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Abstra
t The problem of 
onstru
ting optimal un
onditional tests for aspe
i�ed value of the mean dire
tion parameter � of a von Mises or 
ir
ularnormal distribution CN(�; �) against two-sided alternatives is 
onsidered.Motivated by the 
urved exponential family nature of the distribution andthe asso
iated 
urvature when � is known, lo
ally most powerful unbiasedtest is argued to be a good 
hoi
e. The test statisti
 is seen to admit of amajor simpli�
ation. Exa
t 
ut-o� points are given. It is also shown thatsmall sample sizes suÆ
e to make this test perform well even for non-lo
alalternatives. The asymptoti
 distributions of this test statisti
 are presented.When � is unknown, redu
tion by invarian
e or similarity fails. We derive anasymptoti
ally lo
ally optimal test and another equivalent but simpler testfor this 
ase. Two real life examples are dis
ussed.Keywords and phrases: C� - test, Curved exponential family, Dire
tionaldata, Lo
ally most powerful unbiased test, Statisti
al 
urvature.AMS 1985 Subje
t Classi�
ation: 62 F12.
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1 Introdu
tionWe 
onsider here the problem of 
onstru
ting and implementing both exa
tand asymptoti
 optimal tests for the mean dire
tion parameter � of a vonMises or 
ir
ular normal population CN(�; �) in the absen
e as well as inthe presen
e of the nuisan
e parameter � respe
tively. Let �1; : : : ; �n be arandom sample from CN(�; �); 0 � � < 2�; � > 0: We are interested intesting H0 : � = �0 against two-sided alternatives H1 : � 6= �0:The non-regular exponential family (REF) nature of the CN distributionwhen � is known, has 
onstrained the development of exa
t optimal tests toonly 
onditional ones. When � is unknown, the CN distribution be
omes amember of the REF. However, sin
e � is not a s
ale parameter, here again oneis 
onstrained to look at 
onditional tests. Un
onditional similar or invarianttests are not available.Mardia (1972, p. 138) notes that there is no uniformly most powerful(UMP) test for testing H0 against the even the usual one-sided 
ompositealternatives. Also, Mardia (1972, pp. 138-140) proposes the un
onditionallikelihood ratio test and the 
onditional unbiased test using Fisher's an
illaryprin
iple (see, Fisher, 1959, Se
tion 4.4; Kendall and Stuart, 1967, pp. 217-218). The LRT is not known to be optimal for small sample size, while theother test is a 
onditional test.First in se
tion 2 we present the notion of statisti
al 
urvature (Efron,1975) for a 
urved exponential family (CEF) and note its role in the devel-opment of optimal tests in a CEF. This motivates us to present in se
tion3 un
onditional, yet simple and optimal, tests for the above testing prob-lems by exploiting the approa
h of lo
ally most powerful (LMP) tests. LMPtests have been found 
onvenient to derive as well as to implement in various
omplex testing problems, parti
ularly in the 
ontext of univariate (Duraira-jan and Kale, 1979; SenGupta and Pal, 1993a) and multivariate (Senguptaand Pal, 1993b) mixture models, of multivariate inferen
e (Gokhale and Sen-Gupta, 1986; SenGupta, 1987), of univariate and bivariate reliability models(SenGupta, 1994; SenGupta and Pal, 2000) of dire
tional data, e.g. in test-ing for isotropy (SenGupta and Pal, 2001), for mean dire
tion (SenGupta,1991; SenGupta and Jammalamadaka, 1991, 2003), for outliers (SenGuptaand Laha, 2001), for 
hange-points (SenGupta and Laha, 2004), for indepen-den
e (Arnold and SenGupta, 2003), for symmetry (SenGupta and Rattihalli,2004), et
. For generalizations and further dis
ussion on LMP tests see e.g.3



