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Abstract  The problem of constructing optimal unconditional tests for a
specified value of the mean direction parameter p of a von Mises or circular
normal distribution C'N(u, k) against two-sided alternatives is considered.
Motivated by the curved exponential family nature of the distribution and
the associated curvature when x is known, locally most powerful unbiased
test is argued to be a good choice. The test statistic is seen to admit of a
major simplification. Exact cut-off points are given. It is also shown that
small sample sizes suffice to make this test perform well even for non-local
alternatives. The asymptotic distributions of this test statistic are presented.
When £ is unknown, reduction by invariance or similarity fails. We derive an
asymptotically locally optimal test and another equivalent but simpler test
for this case. Two real life examples are discussed.

Keywords and phrases: C, - test, Curved exponential family, Directional
data, Locally most powerful unbiased test, Statistical curvature.
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1 Introduction

We consider here the problem of constructing and implementing both exact
and asymptotic optimal tests for the mean direction parameter y of a von
Mises or circular normal population C'N(u, ) in the absence as well as in
the presence of the nuisance parameter x respectively. Let 6y, ..., 6, be a
random sample from CN(u, k), 0 < p < 27,k > 0. We are interested in
testing Hy : 1t = po against two-sided alternatives Hy : p # .

The non-regular exponential family (REF) nature of the CN distribution
when x is known, has constrained the development of exact optimal tests to
only conditional ones. When x is unknown, the CN distribution becomes a
member of the REF. However, since « is not a scale parameter, here again one
is constrained to look at conditional tests. Unconditional similar or invariant
tests are not available.

Mardia (1972, p. 138) notes that there is no uniformly most powerful
(UMP) test for testing Hy against the even the usual one-sided composite
alternatives. Also, Mardia (1972, pp. 138-140) proposes the unconditional
likelihood ratio test and the conditional unbiased test using Fisher’s ancillary
principle (see, Fisher, 1959, Section 4.4; Kendall and Stuart, 1967, pp. 217-
218). The LRT is not known to be optimal for small sample size, while the
other test is a conditional test.

First in section 2 we present the notion of statistical curvature (Efron,
1975) for a curved exponential family (CEF) and note its role in the devel-
opment of optimal tests in a CEF. This motivates us to present in section
3 unconditional, yet simple and optimal, tests for the above testing prob-
lems by exploiting the approach of locally most powerful (LMP) tests. LMP
tests have been found convenient to derive as well as to implement in various
complex testing problems, particularly in the context of univariate (Duraira-
jan and Kale, 1979; SenGupta and Pal, 1993a) and multivariate (Sengupta
and Pal, 1993b) mixture models, of multivariate inference (Gokhale and Sen-
Gupta, 1986; SenGupta, 1987), of univariate and bivariate reliability models
(SenGupta, 1994; SenGupta and Pal, 2000) of directional data, e.g. in test-
ing for isotropy (SenGupta and Pal, 2001), for mean direction (SenGupta,
1991; SenGupta and Jammalamadaka, 1991, 2003), for outliers (SenGupta
and Laha, 2001), for change-points (SenGupta and Laha, 2004), for indepen-
dence (Arnold and SenGupta, 2003), for symmetry (SenGupta and Rattihalli,
2004), etc. For generalizations and further discussion on LMP tests see e.g.



SenGupta and Vermeire (1986), SenGupta (1991), Mukerjee and SenGupta
(1993).

We will consider here the two-sided testing problem for both the cases,
k known and unknown. The one-sided testing problem with its associated
geometry has been dealt with in details in SenGupta and Jammalamadaka
(2003). In section 3.1 the case of x known is considered. The exact LMP
unbiased (LMPU) test is presented and it is demonstrated that a major sim-
plification results in its form. The LMPU test here is both an unconditional
as well as an unbiased test. Further, it possesses the important exact (valid
for all sample sizes) optimality property of having maximum power, among all
locally unbiased tests, for small departures from the null - the most difficult
alternatives to detect in practice. Based on associated statistical curvature,
we present a table exhibiting encouraging values (even trivial, i.e. 2, for
k > 2.2) of the minimum sample size which is expected to make this test
perform well throughout the parameter space. We also derive both the null
and the non-null asymptotic distributions of the LMPU test statistic. Some
exact cut-off points are also tabulated to enhance the use of the LMPU test
in practice. The geometry of the various tests employed facilitates the higher
order power comparison of the tests.

