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Abstract—oOften one is interested in identifying whether the financial market for a commodity has
entered a “bullish” or a “bearish” characteristic. Stable or, more commonly, a-stable distributions,
have been enhanced as a popular model for stock prices. and such change in characteristics may be
related to the parameter(s) of these underlying distributions. This paper deals with discrimination
between two stable distributions, or in turn, with classification of a new observation into one of
two stable distributions. In case the parameters are unknown, we need training samples, one each
from the two populations, which are utilized to provide necessary estimates. When the two index
parameters, as, can be held to be identical, but may be still unknown, we propose a quantile-based
classification rule by exploiting a convolution type property and some results on the tail behavior of
stable distributions. Fisher type rules are described for the general case. Details of the computer
programs with necessary source codes are provided to enable the user to implement our rules for
real-life data sets. An example based on a real-life data set provided to us by Rachev is also given.
(© 2001 Elsevier Science Ltd. All rights reserved.

Keywords—a-stable distribution, Apparent error rate. Classification rule, Quantile-based dis-
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1. INTRODUCTION AND SUMMARY

We consider the problem of classification of an observation from one of two strictly a-stable
populations (o # 1) with unknown parameters, based on training samples, one each from the
two populations. The case of equal as is first considered in Section 2. A simple and elegant
quantile-based rule is constructed by exploiting a well-known property of the difference of two
stable random variables and also by using a closed form expression for the tail probability of
a stable distribution. Such rules are often needed in practice, e.g., to identify, based on a new
observation, whether the financial market for a commodity has entered a “bullish” or a “bearish”
characteristic, as has been classified, and thus, the corresponding parameters also determined, by
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the training samples from such populations provided earlier. A detailed analysis, including error
rates, of an illustrative example based on a real-life data set provided to us by Rachev is given in
Section 3. In Section 4, we describe Fisher type rules for the general situation. Section 5 briefly
describes the computational support called for. Details of the computer programs with necessary
source codes are provided in the Appendix to facilitate the implementation of our proposed rules
in practice. Further details and the smaller subroutines not included here, if needed, may be
available to the interested readers from the authors.

We believe that this work is the very first one on statistical classification for stable distributions
and will pave the road for future research in this area by exposing interesting problems.

We require the following adaptations from results in {1].

THEOREM 1.1. For an a-stable (o # 1) random variable Y with admissible parameter quadruple
(e, B,7, ), there exists a unique representation such that

Y (8,7, %) £ 2V/Y (0, 8,0,1) + Ay, (1.1)

THEOREM 1.2. Let Y{a, 51,71, 1) and Y (o, 82,72, A2) be two independent a-stable random
variables. ThenY (o, 81,71, M) —Y (v, B2, Va, A2) is distributed as Y (¢, 3,7, ) where A = A1+ A,
A8 = A1f1 — A2f2, and Ay = A1y — Agye.

2. CONSTRUCTION OF THE CLASSIFICATION RULE

Let
dij =Y (a, B, vi, i) — Y, By,vg, Aj). (2.1)
Therefore,
dii = Y(Q,0,0,Q)\i), (22)
AiBi — A8 Nivi — Ay ) o
=Y a, , JA Ao ), . 2.3
s (a jvare vantie vens vanlEERutec) RENNNLE oF/ (2.3)

For @ # 1, the tail probability of a standard stable distribution at 0, F(0) has a closed form

Fo)=1- % (1 e K("‘>> . (2.4)

(84

expression; i.e.,

Let ¥;s be strictly stable. Let 8 = (A181 — A282)/ (A1 + Ag). Then by (2.2),
di; = (20,)"/*Y (,0,0,1), dij = (A1 + 22)*Y (o, (j - 1)8,0,1).

Therefore,
1
P(d“ > 0) - P(Y(Q,U,O,l) > 0) = 5

Let p;; = P(dy; > 0). Then

o, (2.5)

(1 +( -8 K—f?—) = Dij- (2.6)

P22 =

DO = D e

Note that p12 +p21 = 1.
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2.1. The Statistic G, ;

Let, for a given real r.v. Z, 1;z) be the indicator function of the event {Z > 0}. Let {Xu,
i =1,2; k =1,...,n;} be two samples from strictly a-stable distributions—with admissible
parameter quadruples (o, 3;,0,);), i = 1,2. Let Y be a new observation (unclassified) from one
of the two given populations. Define

n;

1
Gni=— Lix = Yga]- (2.7)
i k=1

The classification rule can now be formulated as follows:

1

1
if 5~ Gna1i < l§ — Gp,2| assign to Population 1, o.w. assign to Population 2.

A corresponding modification to account for inclusion probabilities is:

1 1
if 7y 3~ Gn1l < m 5~ Gn 2| assign to Population 1, o.w. assign to Population 2.

REMARK 2.1. At this point, although nothing can be said about nonstrictly stable distributions
in general, a few simple manipulations, with the integral representations of the distribution
functions of stable distributions as given by Zolotarev, show that the above procedure can be
applied to the nonstrictly stable distributions given by a < 1, 8 < 1, and @ > 1, i.e., the classes
for which pyg # 0.5.

2.2. The Distribution of the G, ;

From (2.7), we have that each indicator in the defining equation follows a binomial distribution,
taking the value 1 with probability p, where

p=F (1[X;1—Y]) s 1=1,2. (28)

Note that p takes one of the values p;;s.
The exact distribution is found out by considering the distribution of the number of X;;s that
are greater than Y.

