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Abstrat The problem of onstruting optimal unonditional tests for aspei�ed value of the mean diretion parameter � of a von Mises or irularnormal distribution CN(�; �) against two-sided alternatives is onsidered.Motivated by the urved exponential family nature of the distribution andthe assoiated urvature when � is known, loally most powerful unbiasedtest is argued to be a good hoie. The test statisti is seen to admit of amajor simpli�ation. Exat ut-o� points are given. It is also shown thatsmall sample sizes suÆe to make this test perform well even for non-loalalternatives. The asymptoti distributions of this test statisti are presented.When � is unknown, redution by invariane or similarity fails. We derive anasymptotially loally optimal test and another equivalent but simpler testfor this ase. Two real life examples are disussed.Keywords and phrases: C� - test, Curved exponential family, Diretionaldata, Loally most powerful unbiased test, Statistial urvature.AMS 1985 Subjet Classi�ation: 62 F12.
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1 IntrodutionWe onsider here the problem of onstruting and implementing both exatand asymptoti optimal tests for the mean diretion parameter � of a vonMises or irular normal population CN(�; �) in the absene as well as inthe presene of the nuisane parameter � respetively. Let �1; : : : ; �n be arandom sample from CN(�; �); 0 � � < 2�; � > 0: We are interested intesting H0 : � = �0 against two-sided alternatives H1 : � 6= �0:The non-regular exponential family (REF) nature of the CN distributionwhen � is known, has onstrained the development of exat optimal tests toonly onditional ones. When � is unknown, the CN distribution beomes amember of the REF. However, sine � is not a sale parameter, here again oneis onstrained to look at onditional tests. Unonditional similar or invarianttests are not available.Mardia (1972, p. 138) notes that there is no uniformly most powerful(UMP) test for testing H0 against the even the usual one-sided ompositealternatives. Also, Mardia (1972, pp. 138-140) proposes the unonditionallikelihood ratio test and the onditional unbiased test using Fisher's anillarypriniple (see, Fisher, 1959, Setion 4.4; Kendall and Stuart, 1967, pp. 217-218). The LRT is not known to be optimal for small sample size, while theother test is a onditional test.First in setion 2 we present the notion of statistial urvature (Efron,1975) for a urved exponential family (CEF) and note its role in the devel-opment of optimal tests in a CEF. This motivates us to present in setion3 unonditional, yet simple and optimal, tests for the above testing prob-lems by exploiting the approah of loally most powerful (LMP) tests. LMPtests have been found onvenient to derive as well as to implement in variousomplex testing problems, partiularly in the ontext of univariate (Duraira-jan and Kale, 1979; SenGupta and Pal, 1993a) and multivariate (Senguptaand Pal, 1993b) mixture models, of multivariate inferene (Gokhale and Sen-Gupta, 1986; SenGupta, 1987), of univariate and bivariate reliability models(SenGupta, 1994; SenGupta and Pal, 2000) of diretional data, e.g. in test-ing for isotropy (SenGupta and Pal, 2001), for mean diretion (SenGupta,1991; SenGupta and Jammalamadaka, 1991, 2003), for outliers (SenGuptaand Laha, 2001), for hange-points (SenGupta and Laha, 2004), for indepen-dene (Arnold and SenGupta, 2003), for symmetry (SenGupta and Rattihalli,2004), et. For generalizations and further disussion on LMP tests see e.g.3



SenGupta and Vermeire (1986), SenGupta (1991), Mukerjee and SenGupta(1993).We will onsider here the two-sided testing problem for both the ases,� known and unknown. The one-sided testing problem with its assoiatedgeometry has been dealt with in details in SenGupta and Jammalamadaka(2003). In setion 3.1 the ase of � known is onsidered. The exat LMPunbiased (LMPU) test is presented and it is demonstrated that a major sim-pli�ation results in its form. The LMPU test here is both an unonditionalas well as an unbiased test. Further, it possesses the important exat (validfor all sample sizes) optimality property of having maximum power, among allloally unbiased tests, for small departures from the null - the most diÆultalternatives to detet in pratie. Based on assoiated statistial urvature,we present a table exhibiting enouraging values (even trivial, i.e. 2, for� � 2:2) of the minimum sample size whih is expeted to make this testperform well throughout the parameter spae. We also derive both the nulland the non-null asymptoti distributions of the LMPU test statisti. Someexat ut-o� points are also tabulated to enhane the use of the LMPU testin pratie. The geometry of the various tests employed failitates the higherorder power omparison of the tests.In setion 3.2 we onsider the ase when � is unknown. We �rst derivethe C�� or the asymptoti LMP test of Neyman (1959). We next proposean asymptotially eqivalent optimal test whih has an extremely elegant andsimple form. Finally two examples orresponding to the two ases are givenin setion 4 to demonstrate the ease in implementation of the optimal testsproposed.2 De�nitions and Disussions2.1 Curved Exponential FamilyIt will be useful here to present the notion of a urved exponential family(CEF). Let Y be a random variable taking on values in a nonempty opensubset O of an Eulidean spae and let P (f�) = fP� j � � �g be a lass ofprobability measures on O; where the parameter spae f� is a nonempty opensubset of Rp and for �1 6= �2 in �, P�1 6= P�2 : Next let, f� = f� � f� j � = (�); � � Lg be a \surfae" in f� parameterized by �; where L is a nonempty4



