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Abstract. Inferences on mixtures of probability distributions, in general, and of life distributions, in particular,
are receiving considerable importance in recent years. The likelihood ratio procedure of testing for the null
hypothesis of no contamination is often very cumbersome and lacks its usual asymptotic properties. Recently,
SenGupta (1991) has introduced the notion of an ‘L-optimal’ test for such testing problems. The idea is to recast
the original several parametric hypotheses representation of the null hypothesis in terms of only a single hypothesis
involving an appropriately chosen parametric function. This approach is shown to be both mathematically elegant
and operationally simple for a quite general class of mixture distributions which contains, in particular, all mixtures
of the one-parameter exponential family and also a very rich subclass of mixtures useful in life-testing and reliability
analysis. It is also illustrated through two examples—one based on real-life data and the other on a simulated
sample.
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1. Introduction

Mixture distributions are recently playing very important roles in theoretical as well as in
applied statistics. While a lot of work has so far been done on the estimation aspect of
mixture distributions, the problem of finding optimal tests is only recently being attacked.
Mixtures of distributions are also receiving attractions in life-testing and survival analysis.
Titteringtonet al. (1985, p. 20) give a detailed account of references of works on mixture
models in failure-time data. In a recent paper Block and Joe (1997) considered mixtures
of lifetime distributions in the study of tail behavior of failure rate functions. For mixtures
of exponential distributions, they have remarked (p. 269) “For electronic components,
most of the population might be exponential, with long lives, while a small percentage
often have an exponential distribution with short lives”. Mukherjee and Chatterjee (1987)
considered parameter estimation based on truncated samples from mixtures of distributions
in the exponential family. Many more examples abound which establish that mixtures
of members of the exponential family are receiving considerable attention of reliability
analysts. Mixtures of Weibull distributions have been considered by Jiang and Murthy
(1995) in the context of modelling failure-time data. An important bivariate distribution—
the bivariate Inverse Gaussian distribution, having wide applications in modelling bivariate
failure-time data, has been considered by Kocherlakota (1986).
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Mixture models, in general, are also important in reliability studies for “the overall fail-
ure distribution” of a multi-component item (Everitt, 1985, p. 560). When a product, in
batches, is acquired from two different machines or from the same machine on two different
occasions, a mixture model seems to be appropriate. A contamination model is used when
most of the items in the sample come from a known homogeneous population and a few
from another unknown population (of the same family), possibly due to suspected lack
of proper quality control in the process. In such a situation a reliability analyst may, at
the initial stage, want to carry out a statistical test to ensure whether the items are really
homogeneous, in order to avoid difficulties in dealing with a mixture distribution. Ad hoc
procedures for testing for ‘no contamination’ are subjective and often lack optimality prop-
erties. One then has to develop an ‘objective’ procedure for this purpose which at the same
time should preferably be such that in practice it can be applied and interpreted easily. The
likelihood ratio procedure is often very cumbersome and the usual asymptotic results for
the distribution of the test criterion do not hold. Under a general setup, Aitkin and Rubin
(1985) proposed to work with the ratio ofintegrated likelihoodstaking into consideration a
prior distribution of the mixing proportion(s), and thereby eliminating this (these) nuisance
parameter(s). But then, as shown by Quinnet al. (1987), a condition needed to establish
the asymptotic distribution of the test statistic does not hold. Recently SenGupta (1991)
has introduced the notion of a parametric function called thePivotal Parametric Product
(P3, in short) to characterize the hypothesis of no mixture when both the parameter and the
mixing proportion (p) are unknown. Not only simple tests for no contamination can then be
constructed but also the distributions of the test statistics, in many cases, can be conveniently
derived. Further this test has the property of being L-optimal, i.e.,its power matches that
of the locally most powerful (LMP) test for the parameter for each given value of p(> 0).

The reason for considering ‘local’ optimality is that there does not exist a test which is
‘globally’ optimal for all alternative hypothetical values of the parameters. Also in many
cases it is more important but difficult to detect small departures from the null hypothesis
since large departures can be detected quite easily by any reasonable test. Moreover in
many distributional models, in general, and certain reliability models like bivariate Inverse
Gaussian, in particular, LMP tests and/or their extensions (e.g. C(α)-tests) under the
presence of nuisance parameters can be conveniently derived and are very much useful (see
Kocherlakota and Kocherlakota, 1985). The L-optimal tests are admissible, i.e.,there does
not exist any other test which performs at least equally well (in terms of power function)
at all the points under the alternative hypothesis and actually better than this test at some
point(s). Furthermore, this test is consistent.