In section 3.2 we consider the case when k is unknown. We first derive
the C,— or the asymptotic LMP test of Neyman (1959). We next propose
an asymptotically eqivalent optimal test which has an extremely elegant and
simple form. Finally two examples corresponding to the two cases are given
in section 4 to demonstrate the ease in implementation of the optimal tests
proposed.

2 Definitions and Discussions

2.1 Curved Exponential Family

It will be useful here to present the notion of a curved exponential family
(CEF). Let Y be a random variable taking on values in a nonempty open

subset O of an Euclidean space and let P(®) = {P, |n € ©} be a class of
probability measures on O, where the parameter space Oisa nonempty open
subset of RP and for 1, # 1, in ©, P, # P,,. Next let, o= {n € ) n=
Y(B), 8 € L} bea “surface” in © parameterized by 3, where L is a nonempty



open subset of R? with ¢ < p and #(-) is a known Borel bimeasurable bijection

from L onto its image ¢/(L) in ©. We call the subfamily P(®) = {P, | n ¢ ©}

a “curved” family in P(@®). Further, let

P(©) = [f(t | B) = exp{< t,n(B) > —h(t) — 7(B)}, BeL] (1)

where < t,n(8) >= Y, t;m:(3), with range of #;,4 = 1,...,p independent
of 3. P(®) given by (1) can be looked upon as a “reduced” dimensional
exponential family with respect to a o-finite measure v where dim(f) = ¢ <
p = dim(Q), @ being a minimal sufficient statistic.

2.2 Statistical Curvature

Consider the family in (1) with ¢ = 1, i.e. the one-parameter CEF. Let 35 =
Covg(T). Denote the componentwise derivatives of 7(/) with respect to j3

by, n(8) = (0/98)n(B), 1(B) = (0*/98?)n(B). Assume that these derivatives

exist continuously in a neighborhood of a value of # where we wish to define
the curvature. Let,

M E[m(ﬁ) mm]glw)/zm(m 0(B)1 S5 (B)
b v1(B)  vo2(B) i(B) sn(B) (B Zsi(B) |’

5 =| Mg | /15 (8B).

Then, v is the statistical curvature of P at (.

2.3 CEF and LMP test

In a CEF if an exact ancillary statistic exists, then for purposes of inferences
regarding (3, the principle of conditionality is often used. However, whether
or not an exact ancillary statistic exists, even then it would be desirable to
utilize @ to form an optimal and preferably an unconditional (for the sake
of simplicity) test. If an UMP test does not exist then the LMP test can
be an attractive choice, particularly if it utilizes all the components of ()
. However, in a non-regular exponential family there are specific examples
(e.g. Chernoff., 1951) which demonstrate that the choice of the LMP test
can be disastrous.



Consider in general the LMP test for say, Hy : § = [y. Efron suggests
that a value of 7/230 < % is not “large” and one can expect linear methods to
work “well” in such a case. In repeated sampling situations, the curvature
m73, based on m observations satisfies, ,,75, = 173,/m, and hence one can

determine the sample size which reduces the statistical curvature below 1/8.

3 Tests for mean direction
The probability density function of C'N(u, ) is given by:
f0; k) = [27I(k)] texp{rcos(0—p)}, 0 <O, u<2m,0< kK <o0. (2)

Suppose we have a random sample 6y, ..., 0, from (2). Define (C,S) =
(X7, cosB;, ¥ sin6;). Then the mean direction #,0 < @ < 27, and the
resultant R,0 < R < m, are defined through,

(C,S) = (Rcosf, Rsinf); R=X" cos(; —0) = (O + 5?)'/2.

Observe that in general the CN population is a REF, but with £ known
it becomes a member of (1,2) CEF, i.e. a CEF having a 1-dimensional pa-
rameter p with a 2-dimensional sufficient statistic (C,S) for it. Since p can
be treated as a location parameter, without loss of generality, we will take
tto = 0. Unlike the linear case, note that for the circular case it makes sense
to have the mean (direction) at an endpoint (e.g. 0) of the support of the
random variable. Further it also makes sense to have a two-sided alternative
Hi : pu # 0 against the null hypothesis Hy : 4 = 0. Note that we interpret
the two-sided alternative for the circular case, in contrast to the linear case,
in terms of the circular proximity of the values under the alternative to that
the null. This may thus be interpreted for a two-sided local alternative as u
lying either in the arc (0, 6;] or in the arc [27 — o, 27), where §; > 0,i =1, 2,
is some small angle.