SenGupta and Vermeire (1986), SenGupta (1991), Mukerjee and SenGupta(1993).We will 
onsider here the two-sided testing problem for both the 
ases,� known and unknown. The one-sided testing problem with its asso
iatedgeometry has been dealt with in details in SenGupta and Jammalamadaka(2003). In se
tion 3.1 the 
ase of � known is 
onsidered. The exa
t LMPunbiased (LMPU) test is presented and it is demonstrated that a major sim-pli�
ation results in its form. The LMPU test here is both an un
onditionalas well as an unbiased test. Further, it possesses the important exa
t (validfor all sample sizes) optimality property of having maximum power, among alllo
ally unbiased tests, for small departures from the null - the most diÆ
ultalternatives to dete
t in pra
ti
e. Based on asso
iated statisti
al 
urvature,we present a table exhibiting en
ouraging values (even trivial, i.e. 2, for� � 2:2) of the minimum sample size whi
h is expe
ted to make this testperform well throughout the parameter spa
e. We also derive both the nulland the non-null asymptoti
 distributions of the LMPU test statisti
. Someexa
t 
ut-o� points are also tabulated to enhan
e the use of the LMPU testin pra
ti
e. The geometry of the various tests employed fa
ilitates the higherorder power 
omparison of the tests.In se
tion 3.2 we 
onsider the 
ase when � is unknown. We �rst derivethe C�� or the asymptoti
 LMP test of Neyman (1959). We next proposean asymptoti
ally eqivalent optimal test whi
h has an extremely elegant andsimple form. Finally two examples 
orresponding to the two 
ases are givenin se
tion 4 to demonstrate the ease in implementation of the optimal testsproposed.2 De�nitions and Dis
ussions2.1 Curved Exponential FamilyIt will be useful here to present the notion of a 
urved exponential family(CEF). Let Y be a random variable taking on values in a nonempty opensubset O of an Eu
lidean spa
e and let P (f�) = fP� j � � �g be a 
lass ofprobability measures on O; where the parameter spa
e f� is a nonempty opensubset of Rp and for �1 6= �2 in �, P�1 6= P�2 : Next let, f� = f� � f� j � = (�); � � Lg be a \surfa
e" in f� parameterized by �; where L is a nonempty4



open subset ofRq with q < p and  (�) is a known Borel bimeasurable bije
tionfrom L onto its image  (L) inf�:We 
all the subfamily P (f�) = fP� j � � �ga \
urved" family in P (f�): Further, letP (f�) = [f(t j �) = expf< t; �(�) > �h(t)� �(�)g; ��L℄ (1)where < t; �(�) >= Ppi=1 ti�i(�); with range of ti; i = 1; : : : ; p independentof �: P (f�) given by (1) 
an be looked upon as a \redu
ed" dimensionalexponential family with respe
t to a �-�nite measure � where dim(�) = q <p = dim(Q); Q being a minimal suÆ
ient statisti
.2.2 Statisti
al CurvatureConsider the family in (1) with q = 1; i.e. the one-parameter CEF. LetP� =Cov�(T ): Denote the 
omponentwise derivatives of �(�) with respe
t to �by, � _(�) � (�=��)�(�); ��(�) � (�2=��2)�(�): Assume that these derivativesexist 
ontinuously in a neighborhood of a value of � where we wish to de�nethe 
urvature. Let,M� � " �20(�) �11(�)�11(�) �02(�) # � " _�(�)0P� _�(�) _�(�)0P� ��(�)��(�)0P� _�(�) ��(�)0P� ��(�) # ;
2� =jM� j =�320(�):Then, 
� is the statisti
al 
urvature of P at �:2.3 CEF and LMP testIn a CEF if an exa
t an
illary statisti
 exists, then for purposes of inferen
esregarding �; the prin
iple of 
onditionality is often used. However, whetheror not an exa
t an
illary statisti
 exists, even then it would be desirable toutilize Q to form an optimal and preferably an un
onditional (for the sakeof simpli
ity) test. If an UMP test does not exist then the LMP test 
anbe an attra
tive 
hoi
e, parti
ularly if it utilizes all the 
omponents of Q. However, in a non-regular exponential family there are spe
i�
 examples(e.g. Cherno�., 1951) whi
h demonstrate that the 
hoi
e of the LMP test
an be disastrous. 5



Consider in general the LMP test for say, H0 : � = �0: Efron suggeststhat a value of 
2�0 < 18 is not \large" and one 
an expe
t linear methods towork \well" in su
h a 
ase. In repeated sampling situations, the 
urvaturem
2�0 based on m observations satis�es, m
2�0 = 1
2�0=m; and hen
e one 
andetermine the sample size whi
h redu
es the statisti
al 
urvature below 1=8:3 Tests for mean dire
tionThe probability density fun
tion of CN(�; �) is given by:f(�;�; �) = [2�I0(�)℄�1 expf� 
os(���)g; 0 < �; � � 2�; 0 � � <1: (2)Suppose we have a random sample �1; :::; �m from (2). De�ne (C; S) =(�mi=1 
os �i;�mi=1 sin �i): Then the mean dire
tion ��; 0 � �� < 2�; and theresultant R; 0 � R � m; are de�ned through,(C; S) = (R 
os ��; R sin ��); R = �mi=1 
os(�i � ��) = (C2 + S2)1=2:Observe that in general the CN population is a REF, but with � knownit be
omes a member of (1,2) CEF, i.e. a CEF having a 1-dimensional pa-rameter � with a 2-dimensional suÆ
ient statisti
 (C,S) for it. Sin
e � 
anbe treated as a lo
ation parameter, without loss of generality, we will take�0 = 0: Unlike the linear 
ase, note that for the 
ir
ular 
ase it makes senseto have the mean (dire
tion) at an endpoint (e.g. 0) of the support of therandom variable. Further it also makes sense to have a two-sided alternativeH1 : � 6= 0 against the null hypothesis H0 : � = 0: Note that we interpretthe two-sided alternative for the 
ir
ular 
ase, in 
ontrast to the linear 
ase,in terms of the 
ir
ular proximity of the values under the alternative to thatthe null. This may thus be interpreted for a two-sided lo
al alternative as �lying either in the ar
 (0; Æ1℄ or in the ar
 [2�� Æ2; 2�); where Æi > 0; i = 1; 2;is some small angle.3.1 Case 1. � known.Consider testing H0 : � = 0 against H1 : � 6= 0: Assume � is known, say,equal to 1. Note that sin
e � is not a s
ale parameter, tables of 
ut-o� pointsneed to be supplied for di�erent values of the 
ontinuous parameter � > 0to render the tests to be useful in pra
ti
e. An un
onditional LMP test maybe quite useful here, provided its performan
e is satisfa
tory whi
h may be6