In Section 2 we give a set of sufficient conditions on the class of densities such that the
associated class of mixtures admits an appropriateP3, a general form of the appropriate
P3, and the structure of the corresponding L-optimal test. It is observed that the class
of densities of the one-parameter exponential family of distributions satisfies all these
conditions. Section 3 deals with an integrated likelihood approach and we show that the
LMP test for the parameter based on an integrated likelihood coincides with the L-optimal
test. In Section 4 we note the existence of a rich class of mixtures of reliability distributions
for which the forms ofP3 and the L-optimal test can be conveniently derived by an appeal
to the general result of Section 2. We also illustrate this result through several distributions
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useful in reliability theory. For each distribution, we see that a simple characterization of
P3 is possible and the resulting L-optimal test is also very simple and elegant, both in form
and in application. Finally, in Section 5, we illustrate the application of our procedure
through two examples—one on a real-life data set (Barnett and Lewis, 1994) on crushed
rock used for road and rail bases and the other on a simulated sample drawn from a mixture
of two lognormal distributions.

In what follows, we shall denote byEfθ (.) and Varfθ (.) the expectation and variance,
respectively, of a random variable taken with respect to the densityf (x | θ).

2. TheP Approach

Consider the mixture model with density

g(x | p, θ) = p f (x | θ)+ (1− p) f (x | θ0) (2.1)

where 0≤ p ≤ 1, θ ∈ 2, an interval of the real line; bothp, θ are unknown andθ0 is a
known point of2. The ‘contaminating’ densityf (x | θ) is assumed to be sufficiently ‘regu-
lar’. We want to test the null hypothesisH0: ‘No contamination’ against the alternativeH1:
‘There is contamination’. Under the above setup, the null hypothesis of no contamination
translates to the union of three parametric hypotheses: [H01: p = 0

⋃
H02: θ = θ0

⋃
H03: p = 0 andθ = θ0] .

The main idea of theP3 approach is to characterize a single parametric functionη ≡
η(p, θ, θ0) so thatη = 0 holds iff H0 is true. For example one may takeη = p(θ − θ0).
Such a parametric function is called aPivotal Parametric Product(see SenGupta, 1991, for
further motivations of this approach). Clearly several such characterizations are possible.
We shall chooseη so as to ensure that L-optimal test for the hypothesisH ′0: η = 0 (which
is now equivalent toH0) can be constructed based on an unbiased and consistent estimator
of η.

L-optimal tests are generally very simple in form and the cut-off points can be computed
easily, at least for large samples, either analytically or by simulation.

Denote byG the class of density functionsg, given by (2.1), of mixture distributions
obtained by restrictingf to a certain classF of the component density functions. The
following lemma gives a set of general conditions onF under which each member ofG
admits aP3, along with its appropriate general form and the structure of the corresponding
L-optimal test for members ofG. Let X1, . . . , Xn be n iid observations drawn from a
population with densityg.

LEMMA 2.1 LetF = { f } be the class as referred to above with any member f of this class
being a one-parameter density function, with respect to an appropriateσ -finite measureµ,
of a possibly multidimensional random variable X. Assume that f satisfies the following
conditions:

(C1) The parameterθ belongs to the parameter space2 which is a non-degenerate open,
semi-open or closed interval of the real line containingθ0 as an interior or a boundary
point.
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(C2) The supportX is independent of the parameterθ .

(C3) The (one- or two-sided) derivative∂ f (x | θ)/∂θ |θ0 exists and is finite for all x∈ X .

(C4) Efθ

(
∂ log f (X | θ)

∂θ

∣∣∣∣
θ0

)2

<∞ for all θ ∈ 2.

(C5) Efθ

(
∂ log f (X | θ)

∂θ

∣∣∣∣
θ0

)
def= γ (θ, θ0) = 0 if and only ifθ = θ0.

Thenη = pγ (θ, θ0) or any monotone function of it may serve as an appropriate P3. A test
appropriately based on an unbiased and consistent estimator T ofη will be L-optimal for
testing H′0: η = 0 against either of the one-sided alternatives, if T coincides, a.e., with the
average score statistic1n

∑n
i=1

∂ log f (Xi |θ)
∂θ

|θ=θ0.