3.1 Case 1. Kk known.

Consider testing Hy : ¢ = 0 against Hy : p # 0. Assume k is known, say,
equal to 1. Note that since k is not a scale parameter, tables of cut-off points
need to be supplied for different values of the continuous parameter x > 0
to render the tests to be useful in practice. An unconditional LMP test may
be quite useful here, provided its performance is satisfactory which may be



initially judged through the statistical curvature associated with the CEF
nature of the present CN distribution and this testing problem.

We consider the following tests : a test based on the maximum likelihood
estimator (MLE), the likelihood ratio test (LRT) and the LMPU tests. The
first one is ad-hoc in nature while the form of the LRT is already available
from SenGupta and Jammalamadaka (2001, pp. 114-116). The LMPU merits
special mention here, since unlike the other two tests, not only does it pos-
sess an exact optimality property, but the test statistic also is quite elegant.
This results from the symmetry of the CN distribution and an exploitation of
the reflection principle. Exact cut-off points of the LMPU test can be easily
obtained either by numerical integration or through simulations. Two essen-
tial properties that ant reasonable test should possess are shown to hold for
the LMPU test: the exact (all sample size) property of admissibility and the
large sample property of consistency. The latter is particularly important in
the context of a LMP test since it is known that such tests may in some cases
(see e.g. Chernoff, 1951; Ferguson, 1967) indeed turn out to be inconsitent.
Asymptotic normality of the LMPU test statistic under both the null and
alternative hypotheses are also established. We present in Sec. 3.2 a result
on the large-sample higher-order power comparison of these three tests.

3.1.1 Test Based on the MLE.

It is easy to see that the maximum likelihood estimator of u is given by,
it = tan~1(S/C). Motivated by the geometry of the problem and based on
the description of the alternative as given above, we propose the test given
by, w : 1 € arc(m,2m —ny),m; > 0,1 =1,2. For py = 0, this may be written
in the simpler form: w : i > K; or < K3,0 < K; < K, < 27. However in
terms of general py(# 0), the critical region proposed takes the form: w: i €
arc(K,, K3) where K; may indeed be larger than K,. The constants used
above are to be determined from the size and (local) unbiasedness conditions
given in (3) below. The determination of these constants however turns out
to be non-trivial and we do not proceed with it further.

3.1.2 Locally Most Powerful Unbiased (LMPU) Test.

The concept of LMPU test may be attributed to Pearson and Neyman (1936,
1938) - see also Ferguson (1972, pp 237-238). The aim is to find a test ¢q



out of all a-level unbiased tests which maximizes the curvature (the slope for
one-sided tests) of the power function at the null value. Consider the class
C of tests such that any test ¢ € C satisfies

foli) oo = and g, (1) oo = 0 (3)
The test ¢y € C is an LMPU test if it maximizes the value of the second
derivative of p,(p) at u =0, that is

Higo (1) [u=0 > (1) [p=o -

We now motivate LMPU test for our problem. The LRT here is not
known to have any exact optimality property. Note that also no small sample
unconditional optimal test for H, is yet available. Mardia (1972, pp 138 -
141) and Mardia and Jupp (2000) present conditional tests based on the
"Fisher Ancillary Principle”. An interesting point to note though is that
this conditioning does not introduce any additional dimension in the induced
"parameter” (including the known value of the conditioning variable) space
since the conditioning variable, the resultant R, is amalgamated in the new
known concentration parameter. Fisher (1993, pp 93 - 94) suggests tests
based on large samples and bootstrap technique. These are quite interesting
approaches. However, small sample optimality properties of these tests are
yet to be established.

The score test discussed by Mardia and Jupp (2000) also needs to be
mentioned here. Though it also is based on derivative of the log likelihood
function, only the first derivative is used in contrast to both the first and
second derivative needed for the LMPU test. Further, unlike the LMPU
test, this test is not known to possess any exact optimality property and
hence will not be discussed further in this paper.

