
Journal of Statistical Planning and Inference 29 (1991) 145-155 

North-Holland 

145 

Locally optimal tests for no contamination 
in standard symmetric multivariate normal 
mixtures 

Ashis SenGupta 

Indian Statistical Institute, Calcutta, W.B. 700035, India, and University of California, Santa Barbara, 
CA 93106, USA 

ChandraNath Pal* 

Indian Statistical Institute, Calcutta, W.B. 700035, India 

Received 22 March 1989; revised manuscript received 30 October 1989 

Abstract: Mixture models are becoming increasingly popular in reliability studies and in survival analysis. 

Consider a mixture of two standard symmetric multivariate normal distributions with one of them having 

intraclass correlation coefficient, Q as 0. We are interested in testing for no contamination. To avoid the 

problem of identifiability, we assume that either Q # 0 or that the mixing proportion p< 1 and then test 

for the other parameter. From practical and theoretical considerations based on statistical curvature, we 

advocate the test for Hc: Q = 0 in preference to that for Ho: p= 1. Serious complications still exist, so 

we concentrate on the problem when p is known. Assuming p known, the locally most powerful test is 

shown to be extremely simple, and the exact cut-off point is easily computed. The test is admissible, un- 

biased and possesses a globally monotone power function. Computation of the exact power values ex- 

hibit encouraging results. The test statistic is asymptotically normally distributed under both the null and 

alternative hypotheses. Finally, the test is shown to be also consistent. 
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1. Introduction and summary 

Mixture models are now increasingly playing important and popular roles in 

reliability, see e.g. Titterington, Smith and Makov (1985, p. 17 and p. 20). Sym- 

metric multivariate normal (SMN) distribution with equicorrelation pattern (Rao, 

1973) for the correlation matrix is also a very popular model in reliability studies. 
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However, little seems to be known about any method of construction of optimal 

tests in mixture models. Here we consider the test that the underlying population 

is standard SMN (SSMN) against the alternative that it is ap-mixture of two SSMN 

distributions, with only one having possibly non-zero intraclass correlation coeffi- 

cient, Q. 

Each of the hypotheses, H,: Q = 0, H,: p = 1 and Ho: Q = 0, p = 1 simultaneously, 

leads to the hypothesis of no mixture. So, to avoid the problem of identifiability, 

we might assume either p # 1 or Q ~0. However, with the nuisance parameter p or 

Q, the problem cannot be reduced by any of the principles of sufficiency, similarity 

or invariance. Thus, in order to get small sample exact optimal tests, we assume that 

the parameter not tested is known. It is obvious that the likelihood ratio test (LRT) 

statistic is not even available in a closed form. A locally most powerful (LMP) test 

can be proposed (Efron, 1975) for this non-exponential mixture model. We use 

Efron’s statistical curvature both as a preliminary criterion for the expected perfor- 

mance of an LMP test and also for choosing between the two families, p known or 

Q known. In practice a priori information onp will be available, possibly more often 

than on Q. For example, suppose that the same item is purchased in batches from 

two companies. Then, it will be (at least approximately) known what proportion of 

the total purchase is made from each company. As such, the case of p known in 

univariate normal mixtures has received quite some attention (Butler, 1986; 

Newcomb, 1886; etc.) (This, of course, might also be attributed to the difficulty in- 

volved when p is unknown.) We demonstrate encouraging results for statistical cur- 

vature at .Q = 0 with variations of p in (41). Also, the test statistic simply coincides 

with the one for H,: Q=O in the SSMN distribution and hence the exact null and 

non-null distributions and the cut-off points are available from Gokhale and 

SenGupta (1986). Thus a tremendous theoretical and computational gain is achieved. 