open subset ofRq with q < p and  (�) is a known Borel bimeasurable bijetionfrom L onto its image  (L) inf�:We all the subfamily P (f�) = fP� j � � �ga \urved" family in P (f�): Further, letP (f�) = [f(t j �) = expf< t; �(�) > �h(t)� �(�)g; ��L℄ (1)where < t; �(�) >= Ppi=1 ti�i(�); with range of ti; i = 1; : : : ; p independentof �: P (f�) given by (1) an be looked upon as a \redued" dimensionalexponential family with respet to a �-�nite measure � where dim(�) = q <p = dim(Q); Q being a minimal suÆient statisti.2.2 Statistial CurvatureConsider the family in (1) with q = 1; i.e. the one-parameter CEF. LetP� =Cov�(T ): Denote the omponentwise derivatives of �(�) with respet to �by, � _(�) � (�=��)�(�); ��(�) � (�2=��2)�(�): Assume that these derivativesexist ontinuously in a neighborhood of a value of � where we wish to de�nethe urvature. Let,M� � " �20(�) �11(�)�11(�) �02(�) # � " _�(�)0P� _�(�) _�(�)0P� ��(�)��(�)0P� _�(�) ��(�)0P� ��(�) # ;2� =jM� j =�320(�):Then, � is the statistial urvature of P at �:2.3 CEF and LMP testIn a CEF if an exat anillary statisti exists, then for purposes of inferenesregarding �; the priniple of onditionality is often used. However, whetheror not an exat anillary statisti exists, even then it would be desirable toutilize Q to form an optimal and preferably an unonditional (for the sakeof simpliity) test. If an UMP test does not exist then the LMP test anbe an attrative hoie, partiularly if it utilizes all the omponents of Q. However, in a non-regular exponential family there are spei� examples(e.g. Cherno�., 1951) whih demonstrate that the hoie of the LMP testan be disastrous. 5



Consider in general the LMP test for say, H0 : � = �0: Efron suggeststhat a value of 2�0 < 18 is not \large" and one an expet linear methods towork \well" in suh a ase. In repeated sampling situations, the urvaturem2�0 based on m observations satis�es, m2�0 = 12�0=m; and hene one andetermine the sample size whih redues the statistial urvature below 1=8:3 Tests for mean diretionThe probability density funtion of CN(�; �) is given by:f(�;�; �) = [2�I0(�)℄�1 expf� os(���)g; 0 < �; � � 2�; 0 � � <1: (2)Suppose we have a random sample �1; :::; �m from (2). De�ne (C; S) =(�mi=1 os �i;�mi=1 sin �i): Then the mean diretion ��; 0 � �� < 2�; and theresultant R; 0 � R � m; are de�ned through,(C; S) = (R os ��; R sin ��); R = �mi=1 os(�i � ��) = (C2 + S2)1=2:Observe that in general the CN population is a REF, but with � knownit beomes a member of (1,2) CEF, i.e. a CEF having a 1-dimensional pa-rameter � with a 2-dimensional suÆient statisti (C,S) for it. Sine � anbe treated as a loation parameter, without loss of generality, we will take�0 = 0: Unlike the linear ase, note that for the irular ase it makes senseto have the mean (diretion) at an endpoint (e.g. 0) of the support of therandom variable. Further it also makes sense to have a two-sided alternativeH1 : � 6= 0 against the null hypothesis H0 : � = 0: Note that we interpretthe two-sided alternative for the irular ase, in ontrast to the linear ase,in terms of the irular proximity of the values under the alternative to thatthe null. This may thus be interpreted for a two-sided loal alternative as �lying either in the ar (0; Æ1℄ or in the ar [2�� Æ2; 2�); where Æi > 0; i = 1; 2;is some small angle.3.1 Case 1. � known.Consider testing H0 : � = 0 against H1 : � 6= 0: Assume � is known, say,equal to 1. Note that sine � is not a sale parameter, tables of ut-o� pointsneed to be supplied for di�erent values of the ontinuous parameter � > 0to render the tests to be useful in pratie. An unonditional LMP test maybe quite useful here, provided its performane is satisfatory whih may be6