Proof: By (C4) it follows that
∫ | ∂ log f (x|θ)

∂θ0
| f (x | θ0)dµ <∞ and hence the derivative of

the left side of
∫

f (x | θ)dµ = 1 w.r.t.θ at θ0 can be passed inside the sign of integration.
ConsequentlyEfθ0

[ ∂ log f (X|θ)
∂θ0

] = 0. Hence

Egθ

(
∂ log f

∂θ

∣∣∣∣
θ=θ0

)
= pEfθ

(
∂ log f

∂θ

∣∣∣∣
θ=θ0

)
+ (1− p)Efθ0

(
∂ log f

∂θ

∣∣∣∣
θ=θ0

)

= pEfθ

(
∂ log f

∂θ

∣∣∣∣
θ=θ0

)
= pγ (θ, θ0)

= η.

If T coincides, a.e., with the average score statistic, then the test appropriately based onT
is LMP for H0: θ = θ0 against either of the one-sided alternatives for each givenp (> 0),
by the Neyman-Pearson Lemma and hence is L-optimal for testingH ′0: η = 0. Moreover
T is unbiased forη and, by virtue of(C4), has finite variance which tends to 0 asn→∞.
T is therefore consistent forη.

COROLLARY 2.1 Consider the one-parameter exponential family of distributions given by
the density (w.r.t. aσ -finite measureµ) in the canonical form

h(x | θ) = exp[θW(x)− A(θ)].

Then h∈ F andη in this case is given by p(A′(θ)− A′(θ0)).

Proof: It can be verified thath satisfies conditions(C1)–(C4) of Lemma 2.1 ( seee.g.,
Lehmann, 1983, p. 119). Also it is easy to check thatγ (θ, θ0) = A′(θ) − A′(θ0) and
sinceA′′(θ) = Varhθ (W(X)) > 0, A′(θ) is strictly increasing inθ . Therefore(C5) is also
satisfied.
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Remark 2.1. (C5)of Lemma 2.1 is the condition of equivalence of the hypothesesH02: θ =
θ0 andH ′′0 : γ (θ, θ0) = 0. This condition is needed because the equationγ (θ, θ0) = 0 may
have multiple solutions forθ , as is seen from the following example:

Let f (x | θ) be the density of a von Mises distribution given by

f (x | θ) = [2π I0(κ)]
−1 exp[κ cos(x − θ)]

with 0≤ x < 2π; 0≤ θ < 2π; κ (> 0) being known (Mardia, 1972. p. 57). Takeθ0 = 0.
Then

∂ log f

∂θ

∣∣∣∣
θ0

= κ sinx and Efθ

[
∂ log f

∂θ

∣∣∣∣
θ0

]
= ξ(κ) sinθ where ξ(κ) 6= 0.

The right side, when equated to 0, yields two solutions forθ , viz. 0 andπ .

3. Integrated Likelihood Approach and theP Test

Let L(θ, p) denote the likelihood function ofθ andp and letπ(p) be the density of a prior
distribution of p (with respect to Lebesgue measure on [0,1]). The integrated likelihood
of θ , L̃(θ), is then obtained by integratingL(θ, p) with respect toπ(p)dp (see Aitkin and
Rubin, 1985), so that

L̃(θ) =
∫ 1

0
L(θ, p)π(p)dp

=
∫ 1

0

n∏
i=1

{p f (xi | θ)+ (1− p) f (xi | θ0)}π(p)dp.

L̃(θ) can now be used to construct the locally most powerful test for a hypothesis involving
θ . Note that

d log L̃(θ)

dθ

∣∣∣∣∣
θ0

=
[

1

L̃(θ)

dL̃(θ)

dθ

]
θ0

=
[

1

L̃(θ)

d

dθ

∫ 1

0

n∏
i=1

{p f (xi | θ)+ (1− p) f (xi | θ0)}π(p)dp

]
θ0

(3.1)

Assume that∂L(θ, p)/∂θ is continuous on2× [0,1], so that the derivative can be passed
under the integral sign in (3.1) (see Theorem 7.40 of Apostol, 1974, p. 167). We then have,
after some simplification,

d log L̃(θ)

dθ

∣∣∣∣∣
θ0

= K
n∑

i=1

f ′(xi | θ0)

f (xi | θ0)
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where

K =
∫ 1

0
pπ(p)dp> 0.

Summarizing the above, we have the following

THEOREM3.1 The locally most powerful test for H0: θ = θ0 against either of the one-sided
alternatives, based on the integrated likelihoodL̃(θ), is equivalent to the optimal P3 test.

4. Optimal P Tests in Reliability Models

In view of Lemma 2.1, it is clear that there exists a large class of reliability distributions and
the associated class of mixture models for each of which characterization of an appropriate
P3 and the corresponding L-optimal test is possible. This can be stated formally in the
following

THEOREM 4.1 Consider a classF0 of reliability distributions satisfying conditions (C1)–
(C5) of Lemma 2.1 and the corresponding classG0 of mixture probability distributions.
Then each g∈ G0 admits a P3, sayη for which an L-optimal test is based on the statistic
T obtained from the Lemma. Furthermore, this test is consistent.