initially judged through the statisti
al 
urvature asso
iated with the CEFnature of the present CN distribution and this testing problem.We 
onsider the following tests : a test based on the maximum likelihoodestimator (MLE), the likelihood ratio test (LRT) and the LMPU tests. The�rst one is ad-ho
 in nature while the form of the LRT is already availablefrom SenGupta and Jammalamadaka (2001, pp. 114-116). The LMPU meritsspe
ial mention here, sin
e unlike the other two tests, not only does it pos-sess an exa
t optimality property, but the test statisti
 also is quite elegant.This results from the symmetry of the CN distribution and an exploitation ofthe re
e
tion prin
iple. Exa
t 
ut-o� points of the LMPU test 
an be easilyobtained either by numeri
al integration or through simulations. Two essen-tial properties that ant reasonable test should possess are shown to hold forthe LMPU test: the exa
t (all sample size) property of admissibility and thelarge sample property of 
onsisten
y. The latter is parti
ularly important inthe 
ontext of a LMP test sin
e it is known that su
h tests may in some 
ases(see e.g. Cherno�, 1951; Ferguson, 1967) indeed turn out to be in
onsitent.Asymptoti
 normality of the LMPU test statisti
 under both the null andalternative hypotheses are also established. We present in Se
. 3.2 a resulton the large-sample higher-order power 
omparison of these three tests.3.1.1 Test Based on the MLE.It is easy to see that the maximum likelihood estimator of � is given by,�̂ = tan�1(S=C): Motivated by the geometry of the problem and based onthe des
ription of the alternative as given above, we propose the test givenby, ! : �̂ 2 ar
(�1; 2� � �2); �i > 0; i = 1; 2: For �0 = 0; this may be writtenin the simpler form: ! : �̂ > K1 or < K2; 0 < K1 < K2 < 2�: However interms of general �0(6= 0); the 
riti
al region proposed takes the form: ! : �̂ 2ar
(K1; K2) where K1 may indeed be larger than K2: The 
onstants usedabove are to be determined from the size and (lo
al) unbiasedness 
onditionsgiven in (3) below. The determination of these 
onstants however turns outto be non-trivial and we do not pro
eed with it further.3.1.2 Lo
ally Most Powerful Unbiased (LMPU) Test.The 
on
ept of LMPU test may be attributed to Pearson and Neyman (1936,1938) - see also Ferguson (1972, pp 237-238). The aim is to �nd a test '07