initially judged through the statistial urvature assoiated with the CEFnature of the present CN distribution and this testing problem.We onsider the following tests : a test based on the maximum likelihoodestimator (MLE), the likelihood ratio test (LRT) and the LMPU tests. The�rst one is ad-ho in nature while the form of the LRT is already availablefrom SenGupta and Jammalamadaka (2001, pp. 114-116). The LMPU meritsspeial mention here, sine unlike the other two tests, not only does it pos-sess an exat optimality property, but the test statisti also is quite elegant.This results from the symmetry of the CN distribution and an exploitation ofthe reetion priniple. Exat ut-o� points of the LMPU test an be easilyobtained either by numerial integration or through simulations. Two essen-tial properties that ant reasonable test should possess are shown to hold forthe LMPU test: the exat (all sample size) property of admissibility and thelarge sample property of onsisteny. The latter is partiularly important inthe ontext of a LMP test sine it is known that suh tests may in some ases(see e.g. Cherno�, 1951; Ferguson, 1967) indeed turn out to be inonsitent.Asymptoti normality of the LMPU test statisti under both the null andalternative hypotheses are also established. We present in Se. 3.2 a resulton the large-sample higher-order power omparison of these three tests.3.1.1 Test Based on the MLE.It is easy to see that the maximum likelihood estimator of � is given by,�̂ = tan�1(S=C): Motivated by the geometry of the problem and based onthe desription of the alternative as given above, we propose the test givenby, ! : �̂ 2 ar(�1; 2� � �2); �i > 0; i = 1; 2: For �0 = 0; this may be writtenin the simpler form: ! : �̂ > K1 or < K2; 0 < K1 < K2 < 2�: However interms of general �0(6= 0); the ritial region proposed takes the form: ! : �̂ 2ar(K1; K2) where K1 may indeed be larger than K2: The onstants usedabove are to be determined from the size and (loal) unbiasedness onditionsgiven in (3) below. The determination of these onstants however turns outto be non-trivial and we do not proeed with it further.3.1.2 Loally Most Powerful Unbiased (LMPU) Test.The onept of LMPU test may be attributed to Pearson and Neyman (1936,1938) - see also Ferguson (1972, pp 237-238). The aim is to �nd a test '07



out of all �-level unbiased tests whih maximizes the urvature (the slope forone-sided tests) of the power funtion at the null value. Consider the lassC of tests suh that any test ' 2 C satis�es�'(�) j�=0 = � and �0'(�) j�=0 = 0 (3)The test '0 2 C is an LMPU test if it maximizes the value of the seondderivative of �'(�) at � = 0, that is�00'0(�) j�=0 > �00'(�) j�=0 :We now motivate LMPU test for our problem. The LRT here is notknown to have any exat optimality property. Note that also no small sampleunonditional optimal test for H0 is yet available. Mardia (1972, pp 138 -141) and Mardia and Jupp (2000) present onditional tests based on the"Fisher Anillary Priniple". An interesting point to note though is thatthis onditioning does not introdue any additional dimension in the indued"parameter" (inluding the known value of the onditioning variable) spaesine the onditioning variable, the resultant R, is amalgamated in the newknown onentration parameter. Fisher (1993, pp 93 - 94) suggests testsbased on large samples and bootstrap tehnique. These are quite interestingapproahes. However, small sample optimality properties of these tests areyet to be established.The sore test disussed by Mardia and Jupp (2000) also needs to bementioned here. Though it also is based on derivative of the log likelihoodfuntion, only the �rst derivative is used in ontrast to both the �rst andseond derivative needed for the LMPU test. Further, unlike the LMPUtest, this test is not known to possess any exat optimality property andhene will not be disussed further in this paper.In pratie we will usually be interested in testing against `loal' alterna-tives, i.e. alternatives lose to the null, whih however are also more diÆultto detet. In the absene of a UMP test, a LMP test is then a natural hoie.Sine our underlying distribution is a member of the CEF, the suitability ofthis LMP test may be further evaluated through the assoiated statistialurvature. We show that here the LMP approah not only yields a simpleand elegant test statisti but further that the test is expeted to work "well", as revealed by 20 ; for small sample size, e.g. even as small as 15 when� = 1: 8