In practice we will usually be interested in testing against ‘local’ alterna-
tives, i.e. alternatives close to the null, which however are also more difficult
to detect. In the absence of a UMP test, a LMP test is then a natural choice.
Since our underlying distribution is a member of the CEF, the suitability of
this LMP test may be further evaluated through the associated statistical
curvature. We show that here the LMP approach not only yields a simple
and elegant test statistic but further that the test is expected to work ”well”
, as revealed by 7, for small sample size, e.g. even as small as 15 when
k=1.



Inspite of these favorable poperties of a LMPU test, it cannot be unequiv-
ocally advocated. This test need not be even admissible or consistent. We
establish below that the LMPU test for our testing problem does not suffer
from any of these drawbacks.

Let [x] denote the greatest integer in x, C' = C/m,S = S/mR = R/m
and A = A(k) = Iy(k)/I1 (k). We then have the following

Theorem 1. The LMPU test for testing Hy : u = 0 against Hy : u # 0, is
given by

€ (1, (K), cor (K)U (21 — €9 (K), 27 — ¢1,(K))]

we {(@,r):0
(0<f<2m,0<r<n)} (4)

where

ci(K) = arccosa;,(K),i=1,2. a;,(K) > ag(K),
ai(K) = [=7 + {7 — 4(mrr®) (K — mwr®)}12)/[2(mnr?)],
ay(K) = [-7 —{7* = 4(mur®) (K — mxr®)}'/?)/[2(mri?)].

Using the size condition, K is determined from the equivalent critical region
w: —C+mrS*>K, (5)

(ii) This test is admissible. (iii) A sample size m = [8{1/A4% — 1/Ax — 1}] +
1, which monotonically decreases with x, suffices to reduce the statistical
curvature below Efron’s critical value.

Proof: A LMPU test can be found by using the generalized Neyman-Pearson
Lemma (see, Lehmann, 1986, pp. 96-101). According to this lemma, for
testing Hy : p = 0 against Hy : p # 0, a LMPU test will have critical region
given by

82
o
where 0* = (04, ...,0,,)", L(6*, i) is the log likelihood function of (6, ..., 6,,)

and ki, ko are determined by (3). Then the critical function of this LMPU
test is given by

S0 W)ma (L ) ma)? > b4 R L, ) (6)



wo(0*, u) = 1 if (=K _cost;)+ (k) sin;)® > ki + kao(k D sinb;)
i=1 i=1 i=1
= 0  otherwise (7)

Define U = k Y1, sinf; and V = —k 31, cos 0; + (kX1 sin 6;)2.

Exploiting the facts that the von Mises density is symmetric, that (U, V)
and (U, —V') are equal in distributions since V' is an even function under H,
and the reflection principle (Ferguson, 1967), it follows (Chang, 1991) that
ko = 0. Thus the test reduces to the simple form given in (4).

7?7 According to Lemma 1 above,?? the critical region of the LMPU test
becomes

w: —C+rS?>k, w: T=-C+mrS*>K

where K is determined by the given level of significance.
Note that since

C = Rcosfl, S=Rsinf,R=R/m;C*+ 5% = R*
The above critical region then can be rewritten as,
w:  mkF?cos? 0+ Feos — mer* + K < 0,...(XX)
which, due to the convexity of the function, can be equivalently written as,
a1, (K) < cosf < ag, (K),...(YY)

where 0 < a1,(K), a9, (K) < 7/2 are the two roots of the quadratic
expression on the LHS of (XX) equated to zero. Now, from the nature of the
cosine curve it follows that (YY) yields that @ for each 7 should lie in the
union of two disjoint arcs as presented in the theorem.

(ii) Admissibility of the test follows due to the uniqueness of the LMPU
test - a consequence of the non-randomized nature of the critical region cor-
responding to a continuous test statistic.

(iii) Finally, consider the associated statistical curvature. At u = 0,
Var(sin §) = A(k)/r; Var(cos 0) = 1 — A(k)/k — A?(k) and Cov(cos 6,
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sin ) = 0. Further, n(0) = (0,k),7(0) = (—&,0). Simplification yields
va(k) = 1/A?—1/Ak—1. It then follows that (0/0k)yo (k) < 0, i.e. yo(k) | 5.
Also demanding ,,,7a(x) | 1/8, the critical value suggested by Efron, yields
the value of m as stated in the theorem.