out of all �-level unbiased tests whi
h maximizes the 
urvature (the slope forone-sided tests) of the power fun
tion at the null value. Consider the 
lassC of tests su
h that any test ' 2 C satis�es�'(�) j�=0 = � and �0'(�) j�=0 = 0 (3)The test '0 2 C is an LMPU test if it maximizes the value of the se
ondderivative of �'(�) at � = 0, that is�00'0(�) j�=0 > �00'(�) j�=0 :We now motivate LMPU test for our problem. The LRT here is notknown to have any exa
t optimality property. Note that also no small sampleun
onditional optimal test for H0 is yet available. Mardia (1972, pp 138 -141) and Mardia and Jupp (2000) present 
onditional tests based on the"Fisher An
illary Prin
iple". An interesting point to note though is thatthis 
onditioning does not introdu
e any additional dimension in the indu
ed"parameter" (in
luding the known value of the 
onditioning variable) spa
esin
e the 
onditioning variable, the resultant R, is amalgamated in the newknown 
on
entration parameter. Fisher (1993, pp 93 - 94) suggests testsbased on large samples and bootstrap te
hnique. These are quite interestingapproa
hes. However, small sample optimality properties of these tests areyet to be established.The s
ore test dis
ussed by Mardia and Jupp (2000) also needs to bementioned here. Though it also is based on derivative of the log likelihoodfun
tion, only the �rst derivative is used in 
ontrast to both the �rst andse
ond derivative needed for the LMPU test. Further, unlike the LMPUtest, this test is not known to possess any exa
t optimality property andhen
e will not be dis
ussed further in this paper.In pra
ti
e we will usually be interested in testing against `lo
al' alterna-tives, i.e. alternatives 
lose to the null, whi
h however are also more diÆ
ultto dete
t. In the absen
e of a UMP test, a LMP test is then a natural 
hoi
e.Sin
e our underlying distribution is a member of the CEF, the suitability ofthis LMP test may be further evaluated through the asso
iated statisti
al
urvature. We show that here the LMP approa
h not only yields a simpleand elegant test statisti
 but further that the test is expe
ted to work "well", as revealed by 
20 ; for small sample size, e.g. even as small as 15 when� = 1: 8



Inspite of these favorable poperties of a LMPU test, it 
annot be unequiv-o
ally advo
ated. This test need not be even admissible or 
onsistent. Weestablish below that the LMPU test for our testing problem does not su�erfrom any of these drawba
ks.Let [x℄ denote the greatest integer in x, �C = C=m; �S = S=m �R = R=mand A � A(�) = I0(�)=I1(�): We then have the followingTheorem 1. The LMPU test for testing H0 : � = 0 against H1 : � 6= 0; isgiven by! : f(��; r) : �� 2 (
1r(K); 
2r(K))U(2� � 
2r(K); 2� � 
1r(K))j(0 � �� < 2�; 0 < r � n)g (4)where 
ir(K) = ar
 
os air(K); i = 1; 2: a1r(K) > a2r(K);a1r(K) = [��r + f�r2 � 4(m��r2)(K �m��r2)g1=2℄=[2(m��r2)℄;a2r(K) = [��r � f�r2 � 4(m��r2)(K �m��r2)g1=2℄=[2(m��r2)℄:Using the size 
ondition, K is determined from the equivalent 
riti
al region! : � �C +m� �S2 > K: (5)(ii) This test is admissible. (iii) A sample size m = [8f1=A2 � 1=A�� 1g℄ +1; whi
h monotoni
ally de
reases with �; suÆ
es to redu
e the statisti
al
urvature below Efron's 
riti
al value.Proof: A LMPU test 
an be found by using the generalized Neyman-PearsonLemma (see, Lehmann, 1986, pp. 96-101). A

ording to this lemma, fortesting H0 : � = 0 against H1 : � 6= 0; a LMPU test will have 
riti
al regiongiven by�2��2L(��; �)j�=0 + ( ���L(��; �)j�=0)2 > k1 + k2( ���L(��; �)j�=0) (6)where �� = (�1; :::; �m)0, L(��; �) is the log likelihood fun
tion of (�1; : : : ; �m)and k1; k2 are determined by (3). Then the 
riti
al fun
tion of this LMPUtest is given by 9



'0(��; �) = 1 if (�� mXi=1 
os �i) + (� mXi=1 sin �i)2 > k1 + k2(� mXi=1 sin �i)= 0 otherwise (7)De�ne U = �Pmi=1 sin �i and V = ��Pmi=1 
os �i + (�Pmi=1 sin �i)2.Exploiting the fa
ts that the von Mises density is symmetri
, that (U; V )and (U; �V ) are equal in distributions sin
e V is an even fun
tion under H0and the re
e
tion prin
iple (Ferguson, 1967), it follows (Chang, 1991) thatk2 = 0: Thus the test redu
es to the simple form given in (4).?? A

ording to Lemma 1 above,?? the 
riti
al region of the LMPU testbe
omes ! : �C + �S2 > k1; ! : �T � � �C +m� �S2 > Kwhere K is determined by the given level of signi�
an
e.Note that sin
e�C = �R 
os ��; �S = �R sin ��; �R = R=m; �C2 + �S2 = �R2:The above 
riti
al region then 
an be rewritten as,! : m��r2 
os2 � + �r 
os � �m��r2 +K < 0; :::(XX)whi
h, due to the 
onvexity of the fun
tion, 
an be equivalently written as,a1r(K) < 
os �� < a2r(K); :::(Y Y )where 0 � a1r(K); a2r(K) � �=2 are the two roots of the quadrati
expression on the LHS of (XX) equated to zero. Now, from the nature of the
osine 
urve it follows that (YY) yields that �� for ea
h �r should lie in theunion of two disjoint ar
s as presented in the theorem.(ii) Admissibility of the test follows due to the uniqueness of the LMPUtest - a 
onsequen
e of the non-randomized nature of the 
riti
al region 
or-responding to a 
ontinuous test statisti
.(iii) Finally, 
onsider the asso
iated statisti
al 
urvature. At � = 0;Var(sin �) = A(�)=�; Var(
os �) = 1 � A(�)=� � A2(�) and Cov(
os �;10