Proof: The first part follows from Lemma 2.1. Consistency of the test follows from the
consistency ofT as an estimator ofη.

We now illustrate the above theorem through the following ten probability models
f (1), f (2), . . . , f (10) and the corresponding mixture modelsg(1), g(2), . . . , g(10) which are
very important and of wide use in reliability theory:

(i) Normal: f (1)(x | θ) = (2π)−1/2 exp
{− 1

2(x − θ)2
} ; θ0 = 0.

(ii) Lognormal: f (2)(x | θ) = (2π)−1/2x−1 exp{− 1
2(logx − θ)2}; θ0 = 0.

(iii) Exponential: f (3)(x | θ) = (1/θ)exp{−(x/θ)}; θ0 = 1.

(iv) Inverse Gaussian with location:
f (4)(x | θ) = (2πx3)−1/2 exp{−(x − θ)2/2θ2x}; θ0 = 1.

(v) Inverse Gaussian with dispersion:
f (5)(x | θ) = (θ/2πx3)1/2 exp{−(x − θ)2/2θ2x}; θ0 = 1.

(vi) Bivariate Exponential Conditional (BEC):
f (6)(x, y | θ) = βλv(θ)exp(βx + λy+ θβλxy); θ0 = 0,
β, λ are known (each assumed to be equal to 1) (see Arnold and Strauss, 1988).

(vii) Geometric: f (7)(x | θ) = θ(1− θ)x−1 ; θ0 = 1/2.



OPTIMAL TESTS FOR NO CONTAMINATION 287

(viii) Bivariate Inverse Gaussian:

f (8)(x, y | θ) = 1

4π

{
λ1λ2

x3y3(1− θ2)

} 1
2

[
exp− 1

2(1− θ2)

·
{
λ1

µ2
1

(x − µ1)
2

x
− 2θ

µ1µ2

(
λ1λ2

xy

) 1
2

(x − µ1)(y− µ2)

+ λ2

µ2
2

(y− µ2)
2

y

}

+ exp− 1

2(1− θ2)

{
λ1

µ2
1

(x − µ1)
2

x
+ 2θ

µ1µ2

(
λ1λ2

xy

) 1
2

(x−µ1)(y−µ2)

+ λ2

µ2
2

(y− µ2)
2

y

}]
;

with λ1, λ2, µ1, µ2 all known andθ0 = 0 (see (1.1) of Kocherlakota, 1986).

(ix) Folded normal: f (9)(x | θ) = φ(x− θ)+φ(x+ θ) ; θ0 = 0, whereφ(.) is the density
function of a standard normal variable. (See SenGupta and Pal, 1993.)

(x) Weibull with shape parameter:f (10)(x | θ) = θxθ−1 exp(−xθ ); θ0 = 1.

In each of f (6) and f (8), θ plays the role of an ‘interaction’ parameter so thatθ = 0 holds
iff the componentsX andY are independent.f (7) is appropriate as a model for the ‘number
of occasions’ a component or a device is used before it fails to work.

Observe that the first seven density functions belong to the one parameter exponential
family and using Corollary 2.1, one sees that the theorem is applicable to the corresponding
mixture models. We give the forms ofη andT corresponding to eachg(i ), i = 1, . . . ,7:

η(1) = pθ; T (1) = 1

n

n∑
i=1

Xi ,

η(2) = pθ; T (2) = 1

n

n∑
i=1

log Xi ,

η(3) = p(θ − 1); T (3) = 1

n

n∑
i=1

(Xi − 1),

η(4) = p(θ − 1); T (4) = 1

n

n∑
i=1

(Xi − 1),

η(5) = p

2

(
1− 1

θ

)
; T (5) = 1

2n

n∑
i=1

(
3− Xi − 1

Xi

)
.
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For g(6), a little algebra gives

η(6) = 0 if θ = 0, p arbitrary

= p

{
1− 1− v(θ)+ θ

θ2

}
if θ > 0, p arbitrary.

CorrespondingT (6) = 1
n

∑n
i=1(1− Xi Yi ). Also

η(7) = 2(2θ − 1)/θ; T (7) = (2/n)
n∑

i=1

(2− Xi ).

f (8) through f (10), though not members of the exponential family, may be seen to satisfy
the conditions of Lemma 2.1. Forg(8), let

U = λ1(X − µ1)
2

µ2
1X

, V = λ2(Y − µ2)
2

µ2
2Y

.