Remarks: 1. Note that the LMPU test is a function of both the compo-
nents C' and S or equvalently # and R of the sufficient statistic and is an
unconditional test.

2. Table 2 provides the desired minimum values of m, as per Efron’s
criterion, for various values of k which should make the LMP test work well.
In particular with x = 1, to achieve ,,72(1) | 1/8, the critical value, it suffices
to have m > 14.266, i.e. m =15. Such a sample size should be easily available,
implying thereby that the LMPU test will work ”well” in practice. Note that
the required sample size m which suffices becomes trivial (i.e. 2) for k > 2.2.

3.1.3 Exact cut-off points

Small sample cut-off points may be obtained through numerical integration
or by simulation. For the former approach, the following representation of
the tail probability of T under Hj is convenient.

a=P(T >t,) = / P(—7cos — mkr*cos’d + mki® > to|R = 1) fr(r)dr
0

= " P(0 € S;|R =r)fr(r)dr say.

Similar representation for the power as the above for the size of the test
shows that the power of the LMPU test is a weighted average of the powers
of the conditional (for each r) test. We can then use the facts that the
conditional density of §|(R = r) is ON(p, x7) and fr(r), the marginal density
of R is available from, e.g. equation (4.5.4) in Mardia and Jupp (2000), p.
69. Gaussian quadrature and iterative techniques (e.g. see SenGupta and
Jammalamadaka, 2001, for the one-sided LMP test) may then be employed
to get the cut-off points.

Alternatively, one can generate the distribution of 7 by simulating ob-
servations from the C'N distribution, e.g. by the algorithm of Best and Fisher
(1979). Cut-off points for & = 0.01, 0.025, 0.05, 0.10, x = 0.1, 0.5, 1.0, 1.5, 2.0,
and sample sizes m =5, 6, 7, 8, 9, 10, 20, 30, 50, 100 obtained by simu-
lation are given in Table 1.

11



The cut-off points for large samples are easily obtained for all levels of
significance o and all k values by virtue of theorem 2 below.

3.1.4 Asymptotic distribution of T

We now study both the null and non-null asymptotic distributions of T.
These are shown to be normal.
Let us denote the raw trigonometric moments as

E(cospb) = a,, E(sinpd) = 5,
and the central trigonometric moments as,
Blcos(p(f — 1)) = o5, B(sin(p(6 — 1)) = 5 = 0.

Also for brevity we will write a7 as B,,.
The asymptotic distribution of the LMPU test statistic is given by

Theorem 2. As m — oo,
V2m{T + A(k) cos u — km(A(k) sin )} N N(0, ¢?),
where

0> = {1+ By(k)cos2u — 2(A(k) cos p)*} — 4A(k)kmsin pu{ By(k) — A*} sin 2
+4(A(k)kmsin p)?{1 — By(k) cos 2u — 2(A(k) sin 1)},

Corollary. Under Hy, as m — oo,

V2m{T + A(r)} -5 N(0,{1 + Ba(r) — 24%(r)})
and C and S are asymptotically independent.
Proof: We first need to prove the following

Lemma 2: For a C'N(u, k) population, the trigonometric moments are given
by,

» = 1p(k)/1o(k) = By(k), B, =0,
E(cos(p(0 — p)) sin(q(0 — p))) = 0,p, ¢ > 1, (8)

12



where (k) = [7 7 cospfexp(r cos pf)df is the modified p-th order Bessel
function of the first kind. Also, in terms of the standard notations (see e.g.,
(A.11) of Mardia and Jupp, 2000, p. 350)

Bi(k) = Ii(k)/1o(k) = Az (k) = A(K), Ap(K) = Lo (%) / Tpj2-1 ().