Lz

P(n,Gni = k) = ( ; )pk(l -p)m 7, (2.9)
1 i - i i .
P(’Gn,i— 51 = ) = <7; ) (PFa-pm Tt -, k= [2] 45 (210)
3. A REAL LIFE EXAMPLE

3.1. Description of the Data Set

The original data set provided to us by Rachev (who should be contacted for any further details
of this data set) consisted of share prices of a certain category, over a period of time, which are
transformed by taking sequential differences of natural logarithms of each share price as is usually
done in econometric studies of price phenomena (see [2]). The justification for dividing the set
into two samples is on the basis of a “changepoint” from “bullish” to “bearish” tendencies.
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3.2. Construction of the Rule

A brief description of the SPLUS functions and program parts used is given below. Detailed
listings of these programs are available to the interested readers from the authors.

Total samples size is 614. nsampl gives the breakpoint at which the sample is partitioned.
This is set to be 320. prlog is the transformed data set which is created by taking the successive
differences of the log of the input vector of raw data.

f <- function(u,sam,nsam)
{q <- length(sam[sam > u})/nsam
q}

This actually gives the empirical tail probability at u based on sample sam. pl, p2 are esti-
mates of population inclusion probabilities.
fq <- function(x,d1,d2)

{q1 <- f(x,samp1,nsampl)
q2 <- f(x,samp2,nsamp2)
val <- (dil*abs(ql-0.5)) - (d2*abs(q2-0.5))
val}
The function fq actually constructs the rule which is of the form
r{z) =dl- (3.1)

%2(z) = 5

:

1
o3|

Figure 1 shows a comparison of the constructed rule with and without considering inclusion
probabilities. The lighter line shows without and the darker one shows the rule with inclusion
probabilities.

0.04 T T T T
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Figure 1. Plot of two rules.

Rough estimates were obtained by considering the upper extreme 1/10%" of each sample. Ap-
parent error rates (AERs) were obtained using esterr function. This function first computes
samplewise error estimates propl, prop2 and then combines them to obtain the combined sam-

ple AER (prop3).

3.3. Further Comparison Against Sample Homogeneity

Incorporating a C-routine supplied by Rachev [3] to estimate the parameter quadruples of a
stable distribution, a C-routine developed by the authors calculates the AER obtained from the
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rule constructed, and the corresponding parameter estimates for the assumed underlying stable
populations, given the choice of subsamples (input by the user).

Rachev’s estimator fails for certain ranges, for which however, the rule can still be constructed
but no comparisons can be made as to sample homogeneity. Incidentally, some of ghese regions
appear to give the lowest AERs.

Varying these subsample choices, we report the following: ¢ is the transformed “scale” factor
(Al of Zolotarev [1]) and § is the transformed “shift”, as in [3].

FIrST PAIR OF SUBSAMPLES.

subsample-1 lower limit = 288 (i.e., starting from data no. 288 of original set), upper limit =
429

subsample-2 lower limit = 430, upper limit = 500

error estimate for 15 sample = 0.414286, for 2"d sample = 0.528571, for combined sample =
0.312796.

parameter estimates for subsample-1

a = 1.694558, 8 = 0.227588, ¢ = 0.021124, § = —0.006073.

parameter estimates for subsample-2

a = 1.641819, 8 = —0.094336, ¢ = 0.017767, § = —0.002327.

SECOND PAIR OF SUBSAMPLES.

subsample-1 lower limit = 250, upper limit = 450

subsample-2 lower limit = 451, upper limit = 600

error estimate for 15 sample = 0.483221, for 2"d sample = 0.469799, for combined sample =
0.406877.

parameter estimates for subsample-1

a = 1.585061, 8 = —0.191576, ¢ = 0.017243, § = —0.003982.

parameter estimates for subsample-2

a = 1.637159, 8 = —0.270756, ¢ = 0.016563, § = 0.001094.

3.4. Conclusions

Shifting the breakpoint back from 320 to 200 reduces the AER to about 0.33, which combined
with the corresponding graphical comparison of the indices of the two subsamples indicates that
retrogression of the breakpoint reduces the index heterogeneity between the two groups, and
hence, the rule performs better.

6 T T T T
5 < 1st sample (1-320) ___
2nd sample (321-614) e
4 - .
—log(quantile)3 |- .
2 ~
1k .
A—// 1 1

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

4

Figure 2. Plot of — log(quantile} for two samples.
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REMARKS 3.1. The above analysis inherently assumes the homogeneity of the index parameters
of the two stable distributions. From a well-known result (see [4]), the negative of the log-tail
asymptotically goes to the index a of the underlying a-stable distribution. We exploit this result
to produce Figure 2, which shows a comparison of the log-tails of the two empirical distribution
functions. The lighter line shows the first sample, and the darker one shows the second sample.
The plot suggests the possibility of a difference in the indices of the two distributions, indicating
thereby that the initial breakpoint to separate the two samples from the original dataset is
not quite justified in taking the two samples to be homogeneous with respect to the index «.
For our example above, we have avoided this problem by judiciously selecting the breakpoint.
However, in other real-life problems, one may naturally encounter two differing index parameters.
A generalization (nontrivial) then of our above approach to cover such situations is, thus, of
practical necessity and importance—a problem we intend to take up for future research. An
alternative, however computationally involved, approach is given below.

