIK AND RACHEV 1991). A non-
degenerate d.f. G is geometric stable with index a € (0,
2] if and only if its characteristic function (ch.f.) f, has
the form

1

fo(0) = T ad)

IER, (2.4)

where ¢(0) is a ch.f. of some a-stable distribution, i.e.,
there exist 8 € [—1, 1], ¢ = 0, and 6 € R such that

fo(0) = (1 + ca|t|a(1 — i3 sign(¢)tan L;) + iBt)_l,

if a#1, or (2.5)
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2 -1/2
fo(0) = (1 + cltl(l + iﬂ;sign(t)lnltl) + iBt)

if a=1. (2.6)

ResuULT 2.1. In terms of Robbins’s mixtures (a ter-
minology accepted by the Soviet authors) the represen-
tation (2.4) can be rewritten as

fo(0) = J;w ¢(0)e*dz, OER,

where ¢ is a ch.f. of an «a-stable law; that is, the distri-
bution of a-geometric stable random variables is an ex-
ponential scaled mixture of a-stable laws. O
According to (2.4) and (2.5), in the geometric stable
case the role of the normal distribution (stable with pa-
rameter o = 2) is played by the Laplace distribution
(geometric stable with parameter « = 2) with density

g(t) = (2N lexp{—A[t|}, tER. (2.7)

On the other hand, the Weibull distribution is ““double
stable.” It arises as the limit distribution of two com-
pounding probabilistic schemes in (2.1)—the geometric
random summation and minimum scheme for i.i.d.
r.v.’s, i.e.,

REsULT 2.2. (MITTNIK AND RACHEV 1991, PROPOSI-
TION 4.6). If X;, X;, + + - are ii.d. r.v.’s with Weibull
distribution with parameters A, then

nV/e Min X, £ X,, n=1,2,...;
1<i<n
T(p) 4
p 2 Xi=X{=X{, 0<p<1l (28)

i=1

Further, empirical studies including those by Mittnik
and Rachev (1992) over a variety of probabilistic com-
pounding schemes (which generalize and include the
Paretian stable summation scheme of Mandelbrot) with
data on daily stock changes, S & P 500 index, revealed
that the double Weibull distribution dominates all other
alternative stable distributions. Thus, the double ex-
ponential and double Weibull distributions are both
strong candidates for modeling price change data. Since
we would like to incorporate outliers, which could ex-
hibit possibly multimodal distributions, theoretically a
mixture distribution is a reasonable choice. We also recall
that, empirically also, as observed by Bonness et al.
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(1974), mixture distributions can remarkably improve
the fit to the data rather than a single component dis-
tribution. Finally, in comparison to stable distributions,
DuMouchel (1973) had some success by working with
a mixture of a stable Paretian distribution and a normal
distribution. In this spirit, we recall that for our geo-
metric summation scheme, the role of the normal dis-
tribution is played by the double exponential while that
of the stable Paretian distribution may be played by the
Weibull distribution. Thus, we believe that a Laplace-
Weibull mixture is well motivated from both physical
(empirical) evidence and probabilistic ( theoretical ) jus-
tifications as a reasonable choice to model price changes.
(In fact, as alluded to by Mittnik and Rachev (1991) in
their conclusions, §8, such mixtures may even be ca-
pable of modeling data not only up to the occurrence
of the crash but possibly for data over both volatile and
calm periods, the mixing proportion now not necessarily
being quite small as is usually the case for modeling
data with outliers.) That is, we take the contaminated
geometric stable distribution to model the price changes
as the contaminated Laplace distribution,

A(x) = TA(X) + (x) + (1 — m)w(x), 0<m<]1,

(2.9)

where A is the Laplace (double exponential) d.f. with
parameter A > 0, W is a symmetric (double) Weibull
distribution with parameters 4 > 0 and v > 1, and all
parameters are unknown. Note that A,( x) can resemble
unimodal (as = — 1), bimodal (as = = 0) or multimodal
(for different combinations of the parameters) distri-
butions. This flexibility is quite appealing in its capability
to model data of such general structure.