Inspite of these favorable poperties of a LMPU test, it annot be unequiv-oally advoated. This test need not be even admissible or onsistent. Weestablish below that the LMPU test for our testing problem does not su�erfrom any of these drawbaks.Let [x℄ denote the greatest integer in x, �C = C=m; �S = S=m �R = R=mand A � A(�) = I0(�)=I1(�): We then have the followingTheorem 1. The LMPU test for testing H0 : � = 0 against H1 : � 6= 0; isgiven by! : f(��; r) : �� 2 (1r(K); 2r(K))U(2� � 2r(K); 2� � 1r(K))j(0 � �� < 2�; 0 < r � n)g (4)where ir(K) = ar os air(K); i = 1; 2: a1r(K) > a2r(K);a1r(K) = [��r + f�r2 � 4(m��r2)(K �m��r2)g1=2℄=[2(m��r2)℄;a2r(K) = [��r � f�r2 � 4(m��r2)(K �m��r2)g1=2℄=[2(m��r2)℄:Using the size ondition, K is determined from the equivalent ritial region! : � �C +m� �S2 > K: (5)(ii) This test is admissible. (iii) A sample size m = [8f1=A2 � 1=A�� 1g℄ +1; whih monotonially dereases with �; suÆes to redue the statistialurvature below Efron's ritial value.Proof: A LMPU test an be found by using the generalized Neyman-PearsonLemma (see, Lehmann, 1986, pp. 96-101). Aording to this lemma, fortesting H0 : � = 0 against H1 : � 6= 0; a LMPU test will have ritial regiongiven by�2��2L(��; �)j�=0 + ( ���L(��; �)j�=0)2 > k1 + k2( ���L(��; �)j�=0) (6)where �� = (�1; :::; �m)0, L(��; �) is the log likelihood funtion of (�1; : : : ; �m)and k1; k2 are determined by (3). Then the ritial funtion of this LMPUtest is given by 9



'0(��; �) = 1 if (�� mXi=1 os �i) + (� mXi=1 sin �i)2 > k1 + k2(� mXi=1 sin �i)= 0 otherwise (7)De�ne U = �Pmi=1 sin �i and V = ��Pmi=1 os �i + (�Pmi=1 sin �i)2.Exploiting the fats that the von Mises density is symmetri, that (U; V )and (U; �V ) are equal in distributions sine V is an even funtion under H0and the reetion priniple (Ferguson, 1967), it follows (Chang, 1991) thatk2 = 0: Thus the test redues to the simple form given in (4).?? Aording to Lemma 1 above,?? the ritial region of the LMPU testbeomes ! : �C + �S2 > k1; ! : �T � � �C +m� �S2 > Kwhere K is determined by the given level of signi�ane.Note that sine�C = �R os ��; �S = �R sin ��; �R = R=m; �C2 + �S2 = �R2:The above ritial region then an be rewritten as,! : m��r2 os2 � + �r os � �m��r2 +K < 0; :::(XX)whih, due to the onvexity of the funtion, an be equivalently written as,a1r(K) < os �� < a2r(K); :::(Y Y )where 0 � a1r(K); a2r(K) � �=2 are the two roots of the quadratiexpression on the LHS of (XX) equated to zero. Now, from the nature of theosine urve it follows that (YY) yields that �� for eah �r should lie in theunion of two disjoint ars as presented in the theorem.(ii) Admissibility of the test follows due to the uniqueness of the LMPUtest - a onsequene of the non-randomized nature of the ritial region or-responding to a ontinuous test statisti.(iii) Finally, onsider the assoiated statistial urvature. At � = 0;Var(sin �) = A(�)=�; Var(os �) = 1 � A(�)=� � A2(�) and Cov(os �;10