4. FISHER TYPE DISCRIMINATION RULES

Since, in general, closed form expressions for the stable densities in terms of elementary func-
tions are not available, it is difficult to visualize density ratio type discriminant functions. How-
ever, Zolotarev [1] gives an analytical form containing definite integrals, which can be used as a
basis for constructing approximations to the actual density ratios. This method, though compu-
tation intensive, suffers from theoretical difficulties—notably, absence of conclusive results about
the existence of expectations of derivatives of log-densities of stable distributions.

From the computational viewpoint, using the generalized pseudo-maximum likelihood (GPML)
framework as developed by us (SenGupta and Roy [5]), one can also incorporate this density-ratio
in a logistic discrimination-type (SenGupta and Roy [6]) GPML framework.

4.1. Representation of Stable Densities
The following representations are from Zolotarev [1].

THEOREM 4.1. Let

e(a) =sgn(l — a), 6=20 K((f), and 6" = Osgnr.
Let
_ (sin(ma/2)(¢ + 6) a/(1-e) cos(m/2) ((a — 1)p + ab)
won) = (BEEE)
w1+ (39) T 1 T
U1(¢,ﬁ)—W-exp (5 (¢+ﬁ>tan 5 )

Then the densities of standard stable distributions can be written as follows.
(1) Ifae# 1, |18| £ 1, z #0, then

1/(a-1) 1

glz,a,8) = %——a[— : /4* Us (¢,8) exp (—]$|“/(a'l)Ua (@,9*)) dg. (4.1)

(2) Ifa=1,|8]#£0, Vz,

~a/p g1 /

9, 1,8) = S / Ui 0)exp (e (,) ) do. (4.2)

(3) Ifa#1,z=0, then
g(0,a,8) = lF (1 + 1 cos (1@—[—{(—@)>> . (4.3)

7 a «

(4) a =1, 8 = 0 corresponds to the Cauchy distribution.
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2. Construction of the Discrimination Rules
Let h($7 Qi, 1@17 Qg, :@2) = h(.’l?,g, g) = h(ﬂf),

_ g(:rvalvﬁl)
h(x) - g($7a2»/62)

o- () - (3)1- () oen

We first consider standard stable distributions and classify them into three major groups by
the form of their density representations under h(z) within these groups. Next, we replace the
integrals in the numerator and denominator by composite quadrature formulae, i.e., divide the
range of integration into several subintervals and apply a simple quadrature formula to each of
them.

If the underlying distributional parameters are already known, we simply substitute these
values in the computed ratios, or use estimated values of the parameters from the sample derived
from either empirical c.f.s or other methods.

Since the quadrature formulae occurring in the numerator and denominator can be computed
with arbitrary accuracy, we have a simple though computationally intensive method of discrimi-
nation in stable distributions. Thus, it only remains to present h(zx) explicitly.

Denote

(1) fora £ 1,2 40,18 <1,
Va(®) = Ua (9,6 exp (121" V04 (4,0M)) (4.4)

where —0* < ¢ < 1;

(2) fora=1,8+#0,Vaz,
Vi(9) = Ur(@, B) exp (—e~*/"Us (9, 9)) . (4.5)

We sometimes use the notation V, or V] for short, equivalently.
Denote ) .
ho@= [ Va@ds,  hp@= [ Vigds
—g* ~1
We now present h(z) explicitly. Note that several cases are possible.

(1) g#_]:.a .’L’%O, ’/Bll Sla |ﬁ2l S 17

il =~ 0al | e jer-n=as/tan-1) | Lepi (2)

as|l — ay] Ly, 05(x)’ ifz#0,
ha(z) = : (4.6)
F(1+41/01) cos({w/2) 6;) £ r =0
T(1 + 1/ay) cos((/2) 62)’ pr=a
(2) a=1,8+#0,Vz,
|521 e—=(1/B1—=1/B2) | I 11,8.1%) (z)
h 1=/ P2 .
2(z) = A T (@) (4.7)
(3) a1 #1, a2 =1, 81| <1, B2 #0,
a1lfe| Yia=1) | /B Lo, 0:(z) .
S e (45)
= (14 T6) — . itz=o
= 5m 1] ( + E;) CoS (—2— 1) 500 ifz=0. (4.9)

REMARKS 4.1. We observe that by using the form of the ratio of the densities, and estimating in
the usual GPML iterative schemes, we can arrive at estimators of stable parameter quadruples
as well as the rule simultaneously.
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5. PROGRAMS AND COMPUTATIONAL SUPPORT

Almost all the computer programs which have been developed for the specific purpose of
computational work required in this work has been written in C and compiled in TURBO C.
Apart from programs written in Turbo-C, the statistical package SPLUS (Windows Version 3.3)
has been used. Graphs have been drawn using GNUPLOT 2.2. The GNUPLOT programs here
have been designed to output LaTgX output which need to be included in a LaTEX document.
Commenting out the set terminal and set output options in the programs will generate screen
outputs.

A contents-list of the major programs used in this paper which may be used for implementation
of our rules in classification of other qualifying real-life data sets is given below. The programs
have been detailed with the appropriate source codes in the Appendix. Listing of supporting
smaller files called by these programs are available to the interested readers from the authors.

1. combinl.c combinl.c is a C-routine that incorporates the program to estimate stable
parameter quadruples as also the corresponding discrimination rule based on quantiles.

2. stabfig.c The C-program that generates tables for the GNUPLOT programs “stabl.inp”
and “stab2.inp” for stable discrimination.

3. stabl.inp GNUPLOT program to plot the two rules, i.e., with and without considering
inclusion probabilities.

4. stab2.inp GNUPLOT program to plot the estimated log-quantiles for the two subsamples.