sin �) = 0. Further, _�(0) = (0; �); ��(0) = (��; 0): Simpli�
ation yields
20(�) = 1=A2�1=A��1: It then follows that (�=��)
0(�) < 0; i.e. 
0(�) # �:Also demanding m
20(�) < 1/8, the 
riti
al value suggested by Efron, yieldsthe value of m as stated in the theorem.Remarks: 1. Note that the LMPU test is a fun
tion of both the 
ompo-nents C and S or equvalently �� and R of the suÆ
ient statisti
 and is anun
onditional test.2. Table 2 provides the desired minimum values of m; as per Efron's
riterion, for various values of � whi
h should make the LMP test work well.In parti
ular with � = 1, to a
hieve m
20(1) < 1/8, the 
riti
al value, it suÆ
esto havem > 14:266; i.e. m =15. Su
h a sample size should be easily available,implying thereby that the LMPU test will work "well" in pra
ti
e. Note thatthe required sample size m whi
h suÆ
es be
omes trivial (i.e. 2) for � > 2:2:3.1.3 Exa
t 
ut-o� pointsSmall sample 
ut-o� points may be obtained through numeri
al integrationor by simulation. For the former approa
h, the following representation ofthe tail probability of �T under H0 is 
onvenient.� = P ( �T > t�) = Z m0 P (��r 
os �� �m��r2
os2�� +m��r2 > t�jR = r)fR(r)dr= Rm0 P (�� 2 SrjR = r)fR(r)dr say.Similar representation for the power as the above for the size of the testshows that the power of the LMPU test is a weighted average of the powersof the 
onditional (for ea
h r) test. We 
an then use the fa
ts that the
onditional density of ��j(R = r) is CN(�; �r) and fR(r); the marginal densityof R is available from, e.g. equation (4.5.4) in Mardia and Jupp (2000), p.69. Gaussian quadrature and iterative te
hniques (e.g. see SenGupta andJammalamadaka, 2001, for the one-sided LMP test) may then be employedto get the 
ut-o� points.Alternatively, one 
an generate the distribution of �T by simulating ob-servations from the CN distribution, e.g. by the algorithm of Best and Fisher(1979). Cut-o� points for � = 0:01; 0:025; 0:05; 0:10; � = 0:1; 0:5; 1:0; 1:5; 2:0;and sample sizes m = 5; 6; 7; 8; 9; 10; 20; 30; 50; 100 obtained by simu-lation are given in Table 1. 11



The 
ut-o� points for large samples are easily obtained for all levels ofsigni�
an
e � and all � values by virtue of theorem 2 below.3.1.4 Asymptoti
 distribution of �TWe now study both the null and non-null asymptoti
 distributions of �T :These are shown to be normal.Let us denote the raw trigonometri
 moments asE(
os p�) = �p; E(sin p�) = �pand the 
entral trigonometri
 moments as,E(
os(p(� � �))) = ��p; E(sin(p(� � �))) = ��p = 0:Also for brevity we will write ��p as Bp:The asymptoti
 distribution of the LMPU test statisti
 is given byTheorem 2. As m!1;p2mf �T + A(�) 
os�� �m(A(�) sin�)2g L�! N(0; �2);where�2 = f1 +B2(�) 
os 2�� 2(A(�) 
os�)2g � 4A(�)�m sin�fB2(�)� A2g sin 2�+4(A(�)�m sin�)2f1� B2(�) 
os 2�� 2(A(�) sin�)2g:Corollary. Under H0; as m!1;p2mf �T + A(�)g L�! N(0; f1 +B2(�)� 2A2(�)g)and �C and �S are asymptoti
ally independent.Proof: We �rst need to prove the followingLemma 2: For a CN(�; �) population, the trigonometri
 moments are givenby, ��p = Ip(�)=I0(�) = Bp(�); ��p = 0;E(
os(p(� � �)) sin(q(� � �))) = 0; p; q � 1; (8)12