Proof: The results follow on noting the symmetry of the C'N distribution,

the even and odd nature of the cosine and sine functions respectively, and
the definition of I,(k).
Now,

Ecost =a; = A(k)cospu, Esinf = 3 = A(k) sin p

Var(cosf) = {1 + ao —2a3} = 1{1+ Bycos2u — 2(Acos p)?} = oy
Var(sinf) = {1 — ap — 28}} = ;{1 + Bycos2u — 2(Asinpu)?} = o9
Cov(cosB,sinf) = 1{fs — 20181} = {By — A’} sin2u = o015,
Then by the Central Limit Theorem and on using lemma 2,
Vm(C — a1, 8 — Bi) -5 Ny(0, ¥) (9)

where the covariance matrix ¥ = ((0;;)) has elements defined above.
To derive the asymptotic distribution of the test statistic, we invoke the
0- method given by

Lemma 3. [Rao (1973), p 387.] Let (v/m(Tim —m), -y vV (Tim — M)
have asymptotic k-variate normal distribution with mean zero and covariance
matrix ¥ = ((0y;)) with 0;; = Cov(T;, Tj), i=1, ..., kand j =1, ..., k.
Furthermore, let g be a function of £ variables which is totally differentiable.
Then, Vm[g(Tim, -, Tkm) — g(m, ..., nx)] has the asymptotic normal
distribution with mean zero and variance }-; >, Uija%ga%jg'

Define g(C,S) = —C + kmS?. Then, g(ay, f1) = —a; + kmfB2.
By lemma 3 we are able to conclude that

Vin{—C + kmS? — (—a1 + &kmf2)} 5 N(0, o?),

where

2
o = 011 (%g(ah 51)) + 2019 <%g(ala 51)) (aiﬁlg(ah 51))

13



9 2
+099 (8—619(@1, 51))
= 011 — 4kmpProyg + 4(1“‘””51)2022

On simplifictions, the expressions in the theorem now result.
The corollary follows on putting p = 0.

3.1.5 Consistency of the LMPU test.

Let us indicate with the superfixes 0 and 1 the relevant quantities under
Hy:p=0and Hy : g = u(# 0) respectively. For example,

af = A(k), B} = 0;0q = A(k) cos p, B = A(w) sin g,

Then we have the following Theorem 3. The LMPU test given above is
consistent. Proof: By theorem 2 it follows that for large samples K =
(007a)/(m'?) — a?, where 7, is the upper 100 a% point of the standard
normal distribution. Then for large samples,

P|T > K|H,] = P|Z > (00/01)Ta —m"*{(mk(B])2)+A(k)(1—cos j1)}] —?77?

Remarks: Sometimes moments of sin# and cos @ (instead of trigonometric
moments of #) are needed. These may be obtained by repeated differentiation
under the integration sign as many times as needed and exploiting the prop-
erties used above for obtaining the trigonometric moments. Alternatively, on
noting that the C'N distribution is a member of the exponential family, these
may also be obtained by an useful generalization of Stein’s identity to the
univariate multiparameter exponential families noted by Arnold et al (2001).

3.1.6 Higher-order Power Comparison.

For the case of the two-sided alternatives, the test based on the MLE and
the LR test discussed above and also the LMP test are unconditional tests.
Except for the LMP test, which is optimal for all sample sizes in the sense
of maximum local power, no small-sample property of the other two tests is
known. However, using standard results, e.g., following Amari (1985), we get
the following results on the deficiencies of the tests.

14



Lemma 4. The third order power losses of the LMP test compared to the
MLE and the LR tests are respectively given by

tLu(t) = [(1=1/(2r5,) = J(t))/J(O)]* and
tLr(t) = [(1=1/Q275,) = J())/(1/2 = T ()], (10)

where 7,/ is the upper 100a/2% point of the standard normal distribution
¢():

£(t) = (t/2)[(Tajs — t) — @(Ta2 +1)] and J(t) =1 —t/[27,/2 tanhtr,o].

Proof: This result follows from Theorems 6.6, 6.7, and 6.8 of Amari.

3.2 Case 2. kx unknown

When £ is unknown, the principle of similarity or meaningful invariance does
not lead to any reduction and hence no unconditional useful test is available.
A conditional test may be derived, and even a conditional LMP test may
be envisaged, i.e. a LMP test obtained from the conditional distribution
free from the nuisance parameter . but as for the x known case, this will
also call for extensive tables corresponding to the conditioning continuous
random variable, to be useful in practice. One may ofcourse use the usual
LRT. However, then neither any simple test statistic results nor is any small
sample optimal property of this LRT known.