6. FIGURES

The figures shown here were all drawn using GNUPLOT programs which can be used to pro-
duce LaTgX files. The first plot compares the quantile-based rules with and without considering
inclusion probabilities. The second plot shows that the initial breakpoint to separate the two sam-
ples from the original dataset is not quite justified in taking the two samples to be homogeneous
with respect to the index or a.

APPENDIX

combinl.c

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<time.h>

main(argc,argv)
int argc;
char *argv[];
{ FILE *datfile;
double *stk, *stock,*samp[2],*rnstab,q[2];
double *param,*prop,*est_par,ind,x,val,*test_smp[2];
float temp;
int i,j,k,count,cnt,lim,range;
int *limits[2],length;
char *data;
void estimate(int smp_no, double *stk,int range,
double *est_par);

void stabgen(double *rnstab,double *par,int length);

void error._calc(double *samp(2],
double *test({2],int *limits{2],
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int *1limits1[2], double *prop, double *param);

void err.print(int argc,char *argv[],double *prop,
int *limits(2]);

void est_print(int argc,char *argv[],
double *est_par,int j);

double absol(double x, double y);
double square(double x, double y);

data = argv[1];
if (data == NULL)

{
printf("combin [datafile]l [outfile]\n");
exit (0);
}
datfile = fopen(data,"r");
if (datfile == NULL)
{
printf ("No such file exists. Try again.\n");
exit (0);
}
count=0;
while( fscanf(datfile,"%f",&temp) !'= EOF)
{count++;}
rewind(datfile);
stock = (double *)malloc(count*sizeof (double));
for(i=0;i<count;i++)
{ fscanf(datfile,"%f",&temp);
*(stock+i) = (double) temp;

}

printf ("\nTotal no. of data points in file = %d\n",count);
for(i=0;1<2;i++){

limits[i] = (int *)malloc(3*sizeof(int));

}

*1imits [0]=*1limits[1]=1;
*(1imits[0]+1)=+*(limits[1]+1)=count;

if(arge > 2)

{

printf("\nType 1-st sample starting lower limit\n");
scanf ("%d",&k) ;

*1imits[0]=k;

printf ("\nType 1-st sample end, upper limit\n");
scanf ("%d" ,&k) ;

*(limits[0]+1)=k;

printf ("\nType 2-nd sample starting lower limit\n");
scanf ("%d" ,&k) ;

*1limits[1]=k;

printf ("\nType 2-nd sample end, upper limit\n");
scanf ("%d",&k) ;

*(1imits[1]+1) =k;

}s

for(j=0;j<2;j++){
*(limits[j1+2)=+«(limits[j]+1)-*1limits[j];

samp[j] = (double *) malloc(*(limits[j]+2)*sizeof (double));
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}

for(j=0;j<2;j++)

{

for(i=0;i< *(1imits[j]+2);i++)

{ *(samp[jl+i)=log(*(stock+i+1+ *1limits[j]))
-log(*(stock+i+ *1limits[j1));}

}

fclose(datfile);

param = (double *)malloc(3*sizeof(double));
*param=0.5;

*(param+1)=1.0;

*(param+2)=1.0;

/* param pints to (0) - pivot value (default 0.5)
(1) - scale factor of 1-st component
(2) - scale factor of 2-nd componentx*/
prop= (double *)malloc(3*sizeof (double));
*(prop+2)=0.0;
error_calc(samp,samp,limits,limits,prop,param);
err_print(argc,argv,prop,limits);
est_par = (double *)malloc(4*sizeof(double));

for(j=0;3j<2;j++)

{

range=*(limits[j1+2);

stk=(double *)malloc(range*sizeof(double));

for(i=0;i<range;i++) {*(stk+i)=*(samp[jl+i);}
estimate(j,stk,range,est_par);
est_print(argc,argv,est_par,j);

free(stk) ;

length=range;

rnstab = (double *)malloc(length*sizeof (double));
stabgen(rnstab,est.par,length);
estimate(j+2,rnstab,length,est_par);

test_smp[j] = (double *)malloc(length*sizeof(double));
for(i=0;i<length;i++){*(test_smp[jl+i)=*(rnstab+i);}
free(rnstab);

est_print(argc,argv,est_par,j+2);

error_calc(samp,test_smp,limits,limits,prop,param);
err_print(argc,argv,prop,limits);

}

void err_print(int argc,char *argv([],double #*prop,
int *1limits[2])
{ FILE xoutfile;
printf("\n");

printf("error estimate for

1-st sample = %1f\n",*prop);

printf("error estimate for

2-nd sample = %1lf\n",*(prop+1));
printf("error estimate for

combined sample = %1f\n",*(prop+2));
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printf("sample_1 lower limit = %d\n",*limits[0]);
printf("sample_1 upper limit = %d\n",*(limits[0]+1));
printf("sample_2 lower limit = %d\n",*limits[1]);
printf("sample_2 upper limit = %d\n",*(limits{1]+1));

if (argc == 3)

{ outfile = fopen(argv([2],"a");
fprintf (outfile,"\n");
fprintf (outfile,"error estimate for

1-st sample = }1f\n",*prop);
fprintf(outfile,"error estimate for

2-nd sample = %1f\n",*(prop+1));
fprintf (outfile,"error estimate for

combined sample = %1lf\n",*(prop+2));
fprintf(outfile,"sample_1 lower limit

= %d\n",*limits[0]);

fprintf (outfile,"sample.1 upper limit

= %d\n",*(1imits{0]+1));

fprintf (outfile,"sample 2 lower limit

= Yd\n",*1limits[1]);

fprintf (outfile,"sample 2 upper limit

= %d\n",*(limits[1]+1));

fclose(outfile);

b

h

void est_print(int argc,char *argv[],

double *est_par,int j)