Then the density of(U,V) is that of a bivariate chisquare distribution given by (2.3) of
Kocherlakota (1986). So from Table 1 of Gunst and Webster (1973), it follows that,

η(8) = 2pθ2 andT (8) = 1

n

n∑
i=1

(Ui − 1)(Vi − 1), where(Ui ,Vi ) corresponds to(Xi ,Yi ).

Forg(9), since the score function vanishes identically atθ0 = 0, we use a reparametrization
θ ′ = θ2 (SenGupta and Pal, 1993) and note after a little algebra that

η(9) = 1

2
p

{
I

(
θ ′

2
,

3

2

)
+ θ ′

}
; T (9) = 1

2n

n∑
i=1

(X2
i − 1)

where

I (λ, r ) = 1

0(r )

∫ λ

0
exp(−z)zr−1dz.

In case ofg(10) , ∂ log f (10)(X|θ)
∂θ

∣∣∣
θ0

= 1+ log X − X log X. Differentiating both sides of

expression (7) of Johnson and Kotz (1970, p. 253) with respect tot and puttingt = 1, one
sees thatEfθ (X log X) = 1

θ
0′( 1

θ
+ 1). Also Efθ (log X) = −γE/θ , whereγE is Euler’s

constant and hence one has

η(10) = p

[
1− γE

θ
− 1

θ
0′
(

1

θ
+ 1

)]
; T (10) = 1

n

n∑
i=1

(1+ log Xi − Xi log Xi ).

Interestingly, though not obvious, it can be shown by differentiation that the expression
for γ (θ, θ0) in this case is monotonically increasing inθ , so that(C5) is satisfied.
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5. Examples

In this Section, we illustrate the applications of the L-optimal test considered in Section 4
with the help of two data sets—one on rock specimens and the other on a simulated sample
from a mixture distribution. In both the examples, we see how elegantly the test can be
applied to detect the presence of possible contamination in the population.

5.1. Rock Data

Barnett and Lewis (1994, p. 253, Example 6.4) present the data on Sulphate Soundness
Test (SST) values (X) for n = 12 rock specimens originally considered by the Department
of Main Roads, New South Wales, Australia. Further to the observations made from their
empirical findings we noted that the distribution ofX can be reasonably modelled by a single
exponential or a mixture of two exponentials. Since the data show a sharp dominance of
the ordered observations from the seventh onwards over the first six, it is more reasonable
to assume a mixture of two exponentials as our underlying model. Note that ifZ follows
exponential distribution with mean 1, thenPr{Z > 6.5} = .0015, so that only .15% of
the observations, drawn from such a population, exceed 6.5 on an average. However about
50% of the observations in the sample at hand exceed 6.5. This fact also suggests that
there is a distinct shift in mean from 1 (of one component density) to some unknownθ (of
the other component from which the last six ordered observations constitute a sample). A
plausible mixture model is, therefore, given byg(3) with θ0 = 1. The L-optimal test statistic
is equivalent toT =∑n

i=1 Xi and 2T followsχ2 distribution with 2n d.f. underH0. Since
2T = 204 andχ2

.01,24 = 42.98 the data are strongly in support of a possible contamination,
as expected.

Let us now carry out a goodness-of-fit test, as a post-analysis, to judge the plausibility of
g(3) as a model for these data . The moment estimates ofpandθ are .49 and 16.2 respectively.
Assuming these as the true values of the parameters, the value of the Kolmogorov-Smirnov
Dn statistic comes out as .3044, which is insignificant as compared to the 5% critical value
of .3754. We therefore reach the same conclusion as the foregoing one about the presence
of a contamination, further validating our simpleP3 approach.

5.2. Simulated Lognormal Mixture Data

The followingn = 20 observations are drawn from a mixture of two lognormal distributions,
given by the densityg(2) with θ = 0.5 andp = 0.7:

0.525 3.897 2.551 1.010 3.970 1.029 1.980 0.120 0.423 0.431
3.259 0.127 0.877 2.625 0.693 1.359 2.154 2.764 2.869 1.801

Observations from a lognormal distribution have been generated using the RNLNL subrou-
tine of IMSL. Uniform random variables used for ‘mixing’ purpose have been generated
by the RNUN subroutine.
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Hereτ = √nT(2) = (1/√n)
∑n

i=1 log Xi ∼ N(0,1) and observedτ = 0.7263, which
is insignificant at 5% level. Hence the test accepts the null hypothesisH ′0: η(2) = 0 against
either of the one-sided alternatives at the said level.
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