On the other hand, an LMP test for H,: Q = 1 can cause various derivational and 

distributional complexities (Self and Liang, 1987) due to the parameter p lying on 

the boundary of the parameter space, [O, 11. Further, we demonstrate that there exist 

several values of Q for which the statistical curvature at p = 1 (or equivalently, q = 0) 

is not defined. Hence, given a choice, an LMP test for H,: Q= 0 is justified in 

favor of that for He: p = 1. 

The proposed LMP test is admissible. Exact power computations, through exten- 

sive simulations, exhibit extremely encouraging results even with a sample size as 

small as 10 and for a non-local alternative as far asp = 0.9. The test has a monotone 

power function for alternatives, e>O, is locally consistent and the test statistic is 

asymptotically normally distributed under both the null and the alternative hypo- 

theses. This is extremely reassuring. Recall (Ghosh and Sen, 1985) that even in the 

‘strongly identifiable’ case of mixture distributions and even under the null hypo- 

thesis, the asymptotic distribution of the likelihood ratio test statistic, A, is quite 

complicated. 
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2. Locally most powerful test 

Let g(x 1 m,a’, Q) denote the k-variate SMN density (Rao, 1973, p. 196), 

Nk(M, 02ZQ), with mean vector M= (m, . . . , m)', a2>0, ~~=((@+(l-@)~ij))~ d, 

being the Kronecker delta and -(k - 1))’ <Q < 1. This density can also be regarded 

as a density of k exchangeable normal random variables with the same marginal 

parameters m and 02. Let g(,,(x I 4 a2, e) = g(,) be the density obtained as a ‘p- 

mixture’ of g(x 1 m, 02, 0) = go and g(x / m, 02, Q) = g,, that is 

g(,)(x 1 m, 02, e) =p(2no 2)-k’2 exp{ -(x - M)‘(x - M)/2a2} 

+q(2n02)-k’2(detCQ)-1’2exp{-(x-M)’Zb_’(x-M)/2a2) (1.1) 

where O<p<l and q=l -p. Let X1,..., X, be a random sample from (1.1). 

Assume m = 0, a2 = 1. Here we derive LMP test of Ho: Q = 0 against the one sided 

alternatives H,: Q>O. Note that for large /c, Q should be non-negative. Usual rever- 

sal of inequality in the definition of the critical region yields an analogous test for 

the alternatives Q < 0. We restrict to one sided alternatives because in most practical 

situations the sign of Q is known. Also, such a restriction allows us to study further 

properties of LMP test. 

The structure of the LMP test (Spjotvoll, 1968) for the mixture population 

(Durairajan and Kale, 1979) is based on the inequality 

i,[$ lw&, I mja2,e) 
II 

Q=o>c (2.1) 

where c denotes a constant. Verification of regularity conditions for our problem 

is straightforward though tedious. 

Since p is known, (2.1) reduces to a similar expression with g(,) being replaced by 

g,, i.e. the test statistic coincides with that for the SSMN distribution as given in 

Gokhale and SenGupta (1986). The exact null distribution and the corresponding 

cut-off points are also available from that paper. Thus a tremendous gain is achieved 

here both from the theoretical and the computational aspects. 

To complete the notation, let X, = (Xs,, Xx2, . . . , X,,)‘, X,; denoting the i-th compo- 

nent of the vector X,, X denote the sample mean vector, X=((c,“=, C:=, X,,)/nk, 

and Xs be defined by Xs = (CF=, Xx,)/k, s = 1,2, . . . , n. Let 

w= i 5 (X,;-XJ2, B=k i (&x)2 
s=l i=l .Y=l 

and 

T= i f (X,;-x)*=B+ W. 
s=l i=l 

Under ge , W/(1 -Q) is distributed as x,$_ 1), B/{ 1 + (k - 1)~) is distributed as x,‘_ , 
and W and B are independent (Rao, 1973). Then the LMP test is given by: 
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Reject H, if T, = i 
k 

c X,;X, >c. 
s=l i+j=l 

This test is unique and is thus admissible. 