{FILE *outfile;

printf ("\n parameter estimates for sample_%d\n",j);
printf("alpha = %1f\n",*est_par);
printf("beta = %1f\n",*(est_par+1));

printf("c = Jlf\n",*(est_par+2));

printf("delta = %1f\n",*(est_par+3));

if (argec == 3)
{ outfile = fopen(argv[2],"a");
fprintf (outfile,"\n parameter estimates
for sample_%d\n",j);
fprintf (outfile,"alpha = %1f\n", *est_par);
fprintf (outfile,"beta = %1f\n",*(est_par+1));
fprintf (outfile,"c = %1f\n",*(est_par+2));
fprintf(outfile,"delta = %1f\n", *(est_par+3));
fclose(outfile);

}

}

void error_calc(double *samp[2],

double *test[2],int *1imits([2],

int *limits1{2],double *prop, double *param)
{int j,i,jj,ii,cnt,lim,lim1;

double q[2],x,ind,level=0.0,val;

double absol(double x, double y);

for(j=0;j<2;j++)
{

ind = (double) (1-(2%3));

1083
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cnt=0;lim=*(limitsi[j]1+2);
for(i=0;i<lim;i++)
{ x=*(test[jI1+i);

for(§3=0;33<2; 33+ {

qljjl1=0; liml=+(limits[jjl+2);
for(ii=0;ii<liml;ii++)
{if(x > *(samp[jjI+ii)){qljj] +=1.0;};

qljj] /= (double) limi;

}
val = absol(q[0],+*param)-absol{(q[1],*param);
if (ind* (val-level) > 0.0)
{cnt++; 15}
*(prop+j)= ((double) cnt)/((double) 1lim);
*(prop+2) += (double) cnt;

}

*(prop+2) /= (double) (*x(limits[0]+2)+ *(1limits[1]+2));
}

double absol(double x, double y)
{return(fabs(x-y));}

double square(double x, double y)
{return( (x-y)*(x-y));}

void stabgen(double *rnstab,double *par,int length)
{FILE *rstab;
int 1i;
double ul,u2,vl,v2,v3,w,phi,phil;
double kalpha,val,pi_by2,pi=3.14159;
pi_by2=pi/2.0;
randomize () ;
kalpha=*par;
if (kalpha > 1.0){kalpha -= 2.0;};
phiO=(~1.0)*pi by2* *(par+1) *kalpha/(*par);
rstab= fopen("stabvar","a");
if (xpar != 1.0)
{for(i=0;i<length;i++)
{
ul= rand();
ul /= (double) 32767;
u2= rand();
u2 /= (double) 32767;
w=(-1.0)*log(ul);
phi=pi*(u2-0.5);
val=+par *(phi-phi0);
vl = cos(phi-val)/w;
v2 = sin(val);
v3 = cos{phi);
val = exp( (log(vi*v3))/(xpar));
val /= vi; val *=v2;
val *= *(par+2);
val += *(par+3)/(x(par+2));
*(rnstab+i)=val;
fprintf(rstab,"\n *rnstab = }lf\n",*(rnstab+i));
}
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}s
if (¥par == 1.0)
{
for(i=0;i<length;i++)
{
ul= rand();
ul /= (double) 32767;
u2= rand();
u2/= (double) 32767;
w=(-1.0)*log(ul);
phi=pi*(u2-0.5);
v1=2.0% *(par+1)/pi;
v2= 1.0+(v1*phi);
*(rnstab+i)=(v2*tan(phi))-(vi*log(w*cos(phi) /v2));

}
}s
}

void estimate(int smpno, double *stk,
int range,double *est_par)
{ double x_95,x.75,x.50,x_25,x_05;
int i.95,1.75,1.60,1.25,1.05;
double na,nb,nc,nd,x;
float temp;
int i,j,k,count;
double a,b,c,d,*aa;
int mycompare(double *x, double *y);
double interpolate(double, double,
double,double,double);

void table.i(double x, double y, double *aa);
double table_2(double, double);
double table_3(double, double);

aa = (double *) malloc(2*sizeof (double));
count=range;
gsort(stk,count,sizeof (double) ,mycompare) ;
x = (double) (2.0*count*.05+1.0)%.5;
i_ 05 = (int) x;
x_05 = interpolate((double)i 05,*(stk+i_05-1),
(double)i 05+1,*(stk+i_05),x);
x = (double) (2.0%count*.25+1.0)%.5;
i_25 = (int) x;
x_25 = interpolate((double)i_25,*(stk+i_25-1),
(double)i_25+1,*(stk+i_25),x);
x = (double) (2.0*count*.5+1.0)*.5;
i_50 = (int) x;
x.60 = interpolate((double)i 50,*(stk+i_50-1),
(double)i_50+1,*(stk+i_50),x);
x = (double) (2.0*count*.75+1.0)%.5;
i_.75 = (int)x;
x.75 = interpolate((double)i 75,*(stk+i.75-1),
(double)i_75+1,*(stk+i_75) ,x);
x = (double) (2.0*count*.95+1.0)*.5;
i 95 = (int) x;
x_95 = interpolate((double)i_95,*(stk+i_95-1),
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(double)i_95+1,*(stk+i 95) ,x);
na = (x.95 - x.05)/(x.75 - x.25);

nb = (x_ 95 + x_05 - 2.0*x_50)/(x_95 - x_05);

table_1(na,nb,aa);

a=+aa; b=+(aa+l);

nc = table._2(a,b);