Suppose X, ..., X represent the daily price
changes until the “disastrous” geometric moment T
= T(p). Clearly p € (0, 1) represents the probability of
a disastrous event in each day. Assume that X V’s are
i.i.d. with distribution A, . Consider the total normalized
change Vp 2L, X ® and let us compare it with the La-
place distribution. Theorem 2.2(c) in Rachev and
SenGupta (1991) provides us with a bound of the de-
viation between the distribution of V; > X®and X
= Fy in terms of the Khinchin metric

X(X,Y)=sup

x=0

J;w (Fx(x) — Fy(x))dx|.
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RESULT 2.3. Let the means and the variances of X ()
and U match. Then,

x(v—p§x<f>,u)
v r/2-1x 1 _>: f—l
s(l—w)[\/-;;x+qp/ K,r(r_l)(Z)

X (T(1 + 1/5))ﬂ], (2.10)

where

X := sup

fxw (A(t) — W (1)) dt‘

and
+oo
K= rf [x|""V|A(x) — W(x)]| dx.
One could use the Khinchin metric to obtain bounds
similar to (2.10) for the mixture case.
ResuLT 2.4. Let Fyw = wFy + (1 — w)Fy where U is
geometric stable with index « € (0, 1). Then
T
X(p‘/“ > X0, LI) <p M1 —m)x(V, U). (2.11)
i=1

This follows by the “ideality” of X (see Rachev 1991,
Chapter 14 for the properties of ideal metrics). Analo-
gously one treats the cases 1 < o < 2 and o = 2. See
Rachev and SenGupta (1991) for details.

3. Statistical Inference for the
Mixture Model

3.1. Estimation of the Parameters
The proposed mixture model of (2.1) is,

plx;m A, v)=p(x; ¢)
=afi(x; N) + (1 = 7) fa(%; )
where
fi(x; \) = (A/2) exp(—A|x]), A\ >0, and
fa(xi w v) = (vu/2) 1 x| exp(—plx]"),

y>1L,u>00=<w=<1 (3.1)

.MANAGEMENT SCIENCE/Vol. 39, No. 8, August 1993
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Suppose a random sample X, . . ., X, is observed from
the above distribution. There does not exist any non-
trivial sufficient statistic for gf Also, since f,(+) is not a
member of the exponential family, Hasselblad’s (1969)
approach of obtaining the maximum likelihood esti-
mator cannot be used. However, the general E-M al-
gorithm, as presented by Dempster, Laird and Rubin
(1977) can be used. The resulting estimating equations
at the (m + 1)st stage are

" =0 T ey ™),
i=1
j=1,2, m=xnmm=1—m,
wi(P ™) = " f(x5) /p(x P ™), (3.2)
/A = (nr ™) Y wi(¢ ™) x|, (3.3)

/5D — [z wf2(¢<m>)ln|x,~|]

I: |xi|7(m+1)

(m+1)y—1 ] _
> wi (¥ M™)| x|y "D —(nm2 ) ] =0, (3.4)

n
1)y —
1/#(m+1) — (n7r(2m+ )) 1 z wiz(lf(m))|xi|’)’('")~
1

(3.5)

Note that, as is usually done in solving the likelihood
equations for the parameters of a Weibull distribution,
we have written (3.4) in terms of y "*") as the only
unknown parameter at the (m + 1)st stage. An iterative
method is then employed to solve for vy ™*". Once
v (") is obtained, ™" can be obtained easily from
(3.5). Hence at each stage, we need to iteratively solve
for v and (). This procedure will be as easy or as
difficult as one would face in obtaining the MLE’s of
the parameters of a Weibull distribution. Further, one
can study the convergence of this algorithm using the
general theory provided by Wu (1980). Of course, one
would expect to face computational difficulties for val-
ues of v which are known to create problems in ob-
taining the MLE’s of a Weibull distribution. As in the
general case, statistical properties, e.g., consistency, ef-
ficiency, etc. of these estimators are unknown. We plan
to study this aspect in the future.

3.2. Tests for No Mixture
In model (3.1), the Laplace density fi(x; \) is to be

understood as the main underlying density with the -

MANAGEMENT SCIENCE/Vol. 39, No. 8, August 1993

Weibull density f,(x; u, 7v) a possible contaminant. We
want to test Hy: No mixture (i.e., p = f;) against H;:
Mixture distribution for X. The test needs to be derived
depending on whether one of the crucial parameters =
€ [0, 1] and v = 1 can be considered as a nuisance
parameter or if both need to be represented in the para-
metric formulation of Hy. This leads to interesting and
diverse situations. Also we consider exhaustively the
four possible cases for A and y; (i) A and p both known,
(ii) u = po known, X unknown, (iii) A = Ay unknown,
p unknown, and (iv) A and u both unknown. A variety
of tests are presented below.