where Ip(�) = R 20 � 
os p� exp(� 
os p�)d� is the modi�ed p-th order Besselfun
tion of the �rst kind. Also, in terms of the standard notations (see e.g.,(A.11) of Mardia and Jupp, 2000, p. 350)B1(�) = I1(�)=I0(�) = A2(�) � A(�); Ap(�) = Ip=2(�)=Ip=2�1(�):Proof: The results follow on noting the symmetry of the CN distribution,the even and odd nature of the 
osine and sine fun
tions respe
tively, andthe de�nition of Ip(�):Now,E 
os � = �1 = A(�) 
os�;E sin � = �1 = A(�) sin�V ar(
os �) = 12f1 + �2 � 2�21g = 12f1 +B2 
os 2�� 2(A 
os�)2g � �11V ar(sin �) = 12f1� �2 � 2�21g = 12f1 +B2 
os 2�� 2(A sin�)2g � �22Cov(
os �; sin �) = 12f�2 � 2�1�1g = 12fB2 � A2g sin 2� � �12:Then by the Central Limit Theorem and on using lemma 2,pm( �C � �1; �S � �1) L�! N2(0; �) (9)where the 
ovarian
e matrix � = ((�ij)) has elements de�ned above.To derive the asymptoti
 distribution of the test statisti
, we invoke theÆ- method given byLemma 3. [Rao (1973), p 387.℄ Let (pm(T1m � �1); : : : ; pm(Tkm � �k))have asymptoti
 k-variate normal distribution with mean zero and 
ovarian
ematrix � = ((�ij)) with �ij = Cov(Ti; Tj); i = 1; : : : ; k and j = 1; : : : ; k.Furthermore, let g be a fun
tion of k variables whi
h is totally di�erentiable.Then, pm[g(T1m; : : : ; Tkm) � g(�1; : : : ; �k)℄ has the asymptoti
 normaldistribution with mean zero and varian
e PiPj �ij ���ig ���j g.De�ne g( �C; �S) = � �C + �m �S2: Then, g(�1; �1) = ��1 + �m�21 :By lemma 3 we are able to 
on
lude thatpmf� �C + �m �S2 � (��1 + �m�21)g L�! N(0; �2);where�2 = �11  ���1 g(�1; �1)!2 + 2�12  ���1 g(�1; �1)! ���1 g(�1; �1)!13



+�22  ���1 g(�1; �1)!2= �11 � 4�m�1�12 + 4(�m�1)2�22On simpli�
tions, the expressions in the theorem now result.The 
orollary follows on putting � = 0:3.1.5 Consisten
y of the LMPU test.Let us indi
ate with the super�xes 0 and 1 the relevant quantities underH0 : � = 0 and H1 : � = �(6= 0) respe
tively. For example,�01 = A(�); �01 = 0;�11 = A(�) 
os�; �11 = A(�) sin�:Then we have the following Theorem 3. The LMPU test given above is
onsistent. Proof: By theorem 2 it follows that for large samples K =(�0��)=(m1=2) � �01; where �� is the upper 100 �% point of the standardnormal distribution. Then for large samples,P [ �T > KjH1℄ = P [Z > (�0=�1)�� �m1=2f(m�(�11)2)+A(�)(1�
os�)g℄ �!????Remarks: Sometimes moments of sin � and 
os � (instead of trigonometri
moments of �) are needed. These may be obtained by repeated di�erentiationunder the integration sign as many times as needed and exploiting the prop-erties used above for obtaining the trigonometri
 moments. Alternatively, onnoting that the CN distribution is a member of the exponential family, thesemay also be obtained by an useful generalization of Stein's identity to theunivariate multiparameter exponential families noted by Arnold et al (2001).3.1.6 Higher-order Power Comparison.For the 
ase of the two-sided alternatives, the test based on the MLE andthe LR test dis
ussed above and also the LMP test are un
onditional tests.Ex
ept for the LMP test, whi
h is optimal for all sample sizes in the senseof maximum lo
al power, no small-sample property of the other two tests isknown. However, using standard results, e.g., following Amari (1985), we getthe following results on the de�
ien
ies of the tests.14