¢ = (x.75 - x.25)/nc;

nd = table.3(a,b);

d = x.50 + c*nd - bxc*tan(3.14159265%a/2.0);
printf("\n parameter estimates for sample_%d\n",smp.no);

printf("alpha = %1f\n",a);
printf("beta = %1f\n",b);
printf("c = 41f\n",c);

printf("delta
*@st_par=a;
*(est_par+1)=b;
*(est_par+2)=c;
*(est_par+3)=d;
}

int mycompare (double *x,double *y)

{

%1f\n",d);

if ( (*x - xy) > 0 ) {return(1);}
else {if ((*x -*y) <0) return (-1);};
return(0);
}
double interpolate(x1,yl,x2,y2,x)
double x1,y1,x2,y2,x;
{ double tmp;
tmp = y1 + (x- x1)*(y2 - y1)/(x2 - x1);
return(tmp);}

void table_1( double x, double y, double *aa)

{
int i,j,ptx=14,pt_y=6;
double a_1,a_2,b.1,b_2,a,b;

double data.1[] = {2.0 ,2.0 ,2.0 ,2.0 s

2.0 ,2.0 ,2.0 ,

1.916 ,1.924 ,1.924 ,1.924  ,1.924 ,1.924 ,1.924 ,
1.808 ,1.813 ,1.829 ,1.829 ,1.829 ,1.829 ,1.829 |,
1.729 ,1.730 ,1.737 ,1.745 ,1.745 ,1.745 ,1.745 ,
1.664 ,1.663 ,1.663 ,1.668 ,1.676 ,1.676 ,1.676 ,
1.663 ,1.560 ,1.5563 ,1.548 ,1.547 ,1.547 ,1.547 ,
1.484 ,1.480 ,1.471 ,1.460 ,1.448 ,1.438 ,1.438 ,
1.391 ,1.386 ,1.378 ,1.364 ,1.337 ,1.318 ,1.318 ,
1.279 ,1.273 ,1.266 ,1.250 ,1.210 ,1.184 ,1.150 ,
1.128 ,1.121 ,1.114 ,1.101 ,1.067 ,1.027 ,0.973 ,
1.029 ,1.021 ,1.014 ,1.004 ,0.974 ,0.935 , .874 |,
.896 , .892 .887 , .883 , .85 , .823 , .769 ,
.818 , .812 .806 , .801 , .780 , .756 , .691 ,
.698 , .695 .692 , .689 , .676 , .656 , .595 ,
.6593 , .590 .588 , .586 , .679 , .b63 , .513 };
double data_2[] = {0.0,2.160,1.0,1.0,1.0,1.0,1.0 ,

0.0,1.592,3.39,1.0,1.0,1.0,1.0 ,
0.0 , .759 ,1.8 ,1.0 ,1.0 ,1.0 ,1.0 ,
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0.0 , .482 ,1.048 ,1.694 ,1.0 , 1.0  ,1.0 R
0.0 , .360 , .76 ,1.232 ,2.229 ,1.0 ,1.0 ,
0.0 , .263 , .518 , .823 ,1.575 ,1.0 ,1.0 R
0.0 , 203 , .41 , .632 ,1.244 ,1.906 ,1.0 s
0.0 , -165 , .332 , 499 , .943 ,1.56 ,1.0 R
0.0 , .136 , .27t , -404 , .689 ,1.23 ,2.195 |,
0.0 , .109 , .216 , .323 , .639 , .827 ,1.917 ,
0.0 , 096 , .19 , -284 , .472 , .693 ,1.759 ,
0.0 , .082 , .163 , .243 , .412 , .601 ,1.596 ,
0.0 , .074 , 147 , 22 , .377 , .546 ,1.482 ,
0.0 , .064 , .128 , .191 , .33 , .478 ,1.362 ,
0.0 , .056 , .112 , 167 , .285 , .428 ,1.274 };

double nux[] = {2.439,2.5,2.6,2.7,2.8,3.0,3.2,
3.5,4.0,5.0,6.0,8.0,10.0,15.0,25.0};
double nu.y[] = {0.0,0.1,0.2,0.3,0.5,0.7,1.0};

if (x < 2.439)
{ a=2.0; b=y; return;}
else if ( fabs(y) > 1.0)

b = (y/fabs(y));
i=0;
while(i < 15)

if (x < nux[i])
{ ptx = i-1;
break;

it+; }
a = interpolate(nux[pt_x],data_1[7*pt _x+6],
nux[ptx +1],
data_1[7*pt_x+13],x);

return;
}
else
{ 1i=0;
while (i<15)
{
if (x < nuxI[i])
{
ptx = i-1;
break;
}
i++;
}
3=0;
while (j< 7)
{
if (fabs(y) < nu.y[jl)
{ pty=j-1;
break;
}
j++;
}