3. Statistical curvature 

3. I. Definition 

For a one-parameter non-exponential family, Efron (1975, p. 1196) suggested a 

general definition of statistical curvature, ye, as a measure to quantify how ‘nearly 

exponential’ these families are. Efron suggested that a value of yiO<$ is not ‘large’ 

and one can expect linear methods to work ‘well’ in such a case. In the context of 

testing of hypotheses, in case a UMP test does not exist, LMP test may then be con- 

sidered. Further in repeated sampling situations, the curvature .yiO based on II 

observations, satisfies ,viO = yiO/n and hence one can determine the sample size n 

which reduces the curvature below $. Let 9= ( fs(x), 6’ E O} be an arbitrary family 

of one-parameter density functions. Let, Is(x) =ln fs(x). Then, under the usual 

assumptions of existence of derivatives etc., the statistical curvature of f at 0 is 

defined as ys, 

In testing for no mixture, from a theoretical point of view we might be interested 

in a choice between the LMP tests for H,: e=O, p known and H,: p= 1, Q known. 

The latter hypothesis involves the test for a parameter on the boundary of the para- 

meter space and, as is well known (Self and Liang, 1987), may lead to analytical 

complexities. Nevertheless, here we compare the two tests using ye as a criterion. 

3.2. ,yiZO as a function of Q 

Let &=lng(,,). Then io=r- 1 and ii=-@- 1)’ where r=g,/g,. Now, 

r= I,ZQJ1’2exp[{-e/2k(l -@>(I +(k- I)@)} 

X {C (Xi-X)2-(k- l)(l -@)(I xi)2}1 (3.1) 

(1 -e)(l + (k- 1)e) 

= (2~t)~‘~lZ’~ 1-j” exp[-+x’Bjx] dx, say, (3.3) 
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where, 

X’BjX= X’ 
(j-l)e+l I je 

k 

_ 

(1 -e)(l +(k- 1)e) 
11’ x. 

1-e 1 
Hence from (3.3), when defined and when it exists, pj is given by 

p,=(l _Q){k-.i(k-1)1/2{l +(k_ f)e}-j/2 

x[{(j-l)~+l}k-{(k~j)((j-l)~+l)k~’/(1+(k-l)~)}]~“2. (3.4) 

We first compute bj and then aj= Ci=, (-l)‘(<)pjP;, j= 1(1)4. Finally, Iyi=O = 

(a4 - a$/ai - a,2/a:. 

3.3. ,~,2_~ as a function of q 

Let IQ = In g(,). Then i,, = q&/g, and ii = (qg& - q2&)/gi. Let 

and 

T, = kz2, T2= f (Xi-R)2 
i= 1 

T,=+k(k-l)++{(k-1)T,-T2}2-{T2+(k-1)2T~}. 

Under go, T, and T2 are independently distributed with T, -xf, T2 -xi_ 1. After 

some tedious calculations, and using the fact that if Y-x,‘, then 

E(Yr)=n(n+2)(n+4)**.(n+2r-2), 

we have 

and 

E(i,z) = fq2E((k - l)T, - T2}2 = +k(k- l)q2, 

E(i,i;)=fq2E[{(k-l)T,-T,}{+k(k-l)+f((k-l)T,-T,)* 

-(T,+(k- 1)2TI)}] -$q3E{(k- l)T, - T2j3 

= -q3k(k - l)(k - 2), 

E(i;2)=q2E(T;)+&q4E{(k- l)T, - T2}4-(q3’2)E[T3{(k- l)T, - T2}2] 

=q2{+k4-5k3++k2-3k}+&q4(60k4-216k3+300k2-144k) 

- +q3(6k4 - 20k3 + 26k2 - 12k). 

Thus, 

lMol ={~k2(k-1)2}{q6(3k2-3k+2)-2q5(3k2-7k+6)+q4(3k2-7k+6)}. 

Finally 

,y,2=0={2/k(k- 1)}{(3k2-7k+6)(q-‘- 1)2+4(k- l)}. 