Lemma 4. The third order power losses of the LMP test 
ompared to theMLE and the LR tests are respe
tively given byLLM (t) = [(1� 1=(2� 2�=2)� J(t))=J(t)℄2 andLLR(t) = [(1� 1=(2� 2�=2)� J(t))=(1=2� J(t))℄2; (10)where ��=2 is the upper 100�=2% point of the standard normal distribution�(�);�(t) = (t=2)[�(��=2 � t)� �(��=2 + t)℄ and J(t) = 1� t=[2��=2 tanh t��=2℄:Proof: This result follows from Theorems 6.6, 6.7, and 6.8 of Amari.3.2 Case 2. � unknownWhen � is unknown, the prin
iple of similarity or meaningful invarian
e doesnot lead to any redu
tion and hen
e no un
onditional useful test is available.A 
onditional test may be derived, and even a 
onditional LMP test maybe envisaged, i.e. a LMP test obtained from the 
onditional distributionfree from the nuisan
e parameter �: but as for the � known 
ase, this willalso 
all for extensive tables 
orresponding to the 
onditioning 
ontinuousrandom variable, to be useful in pra
ti
e. One may of
ourse use the usualLRT. However, then neither any simple test statisti
 results nor is any smallsample optimal property of this LRT known.3.2.1 The C� Test.Here, we show that a simple and elegant yet an un
onditional asymptoti
allyoptimal test, e.g. Neyman's C� test 
an be derived.Theorem 3. The C�-test for testing H0 : � = 0 against H1 : � 6= 0 is givenby ! : jZmj = jp�̂ mXi=1 sin �i=(mA(�̂)1=2j > ��=2 (11)Proof: Let, � = ln f(�; �): Then at � = 0; �� = � sin �; �� = 
os � � A(�):Assume � < K0 <1: Then straightforward 
omputations establish that allthe 
onditions for �� and �� to be Cr�amer fun
tions are satis�ed.15



The C�- test is given as! : jZ�mj = j mXi=1f��f�; �̂g � a01��(�; �̂)g=pm�0(�̂)j > ��=2 (12)where �̂ is any lo
ally root m 
onsistent estimator of � under H0; �0(�̂) isthe standard deviation of ��(�; �) � a01��(�; �) under H0 and evaluated at� = �̂; a01 is the partial regression 
oeÆ
ient of �� on �� and �� is the upper100�% point of the standard normal distribution. One may, e.g., take �̂ asthe MLE of � under H0; i.e., �̂ = Maxf0;A�1(C=m); C > 0g: Further, a01 isseen to be 0 by dire
t 
omputation. Also, E(Æ2`=Æ�Æ�) = 0 under H0; holds.Then, the numerator of Z�m redu
es to �P sin �i and thus �20(�) redu
es to,�20(�) = V ar�=0(� sin �) = �A(�): Thus (12) redu
es to the simple form givenin theorem 3.For any sequen
e �� = f�ng su
h that �npn ! 
; the asymptoti
 valueof the power of the test is given by1� (1=p2�) Z ��=2���=2 expf�(t� �0(�)
)2=2gdt:Among all tests, T �m; for H0 : � = 0 with asymptoti
 level of signi�
an
e �;whatever be the sequen
e of alternatives �m 6= 0 with �m ! �0 = 0; andwhatever be the �xed � > 0;lim [ Power fTm(�m; �)g � Power fT �m(�m; �)g℄ � 0:The test Tm is in this sense an asymptoti
ally lo
ally most powerful test.3.2.2 A simple optimal test(11) involves 
omputation of �̂: This may be avoided to give an even sim-pler but nevertheless (asymptoti
ally) equivalent test. Note that, �20(�) =�2E0(sin2 �) and Pmi=1 sin2 �i=m is a 
onsistent estimator of E0(sin2 �): Then(11) redu
es to,! : jTmj = j mXi=1 sin �i=( mXi=1 sin2 �i)1=2j > ��=2: (13)Tm is asymptoti
aly equivalent to Zm in the sense that it has, by Slutsky'stheorem, the same limiting distribution as that of Zm: In Example 2 we show16



that the numeri
al equivalen
e of these two test statisti
s 
an hold for evenas small a sample size as m = 15.4 ExamplesHere we present two examples, one ea
h 
orresponding to the � known andunknown 
ases. These demonstrate the ease in the implementation of ourLMPU tests proposed above.Example 1. We �rst 
onsider the � known 
ase. This example is the example6.5 in Mardia (1972, pp 141-142) or the example 7.1 in Mardia and Jupp(2000, p 121) where a 
onditional test has been used. A sample of size 10 onthe dip-dire
tions of 
ross-beds of a se
tion of river gave �� = 278Æ and �R =0.35. It is known that � = 342Æ and � = 0:8 for a neighboring se
tion of theriver. We are interested to know whether the 
laim that the mean dire
tionfor the se
tion sampled is the same as that of the neighboring one.To use our framework as in se
tion 3, i.e to test H0 : � = 0; we introdu
ethe translation � = ��342Æ (mod 2�); where � is the transformed observationobtained from the original observation �: This gives�C� = 
os 342Æ �C� + sin 342Æ �S�; �S� = 
os 342Æ �S� � sin 342Æ �C�:These give ( �C�; �S�) = (:153442;�:314586):Note that �R� = �R� = :35; sin
e the resultant dire
tion is invariant under anylo
ation shift. These give T = �:0742; whi
h falls below the 
riti
al value atthe 5% level of signi�
an
e as is easily seen from Table 1. Thus the 
laim isnot refuted, whi
h is also the 
on
lusion arrived at earlier.Example 2. We �nally 
onsider the � unknown 
ase. This example is theexample 4.23 in Fisher (1993, p. 94) or example 7.2 in Mardia and Jupp(2000, p 125). S
hmidt-Koenig(1963) give the vanishing angles of 15 pigeonsfrom an experiment on their homing ability. Tests have been 
ondu
tedfor "the null hypothesis that their mean vanishing dire
tion � is in fa
t inthe dire
tion of their loft (1490); against the alternative that they 
annotnavigate straight home."Fisher has used an intuitive large sample test based on sin(����0); wherewe have H0 : � = �0: Mardia and Jupp use the inversion of the 
onditional17