a_l=interpolate(nu x[pt_x],data_1[7*pt_x+pt_y],
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nu x[pt x+1] ,data_1[7*pt_x+pt._y+7] ,x);
a_2=interpolate(nu_x[pt_x],data_1[7*pt_x+pt_y+1],
nu_x[pt_x+1] ,data_1[7*pt_x+pt_y+8],x);
a=interpolate(nu_y[pt_y],a_1,nu_y(pt_y+1],a_2,fabs(y));
b.i=interpolate(nu_x[pt_x],data_2[7*pt_x+pt_y],
nux[pt_x+1i],data_2[7T*pt_x+pt.y+7] ,x);
b_2=interpolate(nu x{pt_x],data 2[7*pt_x+pt_y+1],
nu_x[pt_x+1] ,data 2[7*pt_x+pt_y+8],x);
b=interpolate(nu_y[pt_y],b.1,nu_y{pt_y+1],b_2,fabs(y));
if (b > 1.0) b =1.0;
b = (y/fabs(y))* b;
*aa=a; *(aa+1)=b;
13
double table 2(x,y)
double x,y;
{
int i,j,pt_x=15,pt_y=4;
double ncl,nc2,nc3;

double datal[] = {1.908 ,1.908 ,1.908 ,1.908 ,1.908
1.914 ,1.916 ,1.916 ,1.918 ,1.921 ,
1.921 ,1.922 ,1.927 ,1.936 ,1.947 ,
1.927 ,1.930 ,1.943 ,1.961 ,1.987 ,
1.933 ,1.940 ,1.962 ,1.997 ,2.043 ,
1.939 ,1.952 ,1.988 ,2.045 ,2.116 |,
1.946 ,1.967 ,2.022 ,2.106 ,2.211 ,
1.955 ,1.984 ,2.067 ,2.188 ,2.333 ,
1.965 ,2.007 ,2.1256 ,2.294 ,2.491 ,
1.980 ,2.040 ,2.205 ,2.435 ,2.696 ,
2.000 ,2.085 ,2.311 ,2.624 ,2.973 ,
2.04 ,2.149 ,2.461 ,2.88 ,3.356 |,
2.098 ,2.244 ,2.676 ,3.266 ,3.912 ,
2.189 ,2.392 ,3.004 ,3.844 ,4.775 ,
2.337 ,2.635 ,3.542 ,4.808 ,6.247 ,
2.588 ,3.073 ,4.534 ,6.636 ,9.144 };
double nu.af]= {2.0,1.9,1.8,1.7,1.6,1.5,1.4,1.3,1.2,

1.1,1.0,.9,.8,.7,.6,.5};
double nu.b[]= {0.0,0.25,0.5,0.75,1.0};
i=0;
while (i<16)
{ if( x > nu.alil)
{ ptx = i-1; break;
}
i++;
}
3=0;
while (j<5)
{
if ( fabs(y) < nub[jl)
{ pt_y=j-1;
break;
}
j++;
}
ncl =interpolate(nu.alpt_x],data[b*pt_x+pt_y],
nu_a[pt_x+1] ,data[5*pt_x+pt_y+5] ,x);
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nc2 =interpolate(nu.alpt.x],data[S*pt x+pt_y+1],
nu_a[pt.x+1] ,data[5*pt_x+pt_y+6] ,x);

nc3 =interpolate(nub[pt_y],ncl,nublpt_y+1],nc2,fabs(y));
return(nc3);}

double table_3(x,y)

double x,y;

{ int i,j,pta=15,ptb=4;

double ndi,nd2,nd3;

double dat[1={0.0 ,0.0
.017
.030
.043
.056
.066
.075
.084
.090
.095
.098
.099
.096
.089
.078
.061

.0,

’

QO OO0 O OO OOOCOOO OO0
o

-

,—.032

b

.061
.088
111
.134
.154
.173
.192
.208
.223
.237
.250
.262
.272
.279

.9,.8,.7,.6,.5};
double nub[}={0.0,0.25,0.50,0.75,1.00};

i=0;

while(i<16)

{

if( x > nualil)

{ pta
break

}

it++;

}

3=0;

]

i-1;

while(j<5)
{ if( fabs(y) < nub[jl)

{ ptb =j-1; break; }

j++;

]

}

,0.0

-.049
.092
.132
.170
.206
.241
.276
.310
.346
.383
.424
.469
.520
.581
.659

double nua(]={2.0,1.9,1.8,1.7,1.

,0.0
,-.064
,-.123
,-.179
,-.232
,-.283
,-.335
,-.390
,-.447
,-.508
,-.576
,-.652
,-.742
,-.853
,-.997
,-1.198

6,1.5,1.4,1.3,1.2,1.1,1.0,

ndl = interpolate(nualptal,dat[5*pta+ptb],
nua[pta+1] ,dat [S*pta+ptb+5],x);
nd2 = interpolate(nua(ptal,dat[6*pta+ptb+1],
nual[pta+i] ,dat [G*pta+ptb+6],x);

nd3 = interpolate(nub([ptb],ndi,nub[ptb+1],nd2,fabs(y));
nd3 = (y/fabs(y))*nd3;

return(nd3) ;

}

stabfig.c

#include<stdio.h>
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#include<math.h>
#include<stdlib.h>
#include<time.h>
#include"supdir.h"
#include"supdir.c”

main(int argc,char *argv([])
{ FILE *datfile,*outfilel,*outfile2,*outfile3;
double *stack,*stock,*samp[2];
double *param,x,val;
double temp,left,rt,h,xx;
int 1i,j,k,start,stop,count,cnt,len,range,*sampdim;
int x_lim;
char *data;
double rulel(double *samp[2],double x,double *par);
double rule2(double *samp[2],double x,double xpar);
void up.order(double *samp,int sampdim);
double gqtile(double *samp,double x,int sampdim) ;

data = argv[1];
if (data == NULL)
{
printf("combin [datafile] [outfile]l\n");
exit(0);
}
datfile = fopen(data,"r");
if (datfile == NULL)
{
printf("No such file exists. Try again.\n");
exit(0);