sin �) = 0. Further, _�(0) = (0; �); ��(0) = (��; 0): Simpli�ation yields20(�) = 1=A2�1=A��1: It then follows that (�=��)0(�) < 0; i.e. 0(�) # �:Also demanding m20(�) < 1/8, the ritial value suggested by Efron, yieldsthe value of m as stated in the theorem.Remarks: 1. Note that the LMPU test is a funtion of both the ompo-nents C and S or equvalently �� and R of the suÆient statisti and is anunonditional test.2. Table 2 provides the desired minimum values of m; as per Efron'sriterion, for various values of � whih should make the LMP test work well.In partiular with � = 1, to ahieve m20(1) < 1/8, the ritial value, it suÆesto havem > 14:266; i.e. m =15. Suh a sample size should be easily available,implying thereby that the LMPU test will work "well" in pratie. Note thatthe required sample size m whih suÆes beomes trivial (i.e. 2) for � > 2:2:3.1.3 Exat ut-o� pointsSmall sample ut-o� points may be obtained through numerial integrationor by simulation. For the former approah, the following representation ofthe tail probability of �T under H0 is onvenient.� = P ( �T > t�) = Z m0 P (��r os �� �m��r2os2�� +m��r2 > t�jR = r)fR(r)dr= Rm0 P (�� 2 SrjR = r)fR(r)dr say.Similar representation for the power as the above for the size of the testshows that the power of the LMPU test is a weighted average of the powersof the onditional (for eah r) test. We an then use the fats that theonditional density of ��j(R = r) is CN(�; �r) and fR(r); the marginal densityof R is available from, e.g. equation (4.5.4) in Mardia and Jupp (2000), p.69. Gaussian quadrature and iterative tehniques (e.g. see SenGupta andJammalamadaka, 2001, for the one-sided LMP test) may then be employedto get the ut-o� points.Alternatively, one an generate the distribution of �T by simulating ob-servations from the CN distribution, e.g. by the algorithm of Best and Fisher(1979). Cut-o� points for � = 0:01; 0:025; 0:05; 0:10; � = 0:1; 0:5; 1:0; 1:5; 2:0;and sample sizes m = 5; 6; 7; 8; 9; 10; 20; 30; 50; 100 obtained by simu-lation are given in Table 1. 11



The ut-o� points for large samples are easily obtained for all levels ofsigni�ane � and all � values by virtue of theorem 2 below.3.1.4 Asymptoti distribution of �TWe now study both the null and non-null asymptoti distributions of �T :These are shown to be normal.Let us denote the raw trigonometri moments asE(os p�) = �p; E(sin p�) = �pand the entral trigonometri moments as,E(os(p(� � �))) = ��p; E(sin(p(� � �))) = ��p = 0:Also for brevity we will write ��p as Bp:The asymptoti distribution of the LMPU test statisti is given byTheorem 2. As m!1;p2mf �T + A(�) os�� �m(A(�) sin�)2g L�! N(0; �2);where�2 = f1 +B2(�) os 2�� 2(A(�) os�)2g � 4A(�)�m sin�fB2(�)� A2g sin 2�+4(A(�)�m sin�)2f1� B2(�) os 2�� 2(A(�) sin�)2g:Corollary. Under H0; as m!1;p2mf �T + A(�)g L�! N(0; f1 +B2(�)� 2A2(�)g)and �C and �S are asymptotially independent.Proof: We �rst need to prove the followingLemma 2: For a CN(�; �) population, the trigonometri moments are givenby, ��p = Ip(�)=I0(�) = Bp(�); ��p = 0;E(os(p(� � �)) sin(q(� � �))) = 0; p; q � 1; (8)12