3.2.1 The C, Test.

Here, we show that a simple and elegant yet an unconditional asymptotically
optimal test, e.g. Neyman’s C, test can be derived.
Theorem 3. The C,-test for testing Hy : = 0 against Hy : u # 0 is given

by
Wi || = V&Y sin6;/(mA(R)? > 7./2 (11)
i=1

Proof: Let, ¢ =In f(#,k). Then at p =0, ¢, = ksinb, ¢, = cos — A(k).
Assume k < Ky < oo. Then straightforward computations establish that all
the conditions for ¢, and ¢, to be Cramer functions are satisfied.

15



The C,- test is given as
wi | Znl = 1D Adu{0. 5} — a16s(0, R)}/Vmao(R)| > Ta/2  (12)
i=1

where & is any locally root m consistent estimator of x under Hy,oo(k) is
the standard deviation of ¢,(0,x) — a%¢, (0, ) under Hy and evaluated at
k = k,a is the partial regression coefficient of ¢, on ¢, and 7, is the upper
100a% point of the standard normal distribution. One may, e.g., take & as
the MLE of x under Hy, i.e., K = Maz{0; A='(C/m),C > 0}. Further, a? is
seen to be 0 by direct computation. Also, F(6%(/éudk) = 0 under Hy, holds.
Then, the numerator of Z* reduces to 3 sinf; and thus o2(x) reduces to,
02(k) = Var,—o(rsinf) = kA(k). Thus (12) reduces to the simple form given
in theorem 3.

For any sequence p* = {u,} such that u,/n — =, the asymptotic value
of the power of the test is given by

Ta /2
1= (1/vam) [ expl=(t = ouli)? 2},

Among all tests, T;, for Hy : 4 = 0 with asymptotic level of significance «,
whatever be the sequence of alternatives pu,, # 0 with pu,, — po = 0, and
whatever be the fixed x > 0,

lim [ Power {T},(ptm, )} — Power {1\ (pm,k)}] > 0.

The test T,, is in this sense an asymptotically locally most powerful test.

3.2.2 A simple optimal test

(11) involves computation of 4. This may be avoided to give an even sim-
pler but nevertheless (asymptotically) equivalent test. Note that, o3 (k) =
k2 Ey(sin?#) and ¥, sin?#;/m is a consistent estimator of Ey(sin®#). Then
(11) reduces to,

wi (Tl =13 sing/(O sin?0,)2 > 7,/2. (13)
i=1 i—1

T,, is asymptoticaly equivalent to Z,, in the sense that it has, by Slutsky’s
theorem, the same limiting distribution as that of Z,,. In Example 2 we show
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that the numerical equivalence of these two test statistics can hold for even
as small a sample size as m = 15.

4 Examples

Here we present two examples, one each corresponding to the x known and
unknown cases. These demonstrate the ease in the implementation of our
LMPU tests proposed above.

Example 1. We first consider the x known case. This example is the example
6.5 in Mardia (1972, pp 141-142) or the example 7.1 in Mardia and Jupp
(2000, p 121) where a conditional test has been used. A sample of size 10 on
the dip-directions of cross-beds of a section of river gave § = 278° and R =
0.35. It is known that p = 342° and k = 0.8 for a neighboring section of the
river. We are interested to know whether the claim that the mean direction
for the section sampled is the same as that of the neighboring one.

To use our framework as in section 3, i.e to test Hy : = 0, we introduce
the translation # = a«—342° (mod 27), where 6 is the transformed observation
obtained from the original observation a. This gives

Cy = cos 342°C,, + sin 342°S,,, Sy = cos 342°S,, — sin 342°C,,.

These give (Cp, Sp) = (.153442, —.314586).

Note that Ry = R, = .35, since the resultant direction is invariant under any
location shift. These give T' = —.0742, which falls below the critical value at
the 5% level of significance as is easily seen from Table 1. Thus the claim is
not refuted, which is also the conclusion arrived at earlier.

Example 2. We finally consider the x unknown case. This example is the
example 4.23 in Fisher (1993, p. 94) or example 7.2 in Mardia and Jupp
(2000, p 125). Schmidt-Koenig(1963) give the vanishing angles of 15 pigeons
from an experiment on their homing ability. Tests have been conducted
for "the null hypothesis that their mean vanishing direction p is in fact in
the direction of their loft (149°%), against the alternative that they cannot
navigate straight home.”