on�den
e interval for � based on the 
onditional distribution of �� given R:As in example 1 above, we introdu
e the transformation � = � � 1490(mod 2�): We 
ondu
t the test by using both the statisti
s Tm and Zm; forthe sake of illustration and more importantly for evaluating the performan
eof the approximation.Cal
ulations give C� = 10:32098; S� = 3:64687; so that �R� = 0:72976:Then under H0; �̂ = A�1( �C) = 1:95 (from Fisher, 1993, Table A.3, p. 224).Thus from (11) we have,jZmj = jp�̂Pmi=1 sin �i=pCj = 1:5852 < 1:9604 = �:025:Next from (13) we have, jTmj = 1:5877:Both these test statisti
s lead to the same 
on
lusion at the 5% level ofsigni�
an
e. There is not enough eviden
e to refute the ability of the pigeonsto navigate to their home, whi
h is also the 
on
lusion arrived at earlier e.g.,by Fisher, Mardia and Jupp, and others.The remarkable 
loseness of the values of these two statisti
s is worthnoting.A
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Table 1. Cut-o� points for LMPU Test for �:� = 0:1m �0:01 0:025 0:05 0:105 :25588 :24837 :18745 :104886 :35424 :31454 :18830 :160457 :38346 :33863 :24501 :198438 :44309 :41304 :32930 :237809 :48662 :41365 :33164 :2498510 :50016 :43030 :35260 :2787620 :50708 :43755 :39570 :3313530 :51225 :45019 :42963 :3653850 :64130 :52308 :47680 :38592100 :71001 :58147 :47750 :45746� = 0:5m �0:01 0:025 0:05 0:105 :84478 :67084 :57803 :249426 :91490 :70716 :58964 :397207 1:08133 :76623 :65221 :492588 1:16989 :76941 :71303 :436139 1:18185 :89727 :72266 :4921710 1:19025 :93554 :73670 :5022720 1:40034 1:10769 :73890 :5057630 1:40411 1:13666 :74545 :5065750 1:55547 1:16322 :86932 :54465100 2:04561 1:28866 1:12061 :70739
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� = 1:0m �0:01 0:025 0:05 0:105 1:12936 1:05149 :75287 :592086 1:82596 1:13438 :88205 :593427 1:94141 1:59096 1:03125 :617848 2:20843 1:61217 1:13123 :714499 2:26283 1:64510 1:20029 :7625510 2:38881 2:01740 1:36466 :8574020 2:41958 2:20682 1:51555 :9306630 75708 2:21226 1:56393 :9814850 2:94436 2:31443 1:67136 1:13649100 4:00131 3:34759 2:33409 1:99327� = 1:5m �0:01 0:025 0:05 0:105 2:02244 1:69334 1:04481 :647526 2:30280 1:74715 1:12702 :698397 2:48052 1:81820 1:21107 :769438 2:48615 1:90590 1:56377 :787209 2:50477 2:02335 1:58742 :9143610 2:58416 2:03765 1:60232 :9878420 3:10915 2:24143 1:66584 1:1490730 3:15341 2:40212 1:75804 1:2606350 3:39589 2:56502 1:77667 1:33914100 4:47562 3:00727 2:56775 1:42439
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� = 2:0m �0:01 0:025 0:05 0:105 2:62098 1:42209 1:31822 :834846 2:90299 2:19884 1:47681 :916147 2:71539 2:31785 1:61512 :937888 3:09756 2:57843 1:68101 :946419 3:09985 2:59223 1:78824 1:0454810 3:40628 2:74985 1:83594 1:1862720 3:55619 2:79965 1:85397 1:2267330 3:69003 2:92983 2:17252 1:5858450 3:90731 3:63646 2:35456 1:61081100 5:85477 4:72540 3:57381 2:75516
Table 2. Minimum sample size m 
orresponding to 
2�:� 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2m 399 99 43 24 15 10 7 5 4 3 3� 2.4 2.6 2.8 3.0m 2 2 2 1
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