where Ip(�) = R 20 � os p� exp(� os p�)d� is the modi�ed p-th order Besselfuntion of the �rst kind. Also, in terms of the standard notations (see e.g.,(A.11) of Mardia and Jupp, 2000, p. 350)B1(�) = I1(�)=I0(�) = A2(�) � A(�); Ap(�) = Ip=2(�)=Ip=2�1(�):Proof: The results follow on noting the symmetry of the CN distribution,the even and odd nature of the osine and sine funtions respetively, andthe de�nition of Ip(�):Now,E os � = �1 = A(�) os�;E sin � = �1 = A(�) sin�V ar(os �) = 12f1 + �2 � 2�21g = 12f1 +B2 os 2�� 2(A os�)2g � �11V ar(sin �) = 12f1� �2 � 2�21g = 12f1 +B2 os 2�� 2(A sin�)2g � �22Cov(os �; sin �) = 12f�2 � 2�1�1g = 12fB2 � A2g sin 2� � �12:Then by the Central Limit Theorem and on using lemma 2,pm( �C � �1; �S � �1) L�! N2(0; �) (9)where the ovariane matrix � = ((�ij)) has elements de�ned above.To derive the asymptoti distribution of the test statisti, we invoke theÆ- method given byLemma 3. [Rao (1973), p 387.℄ Let (pm(T1m � �1); : : : ; pm(Tkm � �k))have asymptoti k-variate normal distribution with mean zero and ovarianematrix � = ((�ij)) with �ij = Cov(Ti; Tj); i = 1; : : : ; k and j = 1; : : : ; k.Furthermore, let g be a funtion of k variables whih is totally di�erentiable.Then, pm[g(T1m; : : : ; Tkm) � g(�1; : : : ; �k)℄ has the asymptoti normaldistribution with mean zero and variane PiPj �ij ���ig ���j g.De�ne g( �C; �S) = � �C + �m �S2: Then, g(�1; �1) = ��1 + �m�21 :By lemma 3 we are able to onlude thatpmf� �C + �m �S2 � (��1 + �m�21)g L�! N(0; �2);where�2 = �11  ���1 g(�1; �1)!2 + 2�12  ���1 g(�1; �1)! ���1 g(�1; �1)!13



+�22  ���1 g(�1; �1)!2= �11 � 4�m�1�12 + 4(�m�1)2�22On simpli�tions, the expressions in the theorem now result.The orollary follows on putting � = 0:3.1.5 Consisteny of the LMPU test.Let us indiate with the super�xes 0 and 1 the relevant quantities underH0 : � = 0 and H1 : � = �(6= 0) respetively. For example,�01 = A(�); �01 = 0;�11 = A(�) os�; �11 = A(�) sin�:Then we have the following Theorem 3. The LMPU test given above isonsistent. Proof: By theorem 2 it follows that for large samples K =(�0��)=(m1=2) � �01; where �� is the upper 100 �% point of the standardnormal distribution. Then for large samples,P [ �T > KjH1℄ = P [Z > (�0=�1)�� �m1=2f(m�(�11)2)+A(�)(1�os�)g℄ �!????Remarks: Sometimes moments of sin � and os � (instead of trigonometrimoments of �) are needed. These may be obtained by repeated di�erentiationunder the integration sign as many times as needed and exploiting the prop-erties used above for obtaining the trigonometri moments. Alternatively, onnoting that the CN distribution is a member of the exponential family, thesemay also be obtained by an useful generalization of Stein's identity to theunivariate multiparameter exponential families noted by Arnold et al (2001).3.1.6 Higher-order Power Comparison.For the ase of the two-sided alternatives, the test based on the MLE andthe LR test disussed above and also the LMP test are unonditional tests.Exept for the LMP test, whih is optimal for all sample sizes in the senseof maximum loal power, no small-sample property of the other two tests isknown. However, using standard results, e.g., following Amari (1985), we getthe following results on the de�ienies of the tests.14



Lemma 4. The third order power losses of the LMP test ompared to theMLE and the LR tests are respetively given byLLM (t) = [(1� 1=(2� 2�=2)� J(t))=J(t)℄2 andLLR(t) = [(1� 1=(2� 2�=2)� J(t))=(1=2� J(t))℄2; (10)where ��=2 is the upper 100�=2% point of the standard normal distribution�(�);�(t) = (t=2)[�(��=2 � t)� �(��=2 + t)℄ and J(t) = 1� t=[2��=2 tanh t��=2℄:Proof: This result follows from Theorems 6.6, 6.7, and 6.8 of Amari.3.2 Case 2. � unknownWhen � is unknown, the priniple of similarity or meaningful invariane doesnot lead to any redution and hene no unonditional useful test is available.A onditional test may be derived, and even a onditional LMP test maybe envisaged, i.e. a LMP test obtained from the onditional distributionfree from the nuisane parameter �: but as for the � known ase, this willalso all for extensive tables orresponding to the onditioning ontinuousrandom variable, to be useful in pratie. One may ofourse use the usualLRT. However, then neither any simple test statisti results nor is any smallsample optimal property of this LRT known.3.2.1 The C� Test.Here, we show that a simple and elegant yet an unonditional asymptotiallyoptimal test, e.g. Neyman's C� test an be derived.Theorem 3. The C�-test for testing H0 : � = 0 against H1 : � 6= 0 is givenby ! : jZmj = jp�̂ mXi=1 sin �i=(mA(�̂)1=2j > ��=2 (11)Proof: Let, � = ln f(�; �): Then at � = 0; �� = � sin �; �� = os � � A(�):Assume � < K0 <1: Then straightforward omputations establish that allthe onditions for �� and �� to be Cr�amer funtions are satis�ed.15