}

count=0;
while( fscanf(datfile,"/1f",&temp) != EOF)
{count++;}
rewind(datfile);
stock = v_alloc(count);
for(i=0;i<count;i++)
{ fscanf(datfile,"%1f",&temp);
*(stock+i) = log(temp);

}

printf ("\nTotal no. of data points in file = %d\n",count);

stack=v_alloc(count-1);

for(i=0;i<count-1;i++)
*(stack+i)=*(stock+i+1)-(*(stock+i));
free(stock);

sampdim=v_ialloc(2);
for(i=0;i<2;i++){
printf ("\nType %d-st sample starting lower limit\n",i+1);
scanf ("%d",&start);
printf("\nType %d-st sample end, upper limit\n",i+1);
scanf ("%d" ,&stop) ;
len=stop-start+i;
*(sampdim+i)=len;
samp[i]=v_alloc(len);
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for(j=0;j<len; j++) *(samp[i]+j)=*(stack+start-1+j);
}

fclose(datfile);

up.order (samp (0] , *sampdim) ;

up-order (samp{1] ,*(sampdim+1)) ;

for (i=0;i<*sampdim;i++)

printf("\nsamp[0] +%d =%1f\n",i,*(samp[0]+i));

left= *samp([0] > *samp(1] ? *samp(0] : *sampf1];

rt= *(samp[0]+(*sampdim)-1) < *(samp[1]+(*(sampdim+1))-1) 7
*(samp [0] +(*#sampdim)-1) : *(samp[1]+(*(sampdim+1))-1);
printf("\nleft = %1f, rt = %lf\n",left,rt);

param=v_alloc(2);

xparam = (double) *sampdim;
*(param+1)=(double) *(sampdim+1);

x_1im=50;

h=(rt-left)/((double)x_lim);

xx=left;
outfilel=fopen("stploti.dat","w");

for(i=0;i<x_lim;i++)

{

fprintf (outfilei,"%1f %1f %1f\n",xx,rulel(samp,xx,param),
rule2(samp,xx,param)) ;

Xx+=h;

}
outfile2=fopen("stplot2.dat","w");
for(i=0;i<*sampdim-1;i++)

xx=+(samp [0] +1) ;
fprintf (outfile2,"%1f %1f\n",xx,-log(qtile(samp[0],xx,*sampdim)));

}

outfile3=fopen("stplot3.dat","w");
for(i=0;i<*(sampdim+1)-1;i++)

{

xx=+(samp[1]+1);

fprintf (outfile3,"%1f %1f\n",xx,-log(qtile(samp[1],xx,*(sampdim+1))));
1

double rulel(double *samp[2],double x,double *par)
{

int i,n1,n2;

double val,npi,np2,n;
ni=(int) (*par);

n2=(int) (*(par+1));

= (*(par+1))+(*par);
npi=np2=0.0;

for(i=0;i<nl;i++)
npl += *(samp[0]+i) >x 7 1.0 : 0.0;
for(i=0;i<n2;i++)

np2 += *(samp[1]+i) >x ? 1.0 : 0.0;
npl /=n;

np2 /=n;
val=fabs(np2-0.5)-fabs(npi~0.5);
return(val) ;

}
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double rule2(double *samp[2],double x,double *par)
{

int i,n1,n2;

double val,npl,np2,n,pil,pi2;

ni=(int) (*par);
n2=(int) (*(par+1));
n= (*(par+1))+(*par);
pil= *par/m;
pi2=*(par+1)/n;

npl=np2=0.0;

for(i=0;i<nl;i++)

npl += *(samp[0]+i) >x ? 1.0 : 0.0;
for(i=0;i<n2;i++)

np2 += *(samp[1]+i) >x ? 1.0 : 0.0;

npl /=n;

np2 /=n;
val=(pi2*fabs(np2-0.5))-(pil*fabs(np1-0.5));
return(val);

}

double qtile(double *samp,double x,int sampdim)
{

int i;

double val=0.0;

for(i=0;i<sampdim;i++)

val += *(samp+i) >x ? 1.0 : 0.0;

val /=(double)sampdim;

return(val);

}

void up_order(double *samp,int sampdim)

{

int i,j,k;

double temp;

for(i=0;i<sampdim;i++)

{for(j=i+1;j<sampdim; j++)

{if (*(samp+j) < *(samp+i)){temp=*(samp+j);
* (samp+j)=* (samp+i) ;
* (samp+i)=temp;

1333

stabl.inp

set terminal latex

set output "stabrl.tex"

set size 4.5/5.,3.8/3.

#set format xy "$%g$

set title "Plot two rules"

set xlabel "$x$" 0,-1

set ylabel "$rule value$" -6
set nokey

set label "rulel” at 0.08,0.12
set label "rule2" at 0.08,0.1
set xtics -0.14,0.04

plot "stplotl.dat" using 1:2 w 1,"stplotl.dat" using 1:3 w 1
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stab2.inp

set
set
set

terminal latex
output "stabr2.tex"
size 4.5/5.,3.5/3.

#set format xy "$%g$

set
set
set
set
set
set

title "Plot of -log(quantile) for two samples"
xlabel "$x$" 0,-2

ylabel "$-log(quantile)$" -7

nokey

label "1st sample (1-320)" at 0.18,6 left
label "2nd sample (321-614)" at 0.18,5.5 1left

#set xtics
plot "stplot2.dat" w 1,"stplot3.dat" w 1
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