Fisher has used an intuitive large sample test based on sin(f — j), where
we have Hy : p = po. Mardia and Jupp use the inversion of the conditional
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confidence interval for ;1 based on the conditional distribution of § given R.

As in example 1 above, we introduce the transformation § = o — 149°
(mod 27). We conduct the test by using both the statistics T, and Z,,, for
the sake of illustration and more importantly for evaluating the performance
of the approximation.

Calculations give Cy = 10.32098, S; = 3.64687, so that Ry = 0.72976.
Then under Hy, & = A~'(C) = 1.95 (from Fisher, 1993, Table A.3, p. 224).
Thus from (11) we have,

| Zm| = [VEXT™, sin6;/V/C| = 1.5852 < 1.9604 = T,925.

Next from (13) we have, |T,,| = 1.5877.

Both these test statistics lead to the same conclusion at the 5% level of
significance. There is not enough evidence to refute the ability of the pigeons
to navigate to their home, which is also the conclusion arrived at earlier e.g.,
by Fisher, Mardia and Jupp, and others.

The remarkable closeness of the values of these two statistics is worth
noting.
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Table 1. Cut-off points for LMPU Test for p.
k=0.1

0.01  0.025 0.05 0.10

o 25588 .24837 18745 .10488
6 .35424 31454 .18830 .16045
7 38346 .33863 .24501 .19843
8 .44309 .41304 .32930 .23780
9 48662 .41365 .33164 .24985
10 .50016 .43030 .35260 .27876
20 50708 43755 .39570 .33135
30 51225 .45019 .42963 .36538
50 .64130 .52308 .47680 .38592
100 .71001 .58147 .47750 .45746

«

0.01 0.025 0.05 0.10

o .84478 .67084  .57803 .24942
6 .91490 .70716  .58964 .39720
7 1.08133 .76623 .65221 .49258
8 1.16989 .76941 .71303 .43613
9 1.18185 .89727 .72266 .49217
10 1.19025 .93554 .73670 .50227
20 1.40034 1.10769 .73890 .50576
30 1.40411 1.13666 .74545 .50657
50 1.55547 1.16322  .86932 .54465
100 2.04561 1.28866 1.12061 .70739
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" 0.01 0.025 0.05 0.10

5 1.12936 1.05149 .75287  .59208

6 1.82596 1.13438 .88205 .59342

7 1.94141 1.59096 1.03125 .61784

8 2.20843 1.61217 1.13123 .71449

9 2.26283 1.64510 1.20029 .76255

10 2.38881 2.01740 1.36466  .85740

20 2.41958 2.20682 1.51555 .93066

30 75708 2.21226 1.56393  .98148

50 2.94436 2.31443 1.67136 1.13649

100 4.00131 3.34759 2.33409 1.99327
k=15

m

0.01 0.025 0.05 0.10

5 2.02244 1.69334 1.04481 .64752

6 2.30280 1.74715 1.12702 .69839

7 248052 1.81820 1.21107 .76943

8 2.48615 1.90590 1.56377 .78720

9 2.50477 2.02335 1.58742  .91436

10 2.58416 2.03765 1.60232 .98784

20 3.10915 2.24143 1.66584 1.14907

30 3.15341 2.40212 1.75804 1.26063

50 3.39589 2.56502 1.77667 1.33914

100 4.47562 3.00727 2.56775 1.42439
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0.01 0.025 0.05 0.10

D 2.62098 1.42209 1.31822 .83484

6 2.90299 2.19884 1.47681 .91614

7 2.71539 231785 1.61512 .93788

8 3.09756 2.57843 1.68101 .94641

9 3.09985 2.59223 1.78824 1.04548
10 3.40628 2.74985 1.83594 1.18627
20 3.55619 2.79965 1.85397 1.22673
30 3.69003 2.92983 2.17252 1.58584
50 3.90731 3.63646 2.35456 1.61081
100 5.85477 4.72540 3.57381 2.75516

Table 2. Minimum sample size m corresponding to 2.

02 04 06 08 10 12 14 16 18 20 2.2
399 99 43 24 15 10 7 5 4 3 3
24 26 28 3.0
2 2 2 1

S =3 =
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