The C�- test is given as! : jZ�mj = j mXi=1f��f�; �̂g � a01��(�; �̂)g=pm�0(�̂)j > ��=2 (12)where �̂ is any loally root m onsistent estimator of � under H0; �0(�̂) isthe standard deviation of ��(�; �) � a01��(�; �) under H0 and evaluated at� = �̂; a01 is the partial regression oeÆient of �� on �� and �� is the upper100�% point of the standard normal distribution. One may, e.g., take �̂ asthe MLE of � under H0; i.e., �̂ = Maxf0;A�1(C=m); C > 0g: Further, a01 isseen to be 0 by diret omputation. Also, E(Æ2`=Æ�Æ�) = 0 under H0; holds.Then, the numerator of Z�m redues to �P sin �i and thus �20(�) redues to,�20(�) = V ar�=0(� sin �) = �A(�): Thus (12) redues to the simple form givenin theorem 3.For any sequene �� = f�ng suh that �npn ! ; the asymptoti valueof the power of the test is given by1� (1=p2�) Z ��=2���=2 expf�(t� �0(�))2=2gdt:Among all tests, T �m; for H0 : � = 0 with asymptoti level of signi�ane �;whatever be the sequene of alternatives �m 6= 0 with �m ! �0 = 0; andwhatever be the �xed � > 0;lim [ Power fTm(�m; �)g � Power fT �m(�m; �)g℄ � 0:The test Tm is in this sense an asymptotially loally most powerful test.3.2.2 A simple optimal test(11) involves omputation of �̂: This may be avoided to give an even sim-pler but nevertheless (asymptotially) equivalent test. Note that, �20(�) =�2E0(sin2 �) and Pmi=1 sin2 �i=m is a onsistent estimator of E0(sin2 �): Then(11) redues to,! : jTmj = j mXi=1 sin �i=( mXi=1 sin2 �i)1=2j > ��=2: (13)Tm is asymptotialy equivalent to Zm in the sense that it has, by Slutsky'stheorem, the same limiting distribution as that of Zm: In Example 2 we show16



that the numerial equivalene of these two test statistis an hold for evenas small a sample size as m = 15.4 ExamplesHere we present two examples, one eah orresponding to the � known andunknown ases. These demonstrate the ease in the implementation of ourLMPU tests proposed above.Example 1. We �rst onsider the � known ase. This example is the example6.5 in Mardia (1972, pp 141-142) or the example 7.1 in Mardia and Jupp(2000, p 121) where a onditional test has been used. A sample of size 10 onthe dip-diretions of ross-beds of a setion of river gave �� = 278Æ and �R =0.35. It is known that � = 342Æ and � = 0:8 for a neighboring setion of theriver. We are interested to know whether the laim that the mean diretionfor the setion sampled is the same as that of the neighboring one.To use our framework as in setion 3, i.e to test H0 : � = 0; we introduethe translation � = ��342Æ (mod 2�); where � is the transformed observationobtained from the original observation �: This gives�C� = os 342Æ �C� + sin 342Æ �S�; �S� = os 342Æ �S� � sin 342Æ �C�:These give ( �C�; �S�) = (:153442;�:314586):Note that �R� = �R� = :35; sine the resultant diretion is invariant under anyloation shift. These give T = �:0742; whih falls below the ritial value atthe 5% level of signi�ane as is easily seen from Table 1. Thus the laim isnot refuted, whih is also the onlusion arrived at earlier.Example 2. We �nally onsider the � unknown ase. This example is theexample 4.23 in Fisher (1993, p. 94) or example 7.2 in Mardia and Jupp(2000, p 125). Shmidt-Koenig(1963) give the vanishing angles of 15 pigeonsfrom an experiment on their homing ability. Tests have been ondutedfor "the null hypothesis that their mean vanishing diretion � is in fat inthe diretion of their loft (1490); against the alternative that they annotnavigate straight home."Fisher has used an intuitive large sample test based on sin(����0); wherewe have H0 : � = �0: Mardia and Jupp use the inversion of the onditional17