3.4. Comparison and comments 

Let ~~(l)=ry~=~ and ~~(2)=ryq2_~. Consider ~~(2). Rewrite (3.2) in terms of 
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Table 3.1 

Values of ly2,=0 with q=O.O5(0.10)1.00 and k=2(2)10 

4 k: 2 4 6 8 10 

0.05 1448.00 1566.33 1734.13 1831.79 1894.04 

0.15 132.44 141.14 155.47 163.85 169.20 

0.25 40.00 41.00 44.53 46.54 48.00 

0.35 17.80 16.95 17.89 18.49 18.89 

0.45 9.98 8.47 8.50 8.58 8.63 

0.55 6.68 4.90 4.55 4.39 4.31 

0.65 5.16 3.26 2.13 2.47 2.32 

0.75 4.44 2.48 1.87 1.56 1.38 

0.85 4.12 2.13 1.48 1.16 0.96 

0.95 4.01 2.01 1.35 1.01 0.81 

1.00 4.00 2.00 1.33 1.00 0.80 

C (Xi-Z)2 and (C xi)2 as in (3.1). Then, the coefficient of (C Xi)2 becomes negative 

for values of Q, k and j such that 

(k-l)(j-l)@2+(k+j-kj-2)@+1<0 (3.5) 

for example, with Q = 0.05, k = 8 and j= 4. So, pj may not even be defined for such 

values of e, k and j which is seen from (3.4) also. Thus ~~(2) is not even defined 

for all Q and k and hence Efron’s criterion for the suitability of the LMP test for 

H,: p = 0 fails here. 

Consider ~~(1). It exists for all k and q. Note that ay2(1)/Jq<0 for all k, so that 

v2(1)-/q and y2(1)+8/k=y2(1) Iq=i as q-f 1. We recall (SenGupta, 1987) that 8/k 

is the statistical curvature of the CEF ge at e=O. One can show that, for all k, 

y2(1)lk also, but with qr0.5. ~~(1) -+ CQ as q+O. Thus the LMP test for Q=O can 

be expected to perform well for all k and for all q not too small. The conservative 

behavior for q small is to be naturally expected. The values of ~~(1) exhibited in 

Table 3.1 are quite encouraging. For example, even forp = 0.5 with k = 5, by Efron’s 

rule one needs a ‘moderate’ sample size of n ~50 in order to expect that the LMP 

test performs reasonably well. In fact, in Section 4, we demonstrate that the test has 

extremely good power, for q not too small, with a much smaller sample size, e.g., 

even as small as a sample size of n = 10 only! We thus choose to proceed with the 

LMP test for H,: e=O. 

4. Exact power computations 

We have 

T,= ~ ~ X,iX,= 

s=l ifj=l 

=j,[ 
k(k- 1)Xs2- i (Xsi-Xs)2 . 

i=l 1 

(4.1) 
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Under g,, Xs- N(0, l/k) and hence kXs2 -x:. Again, CF= t (X,; - Xs)2 - xi_, under 

go and - (1 -&xi_ 1 under g, . So (4.1) becomes T, = C,“=, Y,, Ys’s are i.i.d., 

r,- 
(k- ‘)x:-x:-r under go, 

(k-l){l+(k-l)eIx:-(l-e)x~_l underg,. 
(4.2) 

Hence, since T, is a symmetric statistic of Y’s, we have 

P(T,>cje)=l- i ’ 
0 

ps(l-pyP i x+ i qsc 
s=o s i=O i=s+l I 

where Y,=O, Y;, i= l,..., s, follows go and Yj, i =s + 1, . . . , n, follows g,. Thus, 

P(T,>cl e)=l- i ’ 
0 s=o s 

~‘(1 -pYpSP[(k- 1)x,2-&1) 

+(k-l)Il+(k-l)dx$_,, 

-(I -e>x:,_s)(k_1)~4 (4.3) 