Case 1. v = 99 > 1 known. For all the cases (i)-
(iv), Hy and H, above reduce to Hy;: # = 1 and Hy: 7
< 1 respectively.

(i) Let 4 = po and A = Ay be known. Considering
appropriate one-sided derivative (see, e.g., Durirajan
and Kale 1983) the locally most powerful (LMP) test
given by,

o 3 i ¥)
on

i=1 w=1

> Co

reduces to

w T*= 2 {(vo— 1)In|x]|

i=1
— ol x|+ Aol x|}/ Vi > C. (3.6)

Note that T* is easy to compute and is asymptotically
normally distributed under both Hy and H;.

(ii) Though A is a nuisance parameter, unfortunately
here and also for (iii) below, no reduction is available
through similarity or invariance. There does not even
exist any nontrivial sufficient statistic. Nevertheless, it
can be shown that all the five conditions for the validity
of Neyman'’s (1959) C, test hold, provided y < K < 0.
Let

* al?’lp(x,', \b) _ alnp(xi/ \0)
=12, 2= ]

(3.7)

=1

Unfortunately, since X and = are not orthogonal, a9,
the regression coefficient of the first term on the second
does not vanish.

Define Z * = T*/ 5o(T*), where oo(T*) is the standard
deviation of T* computed under H,, and T* and
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00(T*) are computed by replacing the unknown pa-
rameter A in T* and o, by its any root-n consistent es-
timator, e.g., the maximum likelihood estimator, under
H,. Then, the test becomes,

w Z*> Cy. (3.8)

For any sequence n* = {,} such that 7, Vn — 1, the
asymptotic value of the power of the test is given by

Ta

1- (I/VE;)J‘_ exp{—(t — ao7)?/2} dt.

Among all tests Z }* for Hy: m = 1 with asymptotic level
of significance «, for whatever sequence of alternatives
m, > 0 with 7w, > 7, = 1, and whatever fixed A > 0,

lim[Power {Z ¥(,, \)} — Power{Z }*(m,, \)}] = 0.

The test Z} is in this sense an asymptotically locally
most powerful test.

(iii) Since the nuisance parameter u is present only
under H,;, the Neyman's C, test fails to be applicable
here—the requirement of a root-n consistent estimator
of p under Hy; is meaningless. Consider however T*
from (i) and rewrite it as T*(uo). Let T*(u) be stan-
dardized such that S(u) = {T*w) — E(T*w)]/
[Var(T*(w))]*/? has asymptotically a standard normal
distribution under Hy;. We rejected Hy; for large values
of S(uo). Assume that 4 € [L, U]. Then S(u) is contin-
uous on [L, U] with a continuous derivative (except
possibly for a finite number of jumps in the derivative)
and forms a Gaussian process. Hence, from Davis (1977,
1987) we reject Hy for large values of

M =sup{S(u): L=pu<U}. (3.9)
To obtain the cut-off points, we use the bound

P{supS(p)>c:L=pu=<U}

1 u
< ¢(—c) + exp(—acz)ﬁ {—pu(w)}'/?du/2n
where ¢ denotes the cumulative normal distribu-
tion function, py;(n) = [0*0(¢, w)/3b>ly=u, p(®, W)

= corr {S(¢), S(u)}. An estimate of the significance
probability is given by

B(—M)+V exp(— %Mz)/(&r)l/z,

1034

where M denotes the maximum of S(u) and V the total
variation,

v= [ 1T

= 5(m) = S(L)]

+ 2 1S(siv1) = S(ui) + [S(U) = S(ra)l,
i=1
T(p) = 3S(un)/Ou, with pq, ..., py (1 < 00) being the
successive turning points of S(u).

(iv) No statistical test is known for this situation. We
propose to combine the approaches of (ii) and (iii)
above. Consider from (ii), the C,-test statistic T*
= T*(yo, to, A). Let S*(u) = T*(7yo, n, \) we can now
proceed exactly as in (iii) above with S(u) replaced
by 5*(u).

Case 2. =& (0, 1) known. Hy and H; reduce to Hy,:
v = 1and Hy: v > 1 provided A = u. Thus knowledge
of A or/and p needs to be incorporated in the hy-
potheses.

(i) Here the common value of A = p is known, say
equal to 1. Then Hy, reduces to H Ly =1
o 3 pxi, ¥)

> ¢y i.e.,
i=1 dy

v=1

w:T1Ezl’1|xi|(l— |x,|)>C

i=1

(3.10)

T is simple in form and it is easy to simulate its null
distribution to get the percentage points. Further,
T/ Vn is asymptotically normally distributed under both
Hy and H,.

(i) p = poknown, A unknown and (iii) A = Ao known,
p unknown. Hy now becomes the multiparameter hy-
pothesis H3, (H32): v = 1, A = o (4 = Xo). An optimal
multiparameter test can be obtained by using the locally
most mean powerful unbiased (LMMPU) test derived
by SenGupta and Vermeire (1986). The test is given
by

2
w: T =2 Ly(x, ¥o) — cL(x, ¥o)

2
— 2 ali(x, %) = 0, (3.11)

MANAGEMENT SCIENCE/Vol. 39, No. 8, August 1993
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where L= [ p(x;, ¥), ¥ = (v, N), Yo = (1, wo) for
case (ii) and (1, X,) for case (iii) and ¢, ¢, and ¢, are to
be determined from,

(1) J,L(x, ¥0) = @ and
(2) [, Li(x, %) =0,t=1,2.

Note that Vn T, can be explicitly computed and, fur-
ther, is asymptotically normally distributed under both
Hy and H;. This test is locally optimal for all sample
sizes in the sense that among all locally unbiased tests
it maximizes at y,, the mean curvature of the power
hypersurface. Further, this LMMPU test ¢ possesses the
property that for any other locally unbiased test ¢*, there
exists an 7, > 0 (depending on ¢*) such that

[ewravs | sowrav,

r<ty, S, ={¢: Y=l <r};

where §3; is the power function of the test £. One could
also use other multiparameter tests for testing simul-
taneously the hypotheses vy = 1 and p = A (A = w);
e.g., a step-down test could be used. However, the exact
level of significance then is not known; any optimality
property of such a test is also not known.

(iv) Both A and u are unknown. Hy now becomes
Hg: v = 1, p = \, which is a composite hypothesis;
and, hence, the previous optimal LMP test can no longer
be used. Standard multiparameter large sample tests
(e.g., the likelihood ratio, Wald’s or Rao'’s tests, which
are all asymptotically equivalent), can be explored.
However, the test statistics need not have closed forms.
For example, for the likelihood ratio test, even the max-
imum likelihood estimator of p is not available in a
closed form.

Case 3. Both 7 and vy are unknown, but = € [L, U]
C (0, 1). The testing problem is still identifiable and H,
reduces to Hos: v = 1, provided A = u. This is exactly
the same situation as in Case 2 above with = being an
additional nuisance parameter. Thus, the same ap-
proaches as for Case 2 (i)-(iv) can be used here with
the modification described in Case 1 (iii) now applied
to 7. For example, T and T, of (3.9) and (3.10), which
now become functions of the unknown , should be
respectively replaced by

MANAGEMENT SCIENCE/Vol. 39, No. 8, August 1993

Si=sup{S(r):L<w<U} and
S, =sup{Sy(w):L<n < U}

where S;(7) and S,(w) are standardized versions of
T1(w) and T, () respectively.

Case 4. Both 7 and v are unknown, = € [0, 1].

(i)(a). Suppose v > 1 but v is otherwise unknown.
This greatly simplifies the situation. Further, let H,
specify Ho: p = f1(Xo), Ao given, i.e, Hy= Hyg: 7 = 1,
A = Xo. This reduces to a case of “strongly identifiable”
mixtures and is much easier to handle, e.g., one may
use the likelihood ratio test to test the single hypothesis
H},. However, even under this special case, the classical
distribution theory of the log likelihood ratio statistic
does not hold. We no longer have asymptotically a x*
distribution. Rather, as demonstrated by Ghosh and Sen
(1985), the likelihood ratio statistic is distributed as a
certain functional W ?I;y.o,, where W = sup{ T(, v) }
and T(-) is a Gaussian process with zero mean and
covariance kernel depending on the true value A\ under
Hy. If u = uo is known, we simply replace T(u, v) by
T(mo, 7).

(i)(b). Suppose A = u but the common value is un-
known. This results in greatly simplifying the situation.
H, reduces to

Hy = Hoy = HY" UHLY U (HXY N HLP)

where we have Ho4 7 =1and Hl(z). = 1. Note that

Hoi" and Hpi? can be tested by sultably modifying the
methods already discussed above, since the value of A
(and hence u = \) can be estimated under Hoy" and
Ho? easily; while the nuisance parameter A(7) may be
dealt with as in Case 1(iv). However, we also now
need to test H 021) NH (l)f), i.e., to test the multiparameter
composite hypotheses 7 = 1 and y = 1 with the nuisance
parameter A = u. This calls for a multiparameter gen-
eralization of Neyman'’s C, test and one such general-
ization due to Biiehler and Puri (1966 ) can be exploited
here.

(ii) and (iii). Both these situations require modifica-
tions of Hoi" and can be dealt with by the same ap-
proach. For (ii) ((iii)) we have Hoy” (Hps)): v = 1, A
= po (4 = No). Setting 7 to be known, the LMMPU test
for this hypothesis can be derived. This can then be
used to construct T*(w) from which the test can be ob-
tained as in Case 1(iii).
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(iv). All parameters =, v, p and X are unknown and
no constraint (assumption) is imposed on the usual pa-
rameter space. We now face the problem of noniden-
tifiability. H, is represented by H, = Hg,: H o
U Hol? U (Hos” N Hgs?) where we have Hpg: 7 = 1
and Hgf): v = 1 and u = A. Since under Hél), both v
and p appear as nuisance parameters only under the
alternative, we need a multiparameter generalization of
the results of Davies (1977, 1987) to construct a statistic
from, say S(v, p) as a generalization of S(u) of Case
1(iii) above. Note that Hoj" specifies the parameter
value on the boundary and hence (see Chernoff 1954)
classical asymptotic theory for likelihood ratio statistic
will not work. Further, complications also exist with the
likelihood ratio test for H 3;2). In even a simpler case
withnormalmixtures, Hartigan(1985 )demonstratedthat
L, = oo in probability as n = oo, where L, was the
corresponding likelihood ratio statistic. Note that Hj,
may be viewed as an ““Intersection-Union” test, in con-
trast to the usual Union-Intersection test in multivariate
analysis. Whereas some results on optimal properties,
e.g., Bahadur optimality, of usual Union-Intersection
tests or pooled tests are known, we are unaware of any
optimality property of the Intersection-Union test.

We propose here a simple ad hoc test based on the
pivotal parametric product (P?),

PP=(r—D{(v— 1>+ (=N}

Observe that Hg, holds if and only if P? = 0 and under
the alternative H; we have P® < 0. We propose rejecting
H, (=H},) for small values of P* where P° is obtained
from P? by replacing the parameters by their consistent
estimators (in case efficient estimators are not easily
available). The cut-off points need to be obtained by
simulation. In many cases, tests based on P*s are L-

Table 1 E-M Estimates of the Parameters of (3.1)
for Certain Apartments. in Paris
¥ € ¥ ¢ ¥
p 0.01 0.85 0.001 0.852
¥ 0.01 5.00 0.001 5.070
A 0.10 8.0 0.01 7.97
I 0.10 45.0 0.01 45.39
n=170 n=173
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optimal (e.g., see SenGupta 1991). We have, however,
not been yet able to establish this property for the test
in the Laplace-Weibull mixture here.

4. Application

Here, we use (3.1) to model price changes for real estate
data from Paris. The usefulness of Laplace and Weibull
distributions to model commaodity prices / price changes
has been exemplified in §§1 and 2. Further, the mixture
model seems to be an appropriate choice since the con-
tamination may arise from the possible (small) change
in the corresponding buyers /investors population due
to immigration or emigration. Mixture distributions have
been previously used in the context of housing prices
by Quandt (1972) (see also Quandt and Ramsey 1978).
The average price for one-bedroom apartments in Paris
for each month of the period 1984-1989 were available.
Define x; = In(&, /&), where £, and £; are average
prices for one-bedroom apartments in consecutive

‘months, i =1, ..., 60. The E-M algorithm of §3.2 was

employed. In Table 1 we present the estimates of the
parameters, number of iterations () needed for con-
vergence and ¢, the preassigned value such that the it-
eration terminates if the absolute difference between
two successive estimates is smaller than this value. We
used several different sets of starting values but in all
the cases the algorithm converged to almost the same
estimates. We next simulated 60 observations from (3.1)
with the parameters being assigned the values of the
corresponding estimators for n = 173. The Q—Q plot
(Figure 1) exhibited almost a straight line and the quan-
tile plots for the two data sets, observed and simulated,
were fairly close.
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