on�dene interval for � based on the onditional distribution of �� given R:As in example 1 above, we introdue the transformation � = � � 1490(mod 2�): We ondut the test by using both the statistis Tm and Zm; forthe sake of illustration and more importantly for evaluating the performaneof the approximation.Calulations give C� = 10:32098; S� = 3:64687; so that �R� = 0:72976:Then under H0; �̂ = A�1( �C) = 1:95 (from Fisher, 1993, Table A.3, p. 224).Thus from (11) we have,jZmj = jp�̂Pmi=1 sin �i=pCj = 1:5852 < 1:9604 = �:025:Next from (13) we have, jTmj = 1:5877:Both these test statistis lead to the same onlusion at the 5% level ofsigni�ane. There is not enough evidene to refute the ability of the pigeonsto navigate to their home, whih is also the onlusion arrived at earlier e.g.,by Fisher, Mardia and Jupp, and others.The remarkable loseness of the values of these two statistis is worthnoting.AknowledgementsPart of the researh of the �rst author was supported by ONR GrantNo. N00014-93-1-0174. The �rst author is thankful to both University ofCalifornia - Santa Barbara and Indian Statistial Institute - Kolkata for theGrants to support this researh. Part of this paper onstitutes a part of thePh.D. Dissertation of the seond author onduted at University of Califor-nia - Santa Barbara and at Indian Statistial Institute - Kolkata under theguidane of the �rst author.
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Table 1. Cut-o� points for LMPU Test for �:� = 0:1m �0:01 0:025 0:05 0:105 :25588 :24837 :18745 :104886 :35424 :31454 :18830 :160457 :38346 :33863 :24501 :198438 :44309 :41304 :32930 :237809 :48662 :41365 :33164 :2498510 :50016 :43030 :35260 :2787620 :50708 :43755 :39570 :3313530 :51225 :45019 :42963 :3653850 :64130 :52308 :47680 :38592100 :71001 :58147 :47750 :45746� = 0:5m �0:01 0:025 0:05 0:105 :84478 :67084 :57803 :249426 :91490 :70716 :58964 :397207 1:08133 :76623 :65221 :492588 1:16989 :76941 :71303 :436139 1:18185 :89727 :72266 :4921710 1:19025 :93554 :73670 :5022720 1:40034 1:10769 :73890 :5057630 1:40411 1:13666 :74545 :5065750 1:55547 1:16322 :86932 :54465100 2:04561 1:28866 1:12061 :70739
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� = 1:0m �0:01 0:025 0:05 0:105 1:12936 1:05149 :75287 :592086 1:82596 1:13438 :88205 :593427 1:94141 1:59096 1:03125 :617848 2:20843 1:61217 1:13123 :714499 2:26283 1:64510 1:20029 :7625510 2:38881 2:01740 1:36466 :8574020 2:41958 2:20682 1:51555 :9306630 75708 2:21226 1:56393 :9814850 2:94436 2:31443 1:67136 1:13649100 4:00131 3:34759 2:33409 1:99327� = 1:5m �0:01 0:025 0:05 0:105 2:02244 1:69334 1:04481 :647526 2:30280 1:74715 1:12702 :698397 2:48052 1:81820 1:21107 :769438 2:48615 1:90590 1:56377 :787209 2:50477 2:02335 1:58742 :9143610 2:58416 2:03765 1:60232 :9878420 3:10915 2:24143 1:66584 1:1490730 3:15341 2:40212 1:75804 1:2606350 3:39589 2:56502 1:77667 1:33914100 4:47562 3:00727 2:56775 1:42439
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� = 2:0m �0:01 0:025 0:05 0:105 2:62098 1:42209 1:31822 :834846 2:90299 2:19884 1:47681 :916147 2:71539 2:31785 1:61512 :937888 3:09756 2:57843 1:68101 :946419 3:09985 2:59223 1:78824 1:0454810 3:40628 2:74985 1:83594 1:1862720 3:55619 2:79965 1:85397 1:2267330 3:69003 2:92983 2:17252 1:5858450 3:90731 3:63646 2:35456 1:61081100 5:85477 4:72540 3:57381 2:75516
Table 2. Minimum sample size m orresponding to 2�:� 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2m 399 99 43 24 15 10 7 5 4 3 3� 2.4 2.6 2.8 3.0m 2 2 2 1
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