We obtain the numerical values for the powers through simulations. The cut-off 

points are given by c=c;nk(k- 1) where the exact values of c; have been obtained 

through numerical integration and are tabulated in Table 2 of Gokhale and SenGupta 

(1986). For each n, p and Q, we generate 1000 T, values by generating 1000 values 

for each of the X2-variables involved. That is, for given n and k, 1000 values of 

each of x,2, x& 1)’ X:,w) and X&T)(k- 1)’ 
s=o, 1, . ..) n, were generated with obvious 

modifications for s= 0 and s = n. Then, the probability, inside the summation sign 

on the right hand side of (4.3), for each s, is obtained as the corresponding empirical 

c.d.f. So, for example, to obtain Table 4.1, the simulation loop was executed 

Table 4.1 

Exact power values for LMP test (~~0.05, k=3; rz= 10 and n=25) a 

e 

0.10 

0.30 

0.50 

0.70 

0.90 

0.99 

P: 0.10 0.30 0.50 0.70 0.90 

0.1210 0.1074 0.0923 0.0689 0.0593 

0.2011 0.1533 0.1257 0.0870 0.0577 

0.3750 0.2832 0.1989 0.1361 0.0709 

0.6589 0.5117 0.3476 0.1976 0.0908 

0.6354 0.4785 0.3354 0.2047 0.0945 

0.9298 0.8103 0.5870 0.3475 0.1284 

0.8188 0.6753 0.4791 0.2856 0.1168 

0.9911 0.9384 0.7786 0.4912 0.1759 

0.9121 0.7848 0.5944 0.3635 0.1424 

0.9991 0.9841 0.8827 0.6205 0.2214 

0.9409 0.8260 0.6454 0.4051 0.1602 

0.9998 0.9907 0.9154 0.6531 0.2275 

a First and second sets of entries correspond to n = 10 and n = 25 respectively. 
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pa Q. (n + 1). 1000.4 = 9. 10.26. 1000.4 = 9 360 000 times. From the first set of en- 

tries of Table 4.1 we note that the performance of the test is quite good, for small 

p, even for as small a sample size as 10. The power increases rapidly with Q. The 

monotonicity of the power function is clearly exhibited which is also established 

analytically in Section 5 below. The rapid increase in power, for small p, with in- 

crease in n is noted from the second set of entries. For largep, the power is not high 

as is to be expected. 

5. Unbiasedness and monotonicity 

Note that the last expression in the right of (4.2) is an increasing function of Q 

for Q ~0. This implies that for O<Q, <Q~< 1, Y, is (stochastically) larger under gc, 

than under g,, . From (4.3) it follows that, the power function is monotonically in- 

creasing and hence the test is globally unbiased against one-sided alternatives, Q > 0. 

6. Asymptotic distribution of the test statistic 

Let @ = Ti/nk(k - 1). We show below that Q is asymptotically normally distributed 

under both the null and the alternative hypotheses. This result is quite reassuring 

and important. Recall (Ghosh and Sen, 1985) that -2 In A has a complicated distri- 

bution for the ‘strongly identifiable’ case even under the null hypothesis. In the 

general case, the situation may be far worse as demonstrated by Hartigan (1985) 

through the simple example of pN(0, 1) + qN(8,l) where -2 In A 2 03. We are, of 

course, considering here a special case in that p (# 1) is assumed to be known. But, 

on the other hand, the component densities need not be of different functional 

forms as is usually required for the ‘strongly identifiable’ case. In both these cases 

the hypothesis of no mixture is translated to a unique hypothesis on the parameter 

vector, but through different types of assumptions. Now, 

@= i Us/n, 

k 

Us= C XsiX,/k(k- l)=oi~z, -oz~z> 
s=l i+j=l 

where 
a,=[{l+(k-l)~}/k], az=[(l-e)/k(k-l)], vi-l, v,=k-1 

and xz, and xv’, are independently distributed under g,. Then, 

EQ =pO + q@ = q@ and Var(Q) = [EU2 - (q@)21/n. 

Under ge, we have 

EQU2=3a;+(k2- 1)+2(k- l)cricw2 

= [(3k2-7k+6)k@2+4k(k-2)@+2k]/k2(k- l)=B(@), say. 
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Then, under g(,), we have 

Var(U) = i@(O) + @(e)l/k”(k - 1) - (4e)2 

= [2kp + B(e)q]/k2(k - 1) - (qe)2 = a2(e), say. (6.1) 

Then, by the central limit theorem, we have: 

Theorem 1. Under g@), (@ - q@) is asymptotically distributed as a normal variable 
with mean 0 and variance a’(e) given in (6.1). 

Letting q= 1 in the above theorem, we have, as a special case, Theorem 2 of 

SenGupta (1987), which gave the asymptotic distribution of 0 for the SSMN distri- 

bution. 

7. Consistency of the LMPU test 

Let (Y be the level of the test and c the cut-off point so that 

cx=P[Q>c/n 1 H,]. 

By Theorem 1, then, c=fio(O)r,. So, 

Power(Q) = P[Q> c/n 1 H,] 

= 1 - @[{o(O)r,-n 1’2qe}/a(e)] (by Theorem 1) 

+l as n.03, since e > 0. 

Thus the LMPU test is globally (@>O) consistent. We have already seen in Section 

5 that this test is also globally unbiased and possesses a globally monotone power 

function. 

8. Remarks 

For the general problem of testing for no mixture, one would like to characterize 

this hypothesis by translating it to a unique (except for the nuisance parameters) hypo- 

thesis on the parameters. However, to avoid the problem of identifiability, it might 

be necessary to make some assumptions, leading to special cases. One special case 

is that of the ‘strongly identifiable’ mixture (Ghosh and Sen, 1985) where this is 

achieved through restrictions on the form of the component densities, e.g. requiring 

that they be of different families or of different types, g(,)(x) =pgl(x, 0) + qg2(x, 17). 
‘In most applications’, however, as Titterington et al. (1985, p. 6) have pointed out, 

we “would mainly be considering mixtures of component densities all belonging to 

the same parametric family” and all of the same type. Then, g&x)=pg(x,8,)+ 
qg(x, f?,), e.g. mixture of normals, mixture of exponentials etc. In this case, the 
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hypothesis H,: no mixture, is equivalent to either H,: p = 1, or H,: f31 = &, or H,: 

p = 1, O1 = Q2, simultaneously. Here one would achieve the aforesaid desired char- 

acterization by assuming, as another special case, that either pf 1 or 8, # &. In 

many cases, practical considerations may suggest that pf 1. Further, it may be 

natural for many models to have e1 known, say f+ = BlO; e.g., in Hartigan’s problem, 

& =p, &, = 0; in our problem, e1 =Q, 0,, = 0; etc. Then the assumption of p known 

leads to the LMP test for Ho: no mixture in g(,)(x), to coincide with that for H,: 

8, = 8,, in g(x, f3). Thus, often the test statistic is quite simple and exact and elegant 

results regarding its properties may be obtained as in this paper. Also for this case 

of p known, even in the presence of nuisance parameters (e.g. m and a2 in our 

problem) one can proceed to construct LMP similar and/or invariant tests. Further, 

if p is also a nuisance parameter, one can attempt to construct asymptotically LMP 

tests, e.g. Neyman’s c,-test, likelihood ratio derivative test, etc. Finally, even if p 

is to be tested also, one can explore the multiparameter LMMPU tests of SenGupta 

and Vermeire (1986), e.g. to test, for our problem, Ho: p =po and Q = 0, PE (0, l), 

QE(-l/(k- l), l), simultaneously. Our approach, in the given framework, is thus 

applicable quite generally and the above observations are interesting topics for fur- 

ther